Домой Огород на подоконнике Почему меняется поступление солнечной радиации. На какие виды разделяют солнечную радиацию? Инфракрасное излучение и его роль в жизни человечества

Почему меняется поступление солнечной радиации. На какие виды разделяют солнечную радиацию? Инфракрасное излучение и его роль в жизни человечества

1. Что называется солнечной радиацией? В каких единицах она измеряется? От чего зависит её величина?

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях или джоулях на один квадратный сантиметр в минуту. Солнечная радиация распределяется по земле неравномерно. Это зависит:

От плотности и влажности воздуха – чем они выше, тем меньше радиации получает земная поверхность;

От географической широты местности – количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади;

От годового и суточного движения Земли – в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

От характера земной поверхности – чем светлее поверхность, тем больше солнечных лучей она отражает.

2. На какие виды разделяют солнечную радиацию?

Существуют следующие виды Солнечной радиации: радиация, достигающая земной поверхности, состоит из прямой и рассеянной. Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию. Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

3. Почему меняется поступление солнечной радиации по сезонам года?

Россия, в своем большинстве, расположена в умеренных широтах, лежащих между тропиком и полярным кругом, в этих широтах Солнце каждый день восходит и заходит, но никогда не бывает в зените. Благодаря тому, что угол наклона Земли не изменен в течение всего её обращения вокруг Солнца, в разные сезоны количество приходящего тепла, в умеренных широтах, различно и зависит от угла Солнца над горизонтом. Так, на широте 450 mах угол падения солнечных лучей (22 июня) составляет приблизительно 680, а min (22 декабря) приблизительно 220. Чем меньше угол падения лучей Солнца, тем меньше тепла они приносят, поэтому отмечаются существенные сезонные различия получаемой солнечной радиации в разные сезоны года: зимы, весны, лета, осени.

4. Для чего необходимо знать высоту Солнца над горизонтом?

Высота Солнца над горизонтом определяет количество тепла приходящего на Землю, поэтому между углом падения солнечных лучей и количеством солнечной радиации, приходящей на земную поверхность, существует прямая зависимость. От экватора к полюсам в целом наблюдается уменьшение угла падения солнечных лучей, и как следствие от экватора к полюсам уменьшается величина солнечной радиации. Таким образом, зная высоту Солнца над горизонтом, можно узнать количество тепла приходящего на земную поверхность.

5. Выберите верный ответ. Общее количество радиации, достигшей поверхности Земли, называется: а) поглощённой радиацией; б) суммарной солнечной радиацией; в) рассеянной радиацией.

6. Выберите верный ответ. При движении к экватору величина суммарной солнечной радиации: а) увеличивается; б) уменьшается; в) не изменяется.

7. Выберите верный ответ. Самый большой показатель отражённой радиации имеет: а) снег; б) чернозём; в) песок; г) вода.

8. Как вы думаете, можно ли в летний пасмурный день загореть?

Суммарная солнечная радиация состоит из двух составляющих: рассеянной и прямой. При этом Солнечные лучи, независимости от своей природы несут в себе ультрафиолет, который и влияет на загар.

9. По карте на рисунке 36 определите суммарную солнечную радиацию для десяти городов России. Какой вывод вы сделали?

Суммарная радиация в разных городах России:

Мурманск: 10 ккал/см2 в год;

Архангельск: 30 ккал/см2 в год;

Москва: 40 ккал/см2 в год;

Пермь: 40 ккал/см2 в год;

Казань: 40 ккал/см2 в год;

Челябинск: 40 ккал/см2 в год;

Саратов: 50 ккал/см2 в год;

Волгоград: 50 ккал/см2 в год;

Астрахань: 50 ккал/см2 в год;

Ростов-на-Дону: более 50 ккал/см2 в год;

Общая закономерность в распределении солнечной радиации такова: чем ближе объект (город) к полюсу, тем меньше солнечной радиации приходиться на него (город).

10. Опишите, чем различаются сезоны года в вашей местности (природные условия, жизнь людей, их занятия). В какой из сезонов года жизнь наиболее активна?

Сложный рельеф, большая протяженность с севера на юг позволяют в области выделить 3 зоны, различающиеся как по рельефу, так и по климатическим характеристикам: горно-лесная, лесостепная и степная. Климат горно-лесной зоны прохладный и влажный. Температурный режим меняется в зависимости от рельефа. Этой зоне характерно короткое прохладное лето и продолжительная снежная зима. Постоянный снежный покров образуется в период с 25 октября по 5 ноября и залегает он до конца апреля, а в отдельные годы снежный покров сохраняется до 10-15 мая. Самым холодным месяцем является январь. Средняя температура зимой минус 15-16° С, абсолютный минимум 44-48° С. Самый теплый месяц - июль со средней температурой воздуха плюс 15-17° С, абсолютный максимум температуры воздуха за лето в этом районе достигал плюс 37-38° С. Климат лесостепной зоны теплый, с достаточно холодной и снежной зимой. Средняя температура января равняется минус 15,5-17,5° С, абсолютный минимум температуры воздуха достигал минус 42-49° С. Средняя температура воздуха в июле равняется плюс 18-19° С. Абсолютный максимум температуры - плюс 42,0° С. Климат степной зоны очень теплый и засушливый. Зима здесь холодная, с сильными морозами, метелями, которые наблюдаются в течение 40-50 дней, вызывая сильный перенос снега. Средняя температура января минус 17-18° С. В суровые зимы минимальная температура воздуха опускается до минус 44-46° С.

Источником тепловой и световой энергии для Земли является солнечная радиациия. Ее величина зависит от широты места, так как от экватора к полюсам угол падения солнечных лучей уменьшается. Чем меньше угол падения солнечных лучей, тем на большую поверхность распределяется пучок солнечных лучей одинакового сечения, а следовательно на единицу площади приходится меньше энергии.

Благодаря тому, что в течение года Земля совершает 1 оборот вокруг Солнца, перемещаясь, сохраняя постоянство угла наклона своей оси к плоскости орбиты (эклиптики) появляются сезоны года, характеризующиеся разными условиями нагрева поверхности.

21 марта и 23 сентября Солнце стоит в зените под экватором (Дни равноденствия). 22 июня Солнце в зените над Северным Тропиком, 22 декабря – над Южным. На земной поверхности выделяют пояса освещенности и тепловые пояса (по среднегодовой изотерме +20 о С проходит граница теплого (жаркий) пояса; между среднегодовыми изотермами +20 о С и изотермой +10 о С расположен умеренный пояс; по изотерме +10 о С – границы холодного пояса.

Солнечные лучи проходят через прозрачную атмосферу, не нагревая ее, они достигают земной поверхности, нагревают ее, а от нее за счет длинноволнового излучения нагревается воздух. Степень нагрева поверхности, а значит и воздуха, зависят, прежде всего, от широты местности, а также от 1) высоты над уровнем моря (с подъемом вверх температура воздуха уменьшается в среднем на 0,6ºС на 100 м.; 2) особенностей подстилающей поверхности которая может быть разной по цвету и иметь различное альбедо – отражающую способность горных пород. Также разные поверхности имеют разную теплоемкость и теплоотдачу. Вода из-за высокой теплоемкости медленно нагревается и медленно, а суша наоборот. 3) от побережий в глубь материков количество водного пара в воздухе уменьшается, а чем прозрачнее атмосфера, тем меньше рассеивается в ней солнечных лучей каплями воды, и больше солнечных лучей достигает поверхности Земли.

Вся совокупность солнечной материи и энергии, поступающая на землю называется Солнечная радиация . Она делится на прямую и рассеянную. Прямая радиация – это совокупность прямых солнечных лучей, пронизывающих атмосферу при безоблачном небе. Рассеянная радиация – часть радиации, рассеивающаяся в атмосфере, лучи при этом идут во всех направлениях. П + Р = Суммарная радиация . Часть суммарной радиации отраженная от поверхности Земли называется отраженная радиация. Часть суммарной радиации поглощенная поверхностью Земли – поглощенная радиация. Тепловая энергия, движущаяся от нагретой атмосферы к поверхности Земли, навстречу потоку тепла от Земли называется встречное излучение атмосферы.

Годовое количество суммарной солнечной радиации в ккал/см 2 год (по Т.В. Власовой).

Эффективное излучение – величина, выражающая фактический переход тепла от поверхности Земли к атмосфере. Разница между излучением Земли и встречным излучением атмосферы определяет прогрев поверхности. От эффективного излучения напрямую зависит радиационный баланс – результат взаимодействия двух процессов прихода и расхода солнечной радиации. На величину баланса во многом влияет облачность. Там где она значительная в ночное время она перехватывает длинноволновое излучение Земли не давая ему уйти в космос.

От поступления солнечной радиации напрямую зависят температуры подстилающей поверхности и приземных слоев воздуха и тепловой баланс.

Тепловой баланс определяет температуру, ее величину и изменение на той поверхности, которая непосредственно нагревается солнечными лучами. Нагреваясь, эта поверхность, передает тепло (в длинноволновом диапазоне) как ниже лежащим слоям, так и атмосфере. Саму поверхность называют деятельной поверхностью.

Основные составляющие теплового баланса атмосферы и поверхности Земли как целого

Показатель

Величина в %

Энергия поступающая к поверхности Земли от Солнца

Радиация, отражаемая атмосферой в межпланетное пространство, в том числе

1) отражается облаками

2) рассеивается

Радиация, поглощаемая атмосферой, в том числе:

1) поглощается облаками

2) поглощается озоном

3) поглощается водяным паром

Радиация, достигающая подстилающей поверхности (прямая + рассеянная)

Из неё: 1) отражается подстилающей поверхностью за пределы атмосферы

2) поглощается подстилающей поверхностью.

Из неё: 1) эффективное излучение

2) турбулентный теплообмен с атмосферой

3) затраты тепла на испарение

В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 14 часов, а минимум – около момента восхода Солнца. Нарушать суточный ход температуры может облачность, влажность и растительность поверхности.

Дневные максимумы температуры поверхности суши могут составлять +80 о С и более. Суточные колебания достигают 40 о. Величины экстремальных значений и амплитуды температур зависят от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, характера растительного покрова, ориентировки склонов (экспозиции).

Нагреваясь, поверхность передает тепло почвогрунтам. На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных значений температуры в течение суток запаздывает на каждые 10 см примерно на 3 часа. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температур. На глубине в среднем около 1 м суточные колебания температуры почвы «затухают». Слой в котором они прекращаются называется слоем постоянной суточной температуры.

На глубине 5- 10 м в тропических широтах и 25 м в высоких широтах находится слой постоянной годовой температуры, где температура близка к средней годовой температуре воздуха над поверхностью.

Вода медленнее нагревается и медленнее отдает тепло. К тому же солнечные лучи могут проникать на большую глубину, непосредственно нагревая более глубокие слои. Перенос тепла на глубину идет не столько за счет молекулярной теплопроводности, а в большей мере за счет перемешивания вод турбулентным путем или течениями. При остывании поверхностных слоев воды возникает тепловая конвекция, также сопровождающаяся перемешиванием.

В отличие от суши суточные колебания температуры на поверхности океана меньше. В высоких широтах в среднем всего 0,1ºС, в умеренных – 0,4ºС, в тропических – 0,5ºС, Глубина проникновения этих колебаний 15- 20 м.

Годовые амплитуды температуры на поверхности океана от 1ºС в экваториальных широтах до 10,2ºС в умеренных. Годовые колебания температуры проникают на глубину 200- 300 м.

Моменты максимумов температуры водоемов запаздывают по сравнению с сушей. Максимум наступает около 15-16 часов, минимум – через 2-3 часа после восхода Солнца. Годовой максимум температуры на поверхности океана в северном полушарии приходится на август, минимум – на февраль.

АТМОСФЕРА

Атмосфера. Строение состав, происхождение, значение для ГО. Тепловые процессы в атмосфере. Солнечная радиация, ее виды, широтное распределение и преобразование земной поверхностью.

Атмосфера – воздушная оболочка Земли, удерживаемая силой притяжения и участвующая во вращении планеты. Сила земного притяжения удерживает атмосферу вблизи поверхности Земли. Наибольшее давление и плотность атмосферы наблюдаются у земной поверхности, по мере поднятия вверх давление и плотность уменьшаются. На высоте 18 км давление убывает в 10 раз, на высоте 80 км – в 75 000 раз. Нижней границей атмосферы является поверхность Земли, верхней границей условно принята высота 1000-1200 км. Масса атмосферы составляет 5,13 х 10 15 т, причем 99% этого количества содержится в нижнем слое до высоты 36 км.

Доказательства существования высоких слоев атмосферы следующие:

На высоте 22-25 км в атмосфере располагаются перламутровые облака;

На высоте 80 км бывают видны серебристые облака;

На высоте около 100-120 км наблюдается сгорание метеоритов, т.е. здесь атмосфера обладает еще достаточной плотностью;

На высоте около 220 км начинается рассеивание света газами атмосферы 9явление сумерек);

Полярные сияния начинаются примерно на высоте 1000-1200 км, данное явление объясняется ионизацией воздуха корпускулярными потоками, идущими от солнца. Сильно разреженная атмосфера простирается до высоты 20 000 км, она образует земную корону, незаметно переходя в межпланетный газ.

Атмосфера, как и планета в целом, вращается против часовой стрелки с запада на восток. Из-за вращения она приобретает форму эллипсоида, т.е. толщина атмосферы у экватора больше, чем вблизи полюсов. Она имеет выступ в направлении, противоположном Солнцу, этот «газовый хвост» Земли, разреженный как у комет, имеет длину около 120 тыс. км. Атмосфера связана с другими геосферами тепловлагообменом. Энергией атмосферных процессов служит электромагнитное излучение Солнца.

Развитие атмосферы. Так как водород и гелий наиболее распространенные элементы в космосе, то они, несомненно, входили и в состав протопланетного газопылевого облака, из которого возникла Земля. Вследствие очень низкой температуры этого облака самая первая земная атмосфера только и могла состоять из водорода и гелия, т.к. все другие элементы вещества, из которого слагалось облако, были в твердом состоянии. Такая атмосфера наблюдается у планет-гигантов, очевидно, из-за большого притяжения планет и удаленности от Солнца они сохранили первичные атмосферы.

Затем последовал разогрев Земли: тепло порождалось гравитационным сжатием планеты и распадом внутри ее радиоактивных элементов. Земля потеряла водородно-гелиевую атмосферу и создала свою собственную вторичную атмосферу из газов, выделившихся из ее недр (углекислый газ, аммиак, метан, сероводород). По мнению А.П. Виноградова (1959), в этой атмосфере больше всего было H 2 O, затем CO 2 , CO, HCl, HF, H 2 S, N 2 , NH 4 Cl и CH 4 (примерно таков же состав и современных вулканических газов). В. Соколов (1959) полагал, что здесь были также H 2 и NH 3 . Кислород отсутствовал, в атмосфере господствовали восстановительные условия. Сейчас подобные атмосферы наблюдаются у Марса и Венеры, они на 95% состоят из углекислого газа.

Следующий этап развития атмосферы был переходным – от абиогенного к биогенному, от восстановительных условий к окислительным. Главными составными частями газовой оболочки Земли стали N 2 , CO 2 , CO. В качестве побочных примесей - CH 4 , O 2 . Кислород возникал из молекул воды в верхних слоях атмосферы под действием ультрафиолетовых лучей Солнца; мог он выделятся и из тех окислов, из каких состояла земная кора, но подавляющая часть его уходила вновь на окисление минералов земной коры или на окисление водорода и его соединений в атмосфере.

Последний этап развития азотно-кислородной атмосферы связан с появлением жизни на Земле и, с возникновением механизма фотосинтеза. Содержание кислорода – биогенного – стало возрастать. Параллельно с этим атмосфера почти полностью потеряла двуокись углерода, часть которого вошла в огромные залежи угля и карбонатов.

Таков путь от водородно-гелиевой атмосферы до современной, главную роль в которой теперь играют азот и кислород, а в качестве примесей присутствуют аргон и углекислый газ. Современный азот также биогенного происхождения.

Состав газов атмосферы.

Атмосферный воздух – механическая смесь газов, в которой во взвешенном состоянии содержатся пыль и вода. Чистый и сухой воздух на уровне моря представляет собой смесь нескольких газов, причём соотношение между главными составляющими атмосферу газами – азотом (объемная концентрация 78,08 %) и кислородом (20,95 %) – постоянно. Кроме них, в атмосферном воздухе содержатся аргон (0,93 %) и углекислый газ (0,03%). Количество остальных газов – неона, гелия, метана, криптона, ксенона, водорода, йода, угарного газа и оксидов азота – ничтожно мало (менее 0,1 %) (табл.).

Таблица 2

Газовый состав атмосферы

кислород

углекислый газ

В высоких слоях атмосферы состав воздуха меняется под воздействием жесткого излучения Солнца, которое приводит к распаду (диссоциации) молекул кислорода на атомы. Атомарный кислород является основным компонентом высоких слоев атмосферы. Наконец, в наиболее удаленных от поверхности Земли слоях атмосферы главными компонентами становятся самые легкие газы – водород и гелий. В верхних слоях атмосферы обнаружено новое соединение – гидроксил ОН. Наличие этого соединения объясняет образование водяного пара на больших высотах в атмосфере. Поскольку основная масса вещества сосредоточена на расстоянии 20 км от поверхности Земли, то изменения состава воздуха с высотой не оказывают заметного влияния на общий состав атмосферы.

Важнейшими компонентами атмосферы являются озон и углекислый газ. Озон – трехатомный кислород (О 3 ), присутствующий в атмосфере от поверхности Земли до высоты 70 км. В приземных слоях воздуха он образуется, в основном, под влиянием атмосферного электричества и в процессе окисления органического веществ, а в более высоких слоях атмосферы (стратосфере) – в результате воздействия ультрафиолетовой радиации Солнца на молекулу кислорода. Основная масса озона находится в стратосфере (по этой причине стратосферу довольно часто называют озоносферой). Слой максимальной концентрации озона на высоте 20-25 км получил название озонового экрана. В целом, озоновый слой поглощает около 13 % солнечной энергии. Снижение концентрации озона, над определенными районами получило название «озоновых дыр».

Углекислый газ вместе с водяным паром вызывает парниковый эффект атмосферы. Парниковый эффект – нагрев внутренних слоев атмосферы, объясняющийся способностью атмосферы пропускать коротковолновое излучение Солнца и не выпускать длинноволновое излучение Земли. Если бы углекислого газа в атмосфере было бы в два раза больше, средняя температура Земли достигла бы 18 0 С, сейчас она равна 14-15 0 С.

Общий вес газов атмосферы составляет приблизительно 4,5·10 15 т. Таким образом, «вес» атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 10,3 т/м 2 .

В воздухе много твердых частиц, диаметр которых составляет доли микрона. Они являются ядрами конденсации. Без них было бы невозможно образование туманов, облаков, выпадение осадков. С твердыми частицами в атмосфере связаны многие оптические и атмосферные явления. Пути поступления их в атмосферу различны: вулканический пепел, дым при сжигании топлива, пыльца растений, микроорганизмы. В последнее время ядрами конденсации служат промышленные выбросы, продукты радиоактивного распада.

Важной составной частью атмосферы является водяной пар, количество его во влажных экваториальных лесах достигает 4%, в полярных районах снижается до 0,2%. Водяной пар поступает в атмосферу вследствие испарения с поверхности почвы и водоемов, а также транспирации влаги растениями. Водяной пар является парниковым газом, вместе с углекислым газом он удерживает большую часть длинноволнового излучения Земли, предохраняя планету от охлаждения.

Атмосфера не является идеальным изолятором; она обладает способностью проводить электричество благодаря воздействию ионизаторов – ультрафиолетового излучения Солнца, космических лучей, излучения радиоактивных веществ. Максимальная электрическая проводимость наблюдается на высоте 100-150 км. В результате совокупного действия ионов атмосферы и заряда земной поверхности создается электрическое поле атмосферы. По отношению к земной поверхности атмосфера заряжена положительно. Выделяют нейтросферу – слой с нейтральным составом (до 80 км) и ионосферу – ионизированный слой.

Строение атмосферы.

Различают несколько основных слоев атмосферы. Нижний, прилегающий к земной поверхности, называется тропосферой (высота 8-10 км у полюсов, 12 км в умеренных широтах и 16-18 км – над экватором). Температура воздуха с высотой постепенно понижается – в среднем на 0,6єС на каждые 100 м подъема, что заметно проявляется не только в горных районах, но и на возвышенностях Беларуси.

В тропосфере содержится до 80% всей массы воздуха, основное количество атмосферных примесей и практически весь водяной пар. Именно в этой части атмосферы на высоте 10-12 км образуются облака, возникают грозы, дожди и другие физические процессы, формирующие погоду и определяющие климатические условия в разных областях нашей планеты. Нижний слой тропосферы, примыкающий непосредственно к земной поверхности называют приземным слоем.

Влияние земной поверхности простирается приблизительно до высоты 20 км, а далее нагревание воздуха происходит непосредственно Солнцем. Таким образом, граница ГО, лежащая на высоте 20-25 км, определяется, в том числе, и тепловым воздействием земной поверхности. На этой высоте исчезают широтные различия в температуре воздуха, и географическая зональность размывается.

Выше начинается стратосфера , которая простирается до высоты 50-55 км от поверхности океана или суши. Этот слой атмосферы значительно разрежен, количество кислорода и азота уменьшается, а водорода, гелия и других легких газов увеличивается. Образующийся здесь озоновый слой поглощает ультрафиолетовую радиацию и сильно влияет на тепловые условия поверхности Земли и физические процессы в тропосфере. В нижней части стратосферы температура воздуха постоянна, здесь располагается изотермический слой. Начиная с высоты 22 км, температура воздуха повышается, на верхней границе стратосферы она достигает 0 0 С (повышение температуры объясняется наличием здесь озона, поглощающего солнечную радиацию). В стратосфере происходят интенсивные горизонтальные перемещения воздуха. Скорость воздушных потоков достигает 300-400 км/ч. В стратосфере содержится менее 20% воздуха атмосферы.

На высоте 55-80 км находится мезосфера (в этом слое температура воздуха с высотой уменьшается и вблизи верхней границы падает до –80 0 С), между 80-800 км расположенатермосфера , в составе которой преобладают гелий и водород (температура воздуха быстро растет с высотой и достигает 1000 0 С на высоте 800 км). Мезосфера и термосфера вместе образуют мощный слой, называемыйионосферой (область заряженных частиц – ионов и электронов).

Самая верхняя, сильно разреженная часть атмосферы (от 800 до 1200 км) составляет экзосферу . В ней преобладают газы в атомарном состоянии, температура повышается до 2000єС.

В жизни ГО атмосфера имеет огромное значение. Атмосфера оказывает благодатное воздействие на климат Земли, предохраняя ее от чрезмерного охлаждения и нагревания. Суточные колебания температуры на нашей планете без атмосферы достигли бы 200єС: днем +100єС и выше, ночью -100єС. В настоящее время средняя температура воздуха у поверхности Земли равна +14єС. Атмосфера не пропускает к Земле метеоры и жесткое излучение. Без атмосферы не было бы звука, полярных сияний облаков и осадков.

К климатообразующим процессам относятся теплооборот, влагооборот и циркуляция атмосферы.

Теплооборот в атмосфере. Теплооборот обеспечивает тепловой режим атмосферы и зависит от радиационного баланса, т.е. притоков теплоты, приходящих на земную поверхность (в форме лучистой энергии) и уходящих от нее (лучистая энергия, поглощенная Землей, преобразуется в тепловую).

Солнечная радиация – поток электромагнитного излучения, поступающий от Солнца. На верхней границе атмосферы интенсивность (плотность потока) солнечной радиации равна 8,3 Дж/(см 2 /мин). Количество теплоты, которое излучает 1 см 2 черной поверхности в 1 мин при перпендикулярном падении солнечных лучей, называется солнечной постоянной.

Количество солнечной радиации, получаемое Землей, зависит:

1. от расстояния между Землей и Солнцем. Ближе всего к Солнцу Земля в начале января, дальше всего в начале июля; разница между двумя этими расстояниями – 5 млн. км, вследствие чего Земля в первом случае получает на 3,4% больше, а во втором на 3,5% меньше радиации, чем при среднем расстоянии от Земли до Солнца (в начале апреля и в начале октября);

2. от угла падения солнечных лучей на земную поверхность, зависящего в свою очередь от географической широты, высоты солнца над горизонтом (меняющейся в течение суток и по временам года), характера рельефа земной поверхности;

3. от преобразования лучистой энергии в атмосфере (рассеяние, поглощение, отражение обратно в мировое пространство) и на поверхности земли. Среднее альбедо Земли – 43%.

Поглощается около 17% всей радиации; озон, кислород, азот поглощают в основном коротковолновые ультрафиолетовые лучи, водяной пар и углекислый газ – длинноволновую ифракрасную радиацию. Атмосфера рассеивает 28% радиации; к земной поверхности поступает 21%, в космос уходит 7%. Та часть радиации, которая поступает к земной поверхности от всего небесного свода, называется рассеянной радиацией . Сущность рассеяния заключается в том, что частица, поглощая электромагнитные волны, сама становится источником излучения света и излучает те же волны, которые на нее падают. Молекулы воздуха очень малы, по размерам сопоставимы с длиной волн голубой части спектра. В чистом воздухе преобладает молекулярное рассеивание, следовательно, цвет неба – голубой. При запыленном воздухе цвет неба становится белесым. Цвет неба зависит от содержания примесей в атмосфере. При большом содержании водяного пара, рассеивающего красные лучи небо приобретает красноватый оттенок. С рассеянной радиацией связаны явления сумерек, белых ночей, т.к. после захода Солнца за горизонт верхние слои атмосферы еще продолжают освещаться.

Верхняя граница облаков отражает около 24% радиации. Следовательно, к земной поверхности в виде потока лучей подходит около 31% всей солнечной радиации, поступившей на верхнюю границу атмосферы, она называется прямой радиацией . Сумма прямой и рассеянной радиации (52%) называется суммарной радиацией. Соотношение между прямой и рассеянной радиацией меняется в зависимости от облачности, запыленности атмосферы и высоты Солнца. Распределение суммарной солнечной радиации по земной поверхности зонально. Наибольшая суммарная солнечная радиация 840-920 кДж/см 2 в год наблюдается в тропических широтах Северного полушария, что объясняется небольшой облачностью и большой прозрачностью воздуха. На экваторе суммарная радиация снижается до 580-670 кДж/см 2 в год из-за большой облачности и уменьшения прозрачности из-за большой влажности. В умеренных широтах величина суммарной радиации составляет 330-500 кДж/см 2 в год, в полярных широтах – 250 кДж/см 2 в год, причем в Антарктиде из-за большой высоты материка и небольшой влажности воздуха она немного больше.

Суммарная солнечная радиация, поступившая на земную поверхность, частично отражается обратно. Отношение отраженной радиации к суммарной, выраженное в процентах, называется альбедо. Альбедо характеризует отражательную способность поверхности и зависит от ее цвета, влажности и других свойств.

Наибольшей отражательной способностью обладает свежевыпавший снег – до 90%. Альбедо песков 30-35%, травы – 20%, лиственного леса – 16-27%, хвойного – 6-19%; сухой чернозем имеет альбедо 14%, влажный – 8%. Альбедо Земли как планеты принимают равным 35%.

Поглощая радиацию, Земля сама становится источником излучения. Тепловое излучение Земли – земная радиация – является длинноволновым, т.к. длина волны зависит от температуры: чем выше температура излучающего тела, тем короче длина волны испускаемых им лучей. Излучение земной поверхности нагревает атмосферу и она сама начинает излучать радиацию в мировое пространство (встречное излучение атмосферы ) и к земной поверхности. Встречное излучение атмосферы тоже длинноволновое. В атмосфере встречаются два потока длинноволновой радиации – излучение поверхности (земная радиация) и излучение атмосферы. Разность между ними, определяющая фактическую потерю теплоты земной поверхностью, называетсяэффективным излучением , оно направлено в Космос, т.к. земное излучение больше. Эффективное излучение больше днем и летом, т.к. зависит от нагрева поверхности. Эффективное излучение зависит от влажности воздуха: чем больше в воздухе водяных паров или капелек воды, тем излучение меньше (поэтому зимой в пасмурную погоду всегда теплее, чем в ясную). В целом для Земли эффективное излучение равно 190 кДж/см 2 в год (наибольшее в тропических пустынях – 380, наименьшее в полярных широтах – 85 кДж/см 2 в год).

Земля одновременно получает радиацию и отдает ее. Разность между получаемой и расходуемой радиацией называется радиационным балансом, или остаточной радиацией. Приход радиационного баланса поверхности составляет суммарная радиация (Q) и встречное излучение атмосферы. Расход – отраженная радиация (R k) и земное излучение. Разность между земным излучением и встречным излучением атмосферы – эффективное излучение (Е эф) имеет знак минус и является частью расхода в радиационном балансе:

R б =Q-E эф -R k

Радиационный баланс распределяется зонально: уменьшается от экватора к полюсам. Наибольший радиационный баланс свойственен экваториальным широтам и составляет 330-420 кДж/см 2 в год, в тропических широтах он снижается до 250-290 кДж/см 2 в год (объясняется возрастанием эффективного излучения), в умеренных широтах радиационный баланс уменьшается до 210-85 кДж/см 2 в год, в полярных широтах его величина приближается к нулю. Общая особенность радиационного баланса в том, что над океанами на всех широтах радиационный баланс выше на 40-85 кДж/см 2 , т.к. альбедо воды и эффективное излучение океана меньше.

Приходную часть радиационного баланса атмосферы (R б) составляют эффективное излучение (Е эф) и поглощенная солнечная радиация (R п), расходная часть определяется атмосферной радиацией, уходящей в космос (Е а):

R б = Е эф - Е а +R п

Радиационный баланс атмосферы отрицательный, а поверхности – положительный. Суммарный радиационный баланс атмосферы и земной поверхности равен нулю, т.е. Земля находится в состоянии лучистого равновесия.

Тепловой баланс – алгебраическая сумма потоков теплоты, приходящих на земную поверхность в виде радиационного баланса и уходящих от нее. Он складывается из теплового баланса поверхности и атмосферы. В приходной части теплового баланса земной поверхности стоит радиационный баланс, в расходной – затраты теплоты на испарение, на нагрев атмосферы от Земли, на нагрев почв. Расходуется теплота также на фотосинтез. Почвообразование, но эти затраты не превышают 1%. Следует отметить, что над океанами больше затраты теплоты на испарение, в тропических широтах – на нагрев атмосферы.

В тепловом балансе атмосферы приходную часть составляет теплота, выделившаяся при конденсации водяных паров, и переданная от поверхности в атмосферу; расход складывается из отрицательного радиационного баланса. Тепловой баланс земной поверхности и атмосферы равен нулю, т.е. Земля находится в состоянии теплового равновесия.

Тепловой режим земной поверхности.

Непосредственно солнечными лучами нагревается земная поверхность, а уже от нее – атмосфера. Поверхность получающая и отдающая теплоту, называется деятельной поверхностью . В температурном режиме поверхности выделяется суточный и годовой ход температур.Суточный ход температур поверхности изменение температуры поверхности в течение суток. Суточный ход температур поверхности суши (сухой и лишенной растительности) характеризуется одним максимумом около 13 ч и одним минимумом – перед восходом Солнца. Дневные максимумы температуры поверхности суши могут достигать 80 0 С в субтропиках и около 60 0 С в умеренных широтах.

Разница между максимальной и минимальной суточной температурой поверхности называется суточной амплитудой температуры. Суточная амплитуда температуры может летом достигать 40 0 С, зимой амплитуда суточных температур наименьшая – до 10 0 С.

Годовой ход температуры поверхности – изменение среднемесячной температуры поверхности в течение года, обусловлен ходом солнечной радиации и зависит от широты места. В умеренных широтах максимум температур поверхности суши наблюдается в июле, минимум – в январе; на океане максимумы и минимумы запаздывают на месяц.

Годовая амплитуда температур поверхности равна разнице между максимальными и минимальными среднемесячными температурами; возрастает с увеличением широты места, что объясняется возрастанием колебаний величины солнечной радиации. Наибольших значений годовая амплитуда температур достигает на континентах; на океанах и морских берегах значительно меньше. Самая маленькая годовая амплитуда температур отмечается в экваториальных широтах (2-3 0), самая большая – в субарктических широтах на материках (более 60 0).

Тепловой режим атмосферы. Атмосферный воздух незначительно нагревается непосредственно солнечными лучами. Т.к. воздушная оболочка свободно пропускает солнечные лучи.Атмосфера нагревается от подстилающей поверхности. Теплота в атмосферу передается конвекцией, адвекцией и конденсацией водяного пара. Слои воздуха, нагреваясь от почвы, становятся более легкими и поднимаются вверх, а более холодный, следовательно, более тяжелый воздух опускается вниз. В результате тепловойконвекции идет прогревание высоких слоев воздуха. Второй процесс передачи теплоты –адвекция – горизонтальный перенос воздуха. Роль адвекции заключается в передаче теплоты из низких в высокие широты, в зимний сезон тепло передается от океанов к материкам.Конденсация водяного пара важный процесс, осуществляющий передачу теплоты высоким слоям атмосферы – при испарении теплота забирается от испаряющей поверхности, при конденсации в атмосфере эта теплота выделяется.

С высотой температура убывает. Изменение температуры воздуха на единицу расстояния называется вертикальным температурным градиентом, в среднем он равен 0,6 0 на 100 м. Вместе с тем ход этого убывания в разных слоях тропосферы разный: 0,3-0,4 0 до высоты 1,5 км; 0,5-0,6 – между высотами 1,5-6 км; 0,65-0,75 – от 6 до 9 км и 0,5-0,2 – от 9 до 12 км. В приземном слое (толщиной 2 м) градиенты, при пересчете на 100 м, исчисляются сотнями градусов. В поднимающемся воздухе температура изменяется адиабатически.Адиабатический процесс – процесс изменения температуры воздуха при его вертикальном движении без теплообмена с окружающей средой (в одной массе, без обмена теплом с другими средами).

В описанном распределении температуры по вертикали нередко наблюдаются исключения. Бывает, что верхние слои воздуха теплее нижних, прилегающих к земле. Явление это называется температурной инверсией (увеличение температуры с высотой). Чаще всего инверсия является следствием сильного охлаждения приземного слоя воздуха, вызванного сильным охлаждением земной поверхности в ясные тихие ночи, преимущественно зимой. При пересеченном рельефе холодные массы воздуха медленно стекают вдоль склонов и застаиваются в котловинах, впадинах и т.п. Инверсии могут образовываться и при движении воздушных масс из теплых областей в холодные, так как при натекании подогретого воздуха на холодную подстилающую поверхность его нижние слои заметно охлаждаются (инверсия сжатия).

Суточный и годовой ход температуры воздуха.

Суточным ходом температуры воздуха называется изменение температуры воздуха в течение суток – в общем отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают, максимум наступает в 14 часов, минимум после восхода солнца.

Суточная амплитуда температуры воздуха (разница между максимальной и минимальной температурами воздуха в течение суток) выше на суше, чем над океаном; уменьшается при движении в высокие широты (наибольшая в тропических пустынях – до 40 0 С) и возрастает в местах с оголенной почвой. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом.

Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется прежде всего широтой места.Годовая амплитуда температуры воздуха - разница между максимальной и минимальной среднемесячными температурами.

Географическое распределение температуры воздуха показывают с помощью изотерм – линий, соединяющих на карте точки с одинаковыми температурами. Распределение температуры воздуха зонально, годовые изотермы в целом имеют субширотное простирание и соответствуют годовому распределению радиационного баланса.

В среднем за год самой теплой параллелью является 10 0 с.ш. с температурой 27 0 С – этотермический экватор . Летом термический экватор смещается до 20 0 с.ш., зимой – приближается к экватору на 5 0 с.ш. Смещение термического экватора в СП объясняется тем, что в СП площадь суши, расположенная в низких широтах, больше по сравнению с ЮП, а она в течение года имеет более высокие температуры.

Солнечная радиация - излучение, свойственное светилу нашей планетной системы. Солнце - главная звезда, вокруг которой обращается Земля, а также соседние планеты. Фактически это огромный раскаленный газовый шар, постоянно испускающий в пространство вокруг себя потоки энергии. Именно их и называют радиацией. Смертельная, одновременно именно эта энергия - один из основных факторов, делающих возможной жизнь на нашей планете. Как и все в этом мире, польза и вред солнечной радиации для органической жизни тесно взаимосвязаны.

Общее представление

Чтобы понять, что представляет собой солнечная радиация, необходимо сперва разобраться, что же такое Солнце. Основной источник тепла, обеспечивающий условия для органического существования на нашей планете, во вселенских просторах представляет собой лишь небольшую звездочку на галактических окраинах Млечного Пути. А вот для землян Солнце - это центр мини-вселенной. Ведь именно вокруг этого газового сгустка обращается наша планета. Солнце дает нам тепло и освещение, то есть поставляет формы энергии, без которых наше существование было бы невозможно.

В древности источник солнечной радиации - Солнце - было божеством, объектом, достойным поклонения. Солнечная траектория по небу людям казалась очевидным доказательством божьей воли. Попытки вникнуть в суть явления, объяснить, что представляет собой это светило, предпринимались с давних пор, и особенно значимый вклад в них внес Коперник, сформировав идею гелиоцентризма, разительно отличавшуюся от общепринятого в ту эпоху геоцентризма. Впрочем, доподлинно известно, что и в древности ученые не раз задумывались над тем, что же такое Солнце, почему оно столь важно для любых форм жизни на нашей планете, почему передвижение этого светила именно таково, каким мы его видим.

Прогресс технологий позволил глубже понять, что представляет собой Солнце, какие процессы происходят внутри звезды, на ее поверхности. Ученые познали, что представляет собой солнечная радиация, каким образом газовый объект воздействует на планеты в своей зоне влияния, в частности, на земной климат. Сейчас человечество располагает достаточно объемной базой знаний, чтобы с уверенностью говорить: удалось выяснить, что такое по своей сути радиация, излучаемая Солнцем, как измерить этот энергетической поток и как сформулировать особенности его воздействия на разные формы органической жизни на Земле.

О терминах

Наиболее важный шаг в освоении сути понятия был сделан в прошлом столетии. Именно тогда именитый астроном А. Эддингтон сформулировал предположение: в солнечных глубинах происходит термоядерный синтез, что позволяет выделяться огромному количеству энергии, излучаемому в пространство вокруг звезды. Пытаясь оценить величину солнечной радиации, были предприняты усилия для определения фактических параметров среды на светиле. Так, температура ядра, по расчетам ученых, достигает 15 миллионов градусов. Этого достаточного, чтобы справиться со взаимным отталкивающим влиянием протонов. Столкновение единиц приводит к формированию гелиевых ядер.

Новые сведения привлекли внимание многих видных ученых, включая А. Эйнштейна. В попытках оценить величину солнечной радиации научные деятели выяснили, что гелиевые ядра по своей массе уступают суммарной величине 4 протонов, необходимых для формирования новой структуры. Так была выявлена особенность реакций, получившая название «дефект масс». Но ведь в природе ничто не может пропасть бесследно! В попытке отыскать «сбежавшие» величины ученые сравнили энергетическое излечение и специфику изменения массы. Именно тогда удалось выявить, что разность излучается гамма-квантами.

Излучаемые объекты пробиваются от ядра нашей звезды к ее поверхности сквозь многочисленные газовые атмосферные слои, что приводит к дроблению элементов и формированию на их основе электромагнитного излучения. Среди прочих видов солнечной радиации - свет, воспринимаемый человеческим глазом. Приблизительные оценки позволили предположить, что процесс прохождения гамма-квантов занимает около 10 миллионов лет. Еще восемь минут - и излученная энергия достигает поверхности нашей планеты.

Как и что?

Солнечной радиацией называют суммарный комплекс электромагнитного излучения, которому свойственен довольно обширный диапазон. Сюда входит так называемый солнечный ветер, то есть энергетический поток, сформированный электронами, легкими частицами. На пограничном слое атмосферы нашей планеты постоянно наблюдается одинаковая интенсивности излучения Солнца. Энергия звезды дискретна, ее перенос осуществляется через кванты, при этом корпускулярный нюанс настолько малозначим, что можно рассматривать лучи в качестве электромагнитных волн. А их распространение, как выяснили физики, происходит равномерно и по прямой линии. Таким образом, чтобы описать солнечную радиацию, необходимо определить свойственную ей длину волны. На основании этого параметра принято выделять несколько типов излучения:

  • тепло;
  • радиоволна;
  • белый свет;
  • ультрафиолет;
  • гамма;
  • рентген.

Соотношение инфракрасных, видимых, ультрафиолетовых лучшей оценивается следующим образом: 52%, 43%, 5%.

Для количественной радиационной оценки необходимо рассчитать плотность потока энергии, то есть количество энергии, которое в заданный временной промежуток достигает ограниченного участка поверхности.

Как показали исследования, солнечная радиация преимущественно поглощается планетарной атмосферой. Благодаря этому происходит нагрев до температуры, комфортной для органической жизни, свойственной Земле. Имеющаяся оболочка из озона позволяет пройти лишь одной сотой ультрафиолетового излучения. При этом полностью блокируются волны короткой длины, опасные для живых существ. Атмосферные слои способны рассеять почти треть лучей Солнца, еще 20% поглощаются. Следовательно, поверхности планеты достигает не более половины всей энергии. Именно этот «остаток» в науке назвали прямой солнечной радиацией.

А если поподробнее?

Известно несколько аспектов, от которых зависит, насколько интенсивным будет прямое излучение. Наиболее значимыми считаются угол падения, зависящий от широты (географическая характеристика местности на земном шаре), время года, определяющее, как велико расстояние до конкретной точки от источника излучения. Многое зависит от особенностей атмосферы - насколько она загрязнена, как много в заданный момент облаков. Наконец, играет роль характер поверхности, на которую падает луч, а именно, ее способности отражать поступившие волны.

Суммарной солнечной радиацией называют величину, объединяющую рассеянные объемы и прямое излучение. Параметр, используемый для оценки интенсивности, оценивается в калориях в расчете на единицу территории. При этом помнят, что в разное время суток значения, свойственные излучению, отличаются. Кроме того, энергия не может распределяться по поверхности планеты равномерно. Чем ближе к полюсу, тем интенсивность выше, при этом снежные покровы обладают высокой отражающей способностью, а значит, воздух не получает возможности прогреться. Следовательно, чем дальше от экватора, тем суммарные показатели солнечного волнового излучения будут меньше.

Как удалось выявить ученым, энергия солнечной радиации оказывает серьезное воздействие на планетарный климат, подчиняет себе жизнедеятельность разнообразных организмов, существующих на Земле. В нашей стране, а также на территории ближайших соседей, как и в прочих странах, расположенных в северном полушарии, зимой преимущественная доля принадлежит рассеянному излучению, а вот летом доминирует прямое.

Инфракрасные волны

Из общего количества суммарной солнечной радиации внушительный процент принадлежит именно инфракрасному спектру, не воспринимаемому глазом человека. За счет таких волн нагревается поверхность планеты, постепенно передающая тепловую энергию воздушным массам. Это помогает сохранять комфортный климат, поддерживать условия для существования органической жизни. Если не происходит каких-то серьезных сбоев, климат остается условно неизменным, а значит, все существа могут обитать в привычных им условиях.

Наше светило - не единственный источник волн инфракрасного спектра. Аналогичное излучение свойственно любому нагретому объекту, включая обычную батарею в человеческом доме. Именно на принципе восприятия инфракрасного излучения работают многочисленные приборы, дающие возможность видеть в темноте, иных некомфортных для глаз условиях нагретые тела. Кстати говоря, по аналогичному принципу работают ставшие столь популярными в последнее время компактные приборы для оценки, через какие участки здания происходят наибольшие теплопотери. Эти механизмы особенно широко распространены в среде строителей, а также владельцев частных домов, поскольку помогают выявить, через какие участки тепло теряется, организовать их защиту и предупредить лишний расход энергии.

Не стоит недооценивать влияние солнечной радиации инфракрасного спектра на человеческий организм только по причине того, что наши глаза не могут воспринимать такие волны. В частности, излучение активно используется в медицине, поскольку позволяет повысить концентрацию лейкоцитов в кровеносной системе, а также привести в норму кровоток за счет увеличения просветов кровеносных сосудов. Приборы, основанные на ИК-спектре, применяются в качестве профилактических против кожных патологий, терапевтических при воспалительных процессах в острой и хронической форме. Наиболее современные препараты помогают справиться с коллоидными рубцами и трофическими ранами.

Это любопытно

На основе изучения факторов солнечной радиации удалось создать поистине уникальные приборы, называемые термографами. Они дают возможность своевременно обнаружить различные болезни, не доступные для выявления иными способами. Именно так можно найти рак или тромб. ИК в некоторой степени защищает от ультрафиолета, опасного для органической жизни, что позволило использовать волны такого спектра для восстановления здоровья продолжительное время находившихся в космосе астронавтов.

Природа вокруг нас и по сей день загадочна, касается это и излучения различных длин волн. В частности, инфракрасный свет все еще исследован не досконально. Ученые знают, что его неправильное применение может стать причиной вреда здоровью. Так, недопустимо использовать оборудование, формирующее такой свет, для терапии гнойных воспаленных участков, кровотечений и злокачественных новообразований. Инфракрасный спектр противопоказан людям, страдающим нарушениями функционирования сердца, сосудов, включая расположенные в мозге.

Видимый свет

Один из элементов суммарной солнечной радиации - видимый человеческому глазу свет. Волновые пучки распространяются по прямым линиям, поэтому не происходит наложения друг на друга. В свое время это стало темой немалого количества научных работ: ученые задались целью понять, по какой причине вокруг нас так много оттенков. Оказалось, что свою роль играют ключевые параметры света:

  • преломление;
  • отражение;
  • поглощение.

Как выяснили ученые, объекты не способны сами по себе быть источниками видимого света, но могут поглощать излучение и отражать его. Варьируются углы отражения, частота волн. На протяжении многих веков способность человека видеть постепенно совершенствовалась, но определенные ограничения обусловлены биологическим строением глаза: сетчатка такова, что может воспринять лишь определенные лучи отраженных световых волн. Это излучение - небольшой промежуток между ультрафиолетом и инфракрасными волнами.

Многочисленные любопытные и загадочные световые особенности не только стали темой множества работ, но и были основанием для зарождения новой физической дисциплины. Одновременно появились ненаучные практики, теории, приверженцы которых считают, что цвет способен повлиять на физическое состояние человека, психику. На основании таких предположений люди окружают себя предметами, наиболее приятными для их глаза, делая бытовую повседневность комфортнее.

Ультрафиолет

Не менее важный аспект суммарной солнечной радиации - ультрафиолетовое изучение, сформированное волнами большой, средней и малой длины. Они отличны друг от друга как по физическим параметрам, так и по особенностям влияния на формы органической жизни. Длинные ультрафиолетовые волны, к примеру, в атмосферных слоях в основном рассеиваются, а до земной поверхности добирается лишь незначительный процент. Чем короче длина волны, тем глубже такое излучение может проникнуть в человеческую (и не только) кожу.

С одной стороны, ультрафиолет опасен, но без него невозможно существование многообразной органической жизни. Такое излучение отвечает за формирование кальциферола в организме, а этот элемент необходим для строительства костной ткани. УФ-спектр - это мощная профилактика рахита, остеохондроза, что особенно важно в детском возрасте. Кроме того, такое излучение:

  • приводит в норму метаболизм;
  • активизирует производство незаменимых ферментов;
  • усиливает регенеративные процессы;
  • стимулирует кровоток;
  • расширяет кровеносные сосуды;
  • стимулирует иммунную систему;
  • приводит к формированию эндорфина, а значит, уменьшается нервное перевозбуждение.

Обратная сторона медали

Выше было указано, что суммарной солнечной радиацией называют количество излучения, достигшего поверхности планеты и рассеянного в атмосфере. Соответственно, элементом этого объема является ультрафиолет всех длин. Нужно помнить, что этот фактор имеет как положительные, так и отрицательные стороны влияния на органическую жизнь. Солнечные ванны, зачастую полезные, могут быть источником опасности для здоровья. Слишком продолжительное нахождение под прямым солнечным светом, особенно в условиях повышенной активности светила, вредно и опасно. Продолжительное влияние на организм, а также слишком высокая активность облучения становятся причиной:

  • ожогов, покраснений;
  • отеков;
  • гиперемии;
  • жара;
  • тошноты;
  • рвоты.

Продолжительное ультрафиолетовое облучение провоцирует нарушение аппетита, функционирования ЦНС, иммунной системы. Кроме того, начинает болеть голова. Описанные признаки - классические проявления солнечного удара. Сам человек не всегда может осознать, что происходит - состояние ухудшается постепенно. Если заметно, что кому-то поблизости стало плохо, следует оказать первую помощь. Схема следующая:

  • помочь перейти из-под прямого света в прохладное затененное место;
  • положить больного на спину так, чтобы ноги были выше головы (это поможет привести в норму кровоток);
  • охладить водой шею, лицо, а на лоб положить холодный компресс;
  • расстегнуть галстук, ремень, снять тесную одежду;
  • через полчаса после приступа дать выпить прохладной воды (небольшое количество).

Если пострадавший потерял сознание, важно сразу обратиться за помощью к доктору. Бригада скорой помощи переместит человека в безопасное место и сделает инъекцию глюкозы или витамина С. Лекарство вводят в вену.

Как загорать правильно?

Чтобы не узнать на своем опыте, каким неприятным может быть излишнее количество солнечной радиации, получаемое при загаре, важно соблюдать правила безопасного времяпрепровождения на солнце. Ультрафиолет инициирует выработку меланина - гормона, помогающего кожным покровам защититься от негативного влияния волн. Под воздействием этого вещества кожа становится темнее, а оттенок переходит в бронзовый. И по сей день не стихают споры о том, насколько это полезно и вредно для человека.

С одной стороны, загар - попытка организма защититься от излишнего воздействия излучения. При этом повышается вероятность формирования злокачественных новообразований. С другой стороны, загар считается модным и красивым. Чтобы минимизировать для себя риски, разумно перед началом пляжных процедур разобрать, чем опасно количество солнечной радиации, получаемое во время солнечных ванн, как минимизировать риски для себя. Чтобы впечатления были максимально приятными, любители загорать должны:

  • пить много воды;
  • пользоваться защищающими кожу средствами;
  • загорать вечером или утром;
  • проводить под прямыми лучами солнышка не больше часа;
  • не употреблять спиртное;
  • включить в меню богатые селеном, токоферолом, тирозином продукты. Не стоит забывать и о бета-каротине.

Значение солнечной радиации для человеческого организма исключительно велико, не стоит упускать из внимания и положительные, и отрицательные аспекты. Следует осознавать, что у разных людей биохимические реакции происходят с индивидуальными особенностями, поэтому для кого-то и получасовые солнечные ванны могут быть опасны. Разумно перед пляжным сезоном проконсультироваться с доктором, оценить тип, состояние кожных покровов. Это поможет предупредить вред здоровью.

По возможности следует избегать загара в преклонном возрасте, в период вынашивания малыша. Не сочетаются с солнечными ваннами раковые заболевания, нарушения психики, кожные патологии и недостаточность функционирования сердца.

Суммарная радиация: где недостача?

Довольно интересным для рассмотрения является процесс распределения солнечной радиации. Как выше было упомянуто, лишь около половины всех волн могут достигнуть поверхности планеты. Куда же пропадают остальные? Свою роль играют разные слои атмосферы и микроскопические частицы, из которых они сформированы. Внушительная часть, как было указано, поглощается озоновым слоем - это все волны, длина которых менее 0,36 мкм. Дополнительно озон способен поглотить некоторые типы волн из видимого человеческому глазу спектра, то есть промежутка 0,44-1,18 мкм.

Ультрафиолет в некоторой степени поглощается кислородным слоем. Это свойственно излучению с длиной волны 0,13-0,24 мкм. Углекислый газ, пар воды могут поглотить небольшой процент инфракрасного спектра. Аэрозоль атмосферы поглощает некоторую часть (ИК-спектр) от общего количества солнечной радиации.

Волны из категории коротких рассеиваются в атмосфере из-за наличия здесь микроскопических неоднородных частиц, аэрозоля, облаков. Неоднородные элементы, частицы, чьи габариты уступают длине волны, провоцируют молекулярное рассеивание, а для более крупных свойственно явление, описываемое индикатрисой, то есть аэрозольное.

Прочее количество солнечной радиации достигает земной поверхности. Оно сочетает прямое излучение, рассеянное.

Суммарная радиация: важные аспекты

Суммарная величина - это количество солнечной радиации, получаемое территорией, а также поглощенное в атмосфере. Если на небе нет облаков, суммарная величина излучения зависит от широты местности, высоты положения небесного тела, типа поверхности земли на этом участке, а также уровня прозрачности воздуха. Чем больше в атмосфере рассеяно аэрозольных частиц, тем ниже прямое излучение, зато возрастает доля рассеянного. В норме при отсутствии облачности в суммарной радиации рассеянная - это одна четвертая часть.

Наша страна принадлежит к числу северных, поэтому большую часть года в южных регионах излучение существенно больше, чем в северных. Это обусловлено положением светила на небе. А вот короткий временной промежуток май-июль - это уникальный период, когда даже на севере суммарная радиация довольно внушительная, поскольку солнце находится высоко в небе, а продолжительность светового дня больше, чем в прочие месяцы года. При этом в среднем на азиатской половине страны при отсутствии облачности суммарная радиация существеннее, нежели на западе. Максимальная сила волнового излучения наблюдается в полдень, а годовой максимум приходится на июнь, когда солнце выше всего в небе.

Суммарной солнечной радиацией называют количество солнечной энергии, достигающей нашей планеты. При этом нужно помнить, что разные атмосферные факторы приводят к тому, что годовой приход суммарной радиации меньше, нежели мог бы быть. Самая большая разница между реально наблюдаемым и максимально возможным характерна для дальневосточных регионов в летний период. Муссоны провоцируют исключительно плотную облачность, поэтому суммарная радиация уменьшается приблизительно вполовину.

Любопытно знать

Наибольший процент от максимально возможного облучения солнечной энергией в реальности наблюдается (в расчете на 12 месяцев) на юге страны. Показатель достигает 80%.

Облачность не всегда приводит к одинаковому показателю рассеивания солнечного излучения. Играет роль форма облаков, особенности солнечного диска в конкретный момент времени. Если таковой открыт, тогда облачность становится причиной уменьшения прямого излучения, одновременно рассеянное резко возрастает.

Возможны и такие дни, когда прямое излучение по своей силе приблизительно такое же, как рассеянное. Суточная суммарная величина может быть даже больше, нежели излучение, свойственное совсем безоблачному дню.

В расчете на 12 месяцев особенное внимание необходимо уделять астрономическим явлениям как определяющим общие численные показатели. При этом облачность приводит к тому, что реально радиационный максимум может наблюдаться не в июне, а месяцем раньше или позже.

Радиация в космосе

С границы магнитосферы нашей планеты и дальше в космические пространства солнечная радиация становится фактором, сопряженным со смертельной опасностью для человека. Еще в 1964 был выпущен важный научно-популярный труд, посвященный методам защиты. Его авторами выступили советские ученые Каманин, Бубнов. Известно, что для человека доза облучения в расчете на неделю должна быть не более 0,3 рентгена, при этом за год - в пределах 15 Р. При кратковременном облучении пределом для человека обозначено 600 Р. Полеты в космос, особенно в условиях непредсказуемой солнечной активности, могут сопровождаться значительным облучением астронавтов, что обязывает принимать дополнительные меры защиты от волн разной длины.

После миссий "Аполлон", в ходе которых тестировались способы защиты, исследовались факторы, влияющие на человеческое здоровье, прошло не одно десятилетие, но и по сей день ученые не могут найти результативные, надежные методы прогнозирования геомагнитных бурь. Можно составить прогноз в расчете на часы, иногда - на несколько дней, но даже для недельного предположения шансы реализации - не более 5%. Солнечный ветер - еще более непредсказуемое явление. С вероятностью один к трем космонавты, отправляясь в новую миссию, могут попасть в мощные потоки излучений. Это делает еще более важным вопрос как исследования и прогнозирования радиационных особенностей, так и разработки методов защиты от него.

Солнечной радиацией называется поток лучистой энергии солнца, идущей к поверхности земного шара. Лучистая энергия солнца является первичным источником других видов энергии. Поглощаясь поверхностью земли и водой, она превращается в тепловую энергию, а в зеленых растениях - в химическую энергию органических соединений. Солнечная радиация - важнейший фактор климата и основная причина изменений погоды, так как различные явления, совершающиеся в атмосфере, связаны с тепловой энергией, получаемой от солнца.

Солнечная радиация, или лучистая энергия, по своей природе представляет собой поток электромагнитных колебаний, распространяющихся прямолинейно со скоростью 300000 км/сек с длиной волны от 280 нм до 30000 нм. Лучистая энергия испускается в виде отдельных частиц, называемых квантами, или фотонами. Для измерения длины световых волн пользуются нанометрами (нм), или микронами, миллимикронами (0,001 микрона) и анстремами (0,1 миллимикрона). Различают инфракрасные невидимые тепловые лучи с длиной волны от 760 до 2300 нм; световые видимые лучи (красные, оранжевые, желтые, зеленые, голубые, синие и фиолетовые) с длиной волны от 400 (фиолетовые) до 759 нм (красные); ультрафиолетовые, или химические невидимые, лучи с длиной волны от 280 до 390 нм. Лучи с длиной волны меньше 280 миллимикрон до поверхности земли не доходят, вследствие поглощения их озоном в высоких слоях атмосферы.

На грани атмосферы спектральный состав солнечных лучей в процентах такой: инфракрасные лучи 43%, световые 52 и ультрафиолетовые 5%. У земной поверхности при высоте стояния солнца 40° солнечная радиация имеет (по Н. П. Калитину) следующий состав: инфракрасные лучи 59%, световые 40 и ультрафиолетовые 1% всей энергии. Напряжение солнечной радиации увеличивается с высотой над уровнем моря, а также тогда, когда солнечные лучи падают вертикально, так как лучам приходится проходить меньшую толщу атмосферы. В других случаях поверхность будет получать солнечных лучей тем меньше, чем ниже солнце, или в зависимости от угла падения лучей. Напряжение солнечной радиации понижается вследствие облачности, загрязнения атмосферного воздуха пылью, дымом и пр.

Причем в первую очередь происходит потеря (поглощение) коротковолновых лучей, а затем тепловых и световых. Лучистая энергия солнца - источник жизни на земле растительных и животных организмов и важнейший фактор окружающей воздушной среды. Она оказывает разнообразное влияние на организм, которое при оптимальном дозировании бывает весьма положительным, а при чрезмерном (передозировке) может быть отрицательным. Все лучи обладают как тепловым, так и химическим действием. Причем у лучей с большой длиной волн на первый план выступает тепловое действие, а с меньшей длиной - химическое.

Биологическое действие лучей на организм животного зависит от длины волны и их амплитуды: чем короче волны, тем чаще их колебания, тем больше энергия квант и тем сильнее реакция организма на такое облучение. Коротковолновые, ультрафиолетовые лучи при воздействии на ткани вызывают в них явления фотоэлектрического эффекта с появлением в атомах отщепленных электронов и положительных ионов. Глубина проникновения разных лучей в тело неодинакова: инфракрасные и красные лучи проникают на несколько сантиметров, видимые (световые) - на несколько миллиметров, а ультрафиолетовые - только на 0,7-0,9 мм; лучи короче 300 миллимикрон проникают в ткани животных на глубину до 2 миллимикрон. При такой незначительной глубине проникновения лучей последние оказывают многообразное и значительное влияние на весь организм.

Солнечная радиация - весьма биологически активный и постоянно действующий фактор, имеющий огромное значение в формировании целого ряда функций организма. Так, например, через посредство глаза видимые световые лучи оказывают влияние на весь организм животных, вызывая безусловные и условно-рефлекторные реакции. Инфракрасные тепловые лучи оказывают свое влияние на организм как непосредственно, так и через окружающие животных предметы. Тело животных непрерывно поглощает и само излучает инфракрасные лучи (радиационный обмен), и этот процесс может значительно изменяться в зависимости от температуры кожи животных и окружающих предметов. Ультрафиолетовые химические лучи, кванты которых имеют значительно большую энергию, чем кванты видимых и инфракрасных лучей, отличаются наибольшей биологической активностью, действуют на организм животных гуморальным и нервнорефлекторным путями. Уф-лучи прежде всего действуют на экстерорецепторы кожи, а затем рефлекторно влияют на внутренние органы, в частности на эндокринные железы.

Продолжительное воздействие оптимальных доз лучистой энергии приводит к адаптации кожи, к меньшей реактивности ее. Под влиянием солнечных лучей усиливаются рост волос, функция потовых и сальных желез, утолщается роговой слой и уплотняется эпидермис, что ведет к повышению сопротивляемости кожи организма. В коже происходит образование биологически активных веществ (гистамина и гистамино-подобных веществ), которые поступают в кровь. Эти же лучи ускоряют регенерацию клеток при заживлении ран и язв на коже. Под действием лучистой энергии, особенно ультрафиолетовых лучей, в базальном слое кожи образуется пигмент меланин, понижающий чувствительность кожи к ультрафиолетовым лучам. Пигмент (загар) представляет собой как бы биологический экран, способствующий отражению и рассеиванию лучей.

Положительное действие солнечных лучей сказывается на крови. Систематическое умеренное воздействие их значительно усиливает кроветворение с одновременным увеличением в периферической крови количества эритроцитов и содержания гемоглобина. У животных после кровопотерь или переболевших тяжелыми болезнями, особенно инфекционными, умеренные облучения солнечными лучами стимулируют регенерацию крови и повышают ее свертываемость. От умеренного воздействия солнечных лучей у животных увеличивается газообмен. Возрастает глубина и уменьшается частота дыхания, увеличивается количество вводимого кислорода, больше выделяется углекислоты и водяных паров, в связи с чем улучшается кислородное питание тканей и повышаются окислительные процессы.

Увеличение белкового обмена выражается повышенным отложением азота в тканях, в результате чего прирост у молодых животных идет быстрее. Чрезмерное солнечное облучение может вызвать отрицательный белковый баланс, особенно у животных, страдающих острыми инфекционными болезнями, а также другими заболеваниями, сопровождающимися повышенной температурой тела. Облучение ведет к повышенному отложению сахара в печени и мышцах в виде гликогена. В крови резко снижается количество недоокисленных продуктов (ацетоновых тел, молочной кислоты и др.), повышается образование ацетилхолина и нормализуется обмен веществ, что имеет особо важное значение для высокопродуктивных животных.

У истощенных животных замедляется интенсивность жирового обмена и повышается отложение жира. Интенсивное освещение у ожиревших животных, наоборот, повышает жировой обмен и вызывает усиленное сгорание жира. Поэтому — полусальный и сальный откорм животных целесообразно проводить в условиях меньшего солнечного облучения.

Под влиянием ультрафиолетовых лучей солнечной радиации находящиеся в кормовых растениях эргостерин и в коже животных дегидрохолестерин превращаются в активные витамины D 2 и D 3 , которые усиливают фосфорно-кальциевый обмен; отрицательный баланс кальция и фосфора переходит в положительный, что способствует отложению этих солей в костях. Солнечный свет и искусственное облучение ультрафиолетовыми лучами - один из действенных современных методов профилактики и лечения рахита и других заболеваний животных, связанных с нарушением обмена кальция и фосфора.

Солнечная радиация, особенно световые и ультрафиолетовые лучи, является основным фактором, вызывающим у животных сезонную половую периодичность, так как свет стимулирует гонадотропную функцию гипофиза и других органов. Весной, в период увеличения напряженности солнечной радиации и световой экспозиции, секреция половых желез, как правило, у большинства видов животных усиливается. Увеличение половой активности у верблюдов, овец и коз наблюдается с укорочением продолжительности светового дня. Если овец в апреле-июне содержать в затемненных помещениях, то течка у них наступит не осенью (как обычно), а в мае. Недостаток света у растущих животных (в период роста и полового созревания), по данным К. В. Свечина, приводит к глубоким, часто необратимым качественным изменениям в половых железах, а у взрослых животных снижает половую активность и оплодотворяемость или вызывает временное бесплодие.

Видимый свет или степень освещенности оказывает значительное влияние на развитие яйцеклеток, течку, продолжительность случного сезона и беременности. В северном полушарии случной сезон бывает обычно коротким, а в южном наиболее продолжительным. Под влиянием искусственного освещения животных сокращается у них продолжительность беременности от нескольких дней до двух недель. Влияние видимых световых лучей на половые железы может быть широко использовано в практике. Опытами, проведенными в лаборатории зоогигиены ВИЭВ, доказано, что освещенность помещений по геометрическому коэффициенту 1: 10 (по КЕО, 1,2-2%) по сравнению с освещенностью 1: 15-1: 20 и ниже (по КЕО, 0,2-0,5%) положительно отражается на клинико-физиологическом состоянии супоросных свиноматок и поросят до 4-месячного возраста, обеспечивает получение крепкого и жизнеспособного потомства. Повышаются привесы поросят на 6% и сохранность их на 10-23,9%.

Солнечные лучи, особенно ультрафиолетовые, фиолетовые и синие, убивают или ослабляют жизнеспособность многих патогенных микроорганизмов, задерживают их размножение. Таким образом, солнечная радиация является мощным естественным дезинфектором внешней среды. Под воздействием солнечных лучей повышается общий тонус организма и сопротивляемость его к инфекционным заболеваниям, а также возрастают специфические иммунные реакции (П. Д. Комаров, А. П. Онегов и др.). Доказано, что умеренное облучение животных при вакцинации способствует повышению титра и других иммунных тел, росту фагоцитарного показателя, и, наоборот, интенсивное облучение понижает иммунные свойства крови.

Из всего сказанного следует, что недостаток солнечной радиации необходимо рассматривать как весьма неблагоприятное внешнее условие для животных, при котором они лишаются важнейшего активатора физиологических процессов. Учитывая это, животных нужно размещать в достаточно светлых помещениях, регулярно предоставлять им моцион, а летом содержать на пастбище.

Нормирование естественного освещения в помещениях производится по геометрическому или светотехническому методам. В практике строительства животноводческих и птицеводческих помещений в основном применяют геометрический метод, по которому нормы естественного освещения определяют отношением площади окон (стекла без рам) к площади пола. Однако, несмотря на простоту геометрического метода, нормы освещенности при помощи его устанавливаются не точно, так как в данном случае не принимают во внимание свето-климатические особенности разных географических зон. Для более точного определения освещенности в помещениях пользуются светотехническим методом, или определением коэффициента естественной освещенности (КЕО). Коэффициентом естественной освещенности называется отношение освещенности помещения (измеряемой точки) к наружной освещенности в горизонтальной плоскости. КЕО выводится по формуле:

K = E:E н ⋅100%

Где К - коэффициент естественного освещения; Е - освещенность в помещении (в люксах); Е н - освещенность вне помещения (в люксах).

Необходимо иметь в виду, что неумеренное пользование солнечной радиацией, особенно в дни с высокой инсоляцией, может причинить животным значительный вред, в частности вызвать ожог, заболевание глаз, солнечный удар и пр. Чувствительность к воздействию солнечных лучей значительно повышается от введения в организм так называемых сенсибилизаторов (гематопорфирина, желчных пигментов, хлорофилла, эозина, метиленовой синьки и др.). Считают, что эти вещества аккумулируют коротковолновые лучи и превращают их в длинноволновые с поглощением части освобожденной тканями энергии, вследствие чего увеличивается реактивность тканей.

Солнечный ожог у животных чаще наблюдают на участках тела с нежной, мало покрытой волосами, непигментированной кожей в результате воздействия тепловых (солнечная эритема) и ультрафиолетовых лучей (фотохимическое воспаление кожи). У лошадей солнечные ожоги отмечают на непигментированных местах кожи головы, губ, ноздрей, шеи, паха и конечностей, а у крупного рогатого скота на коже сосков вымени и промежности. В южных районах возможны солнечные ожоги у свиней белой масти.

Сильный солнечный свет может вызвать раздражение сетчатки, роговой и сосудистых оболочек глаза и повреждение хрусталика. При продолжительной и интенсивной радиации возникают кератиты, помутнение хрусталика и нарушение аккомодации зрения. Нарушение аккомодации чаще наблюдают у лошадей, если их содержат в конюшнях с низкими окнами, обращенными на южную сторону, против которых привязывают лошадей.

Солнечный удар возникает в результате сильного и продолжительного перегревания головного мозга преимущественно тепловыми инфракрасными лучами. Последние проникают через кожу головы и черепную коробку, достигают мозга и вызывают гиперемию и повышение температуры его. Вследствие этого у животного сначала появляется угнетение, а затем возбуждение, нарушаются дыхательный и сосудодвигательный центры. Отмечают слабость, некоординированные движения, одышку, учащенный пульс, гиперемию и цианоз слизистых оболочек, дрожь и судороги. Животное не держится на ногах, падает на землю; тяжелые случаи нередко заканчиваются смертью животного при явлениях паралича сердца или дыхательного центра. Солнечный удар особенно тяжело протекает, если он сочетается с тепловым ударом.

Для защиты животных от действия прямых солнечных лучей необходимо держать их в наиболее жаркие часы дня в тени. Чтобы предупредить солнечный удар, в частности у рабочих лошадей, им надевают белые парусиновые налобники.

Новое на сайте

>

Самое популярное