Домой Ягоды Основополагающая теория неорганической химии. Неорганическая химия. Где применяется неорганическая химия

Основополагающая теория неорганической химии. Неорганическая химия. Где применяется неорганическая химия

Неорганическая химия - часть общей химии. Она занимается изучением свойств и поведения неорганических соединений - их структуры и способности реагировать с другими веществами. Данное направление исследует все вещества, за исключением тех, которые построены из углеродных цепочек (последние являются предметом изучения органической химии).

Описание

Химия - это комплексная наука. Ее деление на категории чисто условно. Например, неорганическую и органическую химию связывают соединения, называемые бионеорганическими. К ним относятся гемоглобин, хлорофилл, витамин B 12 и многие ферменты.

Очень часто при изучении веществ или процессов приходится учитывать различные взаимосвязи с прочими науками. Общая и неорганическая химия охватывает простые и число которых приближается к 400 000. Изучение их свойств часто включает в себя широкий спектр методов физической химии, поскольку они могут сочетать свойства, характерные для такой науки, как физика. На качества веществ влияют проводимость, магнитная и оптическая активность, воздействие катализаторов и прочие «физические» факторы.

Как правило, неорганические соединения классифицируются в соответствии с их функцией:

  • кислоты;
  • основания;
  • оксиды;
  • соли.

Оксиды часто делятся на металлы (основные оксиды или основные ангидриды) и неметаллические оксиды (кислотные оксиды или ангидриды кислот).

Зарождение

История неорганической химии делится на несколько периодов. На первоначальном этапе происходило накопление знаний посредством случайных наблюдений. С древних времен предпринимались попытки трансформировать неблагородные металлы в драгоценные. Алхимическая идея пропагандировалась еще Аристотелем через его учение об конвертируемости элементов.

В первой половине пятнадцатого века свирепствовали эпидемии. Особенно население страдало от оспы и чумы. Эскулапы предполагали, что заболевания вызваны определенными веществами, и борьба с ними должна осуществляться с помощью других веществ. Это привело к началу так называемого медико-химического периода. В то время химия стала самостоятельной наукой.

Становление новой науки

Во время Возрождения химия из чисто практической области исследования стала «обрастать» теоретическими понятиями. Ученые пытались объяснить глубинные процессы, происходящие с веществами. В 1661 году Роберт Бойл вводит понятие «химический элемент». В 1675 году Николас Леммер отделяет химические элементы минералов от растений и животных, тем самым обусловив изучение химией неорганических соединений отдельно от органических.

Позже химики пытались объяснить явление горения. Немецкий ученый Георг Сталь создал теорию флогистонов, согласно которой сгораемое тело отторгает негравитационную частицу флогистона. В 1756 году Михаил Ломоносов экспериментально доказал, что горение некоторых металлов связано с частицами воздуха (кислорода). Антуан Лавуазье также опроверг теорию флогистонов, став родоначальником современной теории горения. Им же введено понятие «соединение химических элементов».

Развитие

Следующий период начинается с работ и попыток объяснить химические законы посредством взаимодействия веществ на атомарном (микроскопическом) уровне. Первый химический конгресс в Карлсруэ в 1860 году дал определения понятий атома, валентности, эквивалента и молекулы. Благодаря открытию периодического закона и созданию периодической системы Дмитрий Менделеев доказал, что атомно-молекулярная теория связана не только с химическими законами, но и с физическими свойствами элементов.

Следующий этап в развитии неорганической химии связан с обнаружением радиоактивного распада в 1876 году и выяснением конструкции атома в 1913-м. Исследование Альбрехта Кесселя и Гильберта Льюиса в 1916 году решает проблему природы химических связей. Основываясь на теории гетерогенного равновесия Уилларда Гиббса и Хенрика Росзеба, Николай Курнаков в 1913 году создал один из основных методов современной неорганической химии - физико-химический анализ.

Основы неорганической химии

Неорганические соединения в природе встречаются в виде минералов. Почва может содержать сульфид железа, такой как пирит, или сульфат кальция в виде гипса. Неорганические соединения также встречаются как биомолекулы. Они синтезируются для использования в качестве катализаторов или реагентов. Первым важным искусственным неорганическим соединением является нитрат аммония, используемый для удобрения почвы.

Соли

Многие неорганические соединения представляют собой ионные соединения, состоящие из катионов и анионов. Это так называемые соли, являющиеся объектом исследований неорганической химии. Примерами ионных соединений являются:

  • Хлорид магния (MgCl 2), в состав которого входят катионы Mg 2+ и анионы Cl - .
  • Оксид натрия (Na 2 O), который состоит из катионов Na + и анионов O 2- .

В каждой соли пропорции ионов таковы, что электрические заряды равновесны, то есть соединение в целом является электрически нейтральным. Ионы описываются степенью окисления и легкостью образования, которая следует из потенциала ионизации (катионы) или электронного сродства (анионы) элементов, из которых они образуются.

К неорганическим солям относятся оксиды, карбонаты, сульфаты и галогениды. Многие соединения характеризуются высокой температурой плавления. Неорганические соли обычно представляют собой твердые кристаллические образования. Другой важной особенностью является их растворимость в воде и легкость кристаллизации. Некоторые соли (например, NaCl) хорошо растворимы в воде, в то время как другие (например, SiO2) почти не растворяются.

Металлы и сплавы

Металлы, такие как железо, медь, бронза, латунь, алюминий, представляют собой группу химических элементов в нижней левой части периодической таблицы. К этой группе относятся 96 элементов, которые характеризуются высокой теплопроводностью и электропроводностью. Они широко используются в металлургии. Металлы могут быть условно разделены на черные и цветные, тяжелые и легкие. Кстати, наиболее используемым элементом является железо, оно занимает 95 % мирового производства среди всех видов металлов.

Сплавы представляют собой сложные вещества, получаемые путем плавления и смешивания двух или более металлов в жидком состоянии. Они состоят из основания (доминирующих элементов в процентном соотношении: железа, меди, алюминия и т. д.) с небольшими добавками легирующих и модифицирующих компонентов.

Человечеством применяется около 5000 типов сплавов. Они являются основными материалами в строительстве и промышленности. Кстати, существуют также сплавы между металлами и неметаллами.

Классификация

В таблице неорганической химии металлы распределены по нескольким группам:

  • 6 элементов находятся в щелочной группе (литий, калий, рубидий, натрий, франций, цезий);
  • 4 - в щелочноземельной (радий, барий, стронций, кальций);
  • 40 - в переходной (титан, золото, вольфрам, медь, марганец, скандий, железо и др.);
  • 15 - лантаноиды (лантан, церий, эрбий и др.);
  • 15 - актиноиды (уран, актиний, торий, фермий и др.);
  • 7 - полуметаллы (мышьяк, бор, сурьма, германий и др.);
  • 7 - легкие металлы (алюминий, олово, висмут, свинец и др.).

Неметаллы

Неметаллы могут быть как химическими элементами, так и химическими соединениями. В свободном состоянии они образуют простые вещества с неметаллическими свойствами. В неорганической химии различают 22 элемента. Это водород, бор, углерод, азот, кислород, фтор, кремний, фосфор, сера, хлор, мышьяк, селен и др.

Наиболее типичными неметаллами являются галогены. В реакции с металлами они образуют которых в основном ионная, например KCl или CaO. При взаимодействии друг с другом неметаллы могут образовывать ковалентно-связанные соединения (Cl3N, ClF, CS2 и т. д.).

Основания и кислоты

Основания - сложные вещества, наиболее важными из которых являются водорастворимые гидроксиды. При растворении они диссоциируют с катионами металлов и анионами гидроксидов, а их рН больше 7. Основания можно рассматривать как химически противоположные кислотам, потому что водо-диссоциирующие кислоты увеличивают концентрацию ионов водорода (H3O+), пока основание не уменьшится.

Кислоты - это вещества, которые участвуют в химических реакциях с основаниями, забирая у них электроны. Большинство кислот, имеющих практическое значение, являются водорастворимыми. При растворении они диссоциируют из катионов водорода (Н +) и кислых анионов, а их рН меньше 7.

Неорганическая химия.

Неорганическая химия — раздел химии, в котором изучают свойства различных химических элементов и соединения, которые они образуют, за исключением углеводородов (химических соединений углерода и водорода) и продуктов их замещения, представляющих собой так называемые органические молекулы.

Первые исследования в области неорганической химии были посвящены минералам. Ставилась цель извлечь из них различные химические элементы. Эти исследования позволили разделить все вещества на две большие категории: химические элементы и соединения.

Химические элементы — вещества, состоящие из одинаковых атомов (например, Fe, из которого состоит железный прут, или РЬ, из которого сделана свинцовая труба).

Химические соединения — это вещества, состоящие из различных атомов. Например, вода Н20, сульфат натрия Na2S04, гидроокись аммония NH4OH…

Атомы, входящие в состав химических элементов и соединений, делят на два класса — атомы металлов и атомы неметаллов.

Атомы неметаллов (азот N, кислород О, сера S, хлор CI.) имеют способность присоединять к себе электроны, забирая их у других атомов. Поэтому атомы неметаллов называют «электроотрицательными».

Атомы металлов, напротив, имеют тенденцию отдавать электроны другим атомам. Поэтому атомы металлов называют электроположительными. Это, например, железо Fe, свинец РЬ, медь Cu, цинк Zn. Вещества, состоящие из двух различных химических элементов обычно содержат атомы металла одного вида (обозначение соответствующего атолла помещается в начало химической формулы) и атомы неметалла также одного вида (в химической формуле обозначение соответствующего атома помещается после атома металла). Например, хлорид натрия NaCI. Если вещество не содержит атом металла, то в начало химической формулы помещается наименее электроотрицательный элемент, например аммиак NH3.

Система наименований неорганических химических соединений была утверждена в 1960 году Международным союзом IUPAC. Неорганические химические соединения называют, произнося сначала наименование наиболее электроотрицательного элемента (обычно неметалла). Например, соединение с химической формулой KCI называют хлоридом калия. Вещество H2S называется сероводородом, а СаО — оксидом кальция.

Органическая химия.

В начале своего развития эта химия исследовала вещества, входящие в живые организмы — растения и животные (белки, жиры, сахара), либо вещества разложившейся живой материи (нефть). Все эти вещества называли органическими.

Встречающиеся в природе органические вещества относят к различным группам: нефть и ее составляющие, белки, углеводы, жиры, гормоны, витамины и другие.

В начале 19 века были синтезированы первые искусственные органические молекулы. Используя неорганическую соль цианат аммония, Велер в 1828 году получил мочевину. Уксусная кислота была синтезирована Кольбе в 1845 году. Бертло получил этиловый спирт и муравьиную кислоту (1862 год).

Со временем химики научились синтезировать все большее и большее количество природных органических веществ. Были получены глицерин, ванилин, кофеин, никотин, холестерин.

Многие из синтезированных органических веществ не существуют в природе. Это пластмассы, моющие средства, искусственные волокна, многочисленные лекарства, красители, инсектициды.

Углерод образует больше соединений, чем какой либо другой элемент. Имея стабильную внешнюю электронную оболочку, углерод весьма мало склонен становиться положительно или отрицательно заряженным ионом. Эта электронная оболочка возникает в результате образования четырех связей, направленных к вершинам тетраэдра, в центре которого находится ядро атома углерода. Именно поэтому органические молекулы имеют специфическую структуру.

В органических молекулах атом углерода всегда участвует в четырех химических связях. Атомы углерода способны легко объединяться друг с другом, образуя длинные цепи или циклические структуры.

Атомы углерода в органических молекулах могут быть соединены между собой одинарными связями (так называемые насыщенные углеводороды) или кратными, точнее двойными, а также тройными связями (углеводороды ненасыщенные).

Международный союз IUPAC разработал систему наименований органических соединений. Эта система выявляет наиболее длинную неразветвленную углеродную цепь, тип химической связи между атомами углерода, а также наличие различных групп атомов (заместителей), прикрепленных к главной углеродной цепи.

Группы атомов углерода придают органическим молекулам, в которых они содержатся, специфические свойства. Последние позволяют различать многочисленные классы органических соединений, например: углеводороды (вещества из атомов углерода и водорода), спирты, органические кислоты.

/ / /

УДК 546(075) ББК 24.1 я 7 0-75

Составители: Клименко B.I канд. техн. наук, доц. Володчснко А Н., канд. техн. наук, доц. Павленко В И., д-р техн. наук, проф.

Рецензент Гикунова И.В., канд. техн. наук, доц.

Основы неорганической химии: Методические указания для студентов 0-75 дневной формы обучения. - Белгород: Изд-во БелГТАСМ, 2001. - 54 с.

В методических указаниях подробно, с учетом основных разделов общей химии, рассмотрены свойства важнейших классов неорганических веществ.Данная работа содержит обобщения, схемы, таблицы, примеры, что будет способствовать лучшему усвоению обширного фактического материала. Особое внимание как в теоретической, гак и в практической части уделено связи неорганической химии с основными понятиями общей химии.

Книга предназначена для студентов первого курса всех специальностей.

УДК 546(075) ББК 24.1 я 7

© Белгородская государственная технологическая академия строительных материалов (БелГТАСМ), 2001

ВВЕДЕНИЕ

Познание основ любой науки и стоящих перед нею проблем - это тот минимум, который должен знать любой человек, чтобы свободно ориенти­ роваться в окружающем мире. Важную роль в этом процессе играет есте­ ствознание. Естествознание - совокупность наук о природе. Все науки делятся на точные (естественные) и изящные (гуманитарные). Первые изучают законы развития материального мира, вторые - законы развития и проявления человеческого разума. В представленной работе мы ознако­ мимся с основами одной из естественных наук 7 неорганической химии. Успешное изучение неорганической химии возможно лишь при условии знания состава и свойств основных классов неорганических соединений. Зная особенности классов соединений, можно характеризовать свойства их отдельных представителей.

При изучении любой науки, и химии в том числе, всегда встает во­ прос: с чего начать? С изучения фактического материала: описания свойств соединений, указания условий их существования, перечисления реакций, в которые они вступают; на этой базе выводят законы, управ­ ляющие поведением веществ или, наоборот, сначала приводят законы, а затем на их основе обсуждают свойства веществ. В данной книге мы будем использовать оба приема изложения фактического материала.

1. ОСНОВНЫЕ ПОНЯТИЯ НЕОРГАНИЧЕСКОЙ ХИМИИ

Что же составляет предмет химии, что изучает эта наука? Су­ ществует несколько определений химии.

С одной стороны, химия - это наука о веществах, их свойствах и превращениях. С другой стороны, химия - одна из естественных наук, изучающих химическую форму движения материи. Химическая форма движения материи - это процессы ассоциации атомов в молекулы и диссо­ циации молекул. Химическую организацию материи можно представить следующей схемой (рис. 1 ).

Рис. 1. Химическая организация материи

Материя - это объективная реальность, данная человеку в его ощущениях, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас. Материя как объективная реальность существует в двух формах: в форме вещества и в форме поля.

Поле (гравитационное, электромагнитное, внутриядерных сил) - это форма существования материи, которая характеризуется и проявляется прежде всего энергией, а не массой, хотя и обладает последней. Энергия - это количественная мера движения, выражающая способность материаль­ ных объектов совершать работу.

Масса (лат. massa - глыба, ком, кусок) - физическая величина, одна из основных характеристик материи, определяющая ее инерционные и гравитационные свойства.

Атом - это низший уровень химической организации материи. Атом - наименьшая частица элемента, сохраняющая его свойства. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов; в целом атом элекгронейтрален. Химический элемент - это вид атомов с одинаковым зарядом ядра. Известно 109 элементов, из них 90 существует в природе.

Молекула - наименьшая частица вещества, обладающая химиче­ скими свойствами этого вещества.

Число химических элементов ограничено, а их комбинации дают все

многообразие веществ.

Что же такое вещество?

В широком смысле вещество - это конкретный вид материи, обла­ дающий массой покоя и характеризующийся при данных условиях опре­ деленными физическими и химическими свойствами. Известно около 600 тысяч неорганических веществ и около 5 млн органических веществ.

В более узком смысле вещество - это определенная совокупность атомных и молекулярных частиц, их ассоциатов и агрегатов, находя­ щихся в любом из трех агрегатных состояний.

Вещество достаточно полно определяется тремя признаками: 1 ) занимает часть пространства; 2 ) обладает массой покоя;

3) построено из элементарных частиц.

Все вещества можно разделить на простые и сложные.

менты образуют не одно, а несколько простых веществ. Такое явле­ ние называется аллотропией, а каждые из этих простых веществ - аллотропным видоизменением (модификацией) данного элемента. Ал­ лотропия наблюдается у углерода, кислорода, серы, фосфора и ряда других элементов. Так, графит, алмаз, карбин и фуллерены - аллотроп­ ные видоизменения химического элемента углерода; красный, белый, черный фосфор - аллотропные видоизменения химического элемента фосфора. Простых веществ известно около 400.

Простое вещество является формой существования химических

элементов в свободном состоянии

Простые вещества делятся на металлы и неметаллы. Принадлежность химического элемента к металлам или неметаллам можно определить, пользуясь периодической системой элементов Д.И. Менделеева. Прежде чем это сделать, давайте немного вспомним строение периодической си­ стемы.

1.1. Периодический закон и периодическая система Д.И.Менделеева

Периодическая система элементов - это графическое выражение периодического закона, открытого Д.И.Менделеевым 18 февраля 1869 г. Периодический закон звучит так: свойства простых веществ, а также свойства соединений, находятся в периодической зависимости от заряда ядра атомов элемента.

Существует более 400 вариантов изображения периодической си­ стемы. Наиболее распространены клеточные варианты (короткий вариант - 8 -клеточный и длинные варианты - 18- и 32-клеточные). Короткопе­ риодная периодическая система состоит из 7 периодов и 8 групп.

Элементы, имеющие аналогичное строение внешнего энергетического уровня, объединяются в группы. Различают главные (А) и побочные (В)

группы. Главные группы составляют s- и p-элементы, а побочные - d- элементы.

Период представляет собой последовательный ряд элементов, в ато­ мах которых происходит заполнение одинакового числа электронных слоев одного и того же энергетического уровня. Различие в последовательности заполнения электронных слоев объясняет причину различной длины пе­ риодов. В связи с этим периоды содержат разное количество элементов: 1-й период - 2 элемента; 2-й и 3-й периоды - по 8 элементов; 4-й и 5-й

периоды - по 18 элементов и 6 -й период - 32 элемента.

Элементы малых периодов (2 -й и 3-й) выделяют в подгруппу типиче­ ских элементов. Так как у d- и /элементов заполняются 2-й и 3-й снаружи элгк-

лочке их атомов, а следовательно, большая способность к присоедине­ нию электронов (окислительная способность), передаваемая высокими значениями их электроотрицательности. Элементы с неметаллическими свойствами занимают правый верхний угол периодической системы

Д.И.Менделеева. Неметаллы могут бьггь газообразными (F2 , О2 , CI2 ), твердыми (В, С, Si, S) и жидкими (Вг2).

Элемент водород занимает особое место в периодической си­

стеме и не имеет химических аналогов. Водород проявляет металлические

и неметаллические свойства, и поэтому в периодической системе его

помещают одновременно в IA и VIIA группу.

В силу большого своеобразия химических свойств выделяют от­

дельно благородные газы (аэрогены) - элементы VIIIA группы

дической

системы. Исследования последних лет позволяют тем не ме­

нее причислить некоторые из них (Кг, Хе, Rn) к неметаллам.

Характерным свойством металлов является то, что валентные

троны слабо связаны с конкретным атомом, и

внутри каждого

существует так называемый электронный

Поэтому все

обладают

высокой электропроводностью,

теплопроводностью

тичностью. Хотя есть и хрупкие металлы (цинк, сурьма, висмут). Ме­ таллы проявляют, как правило, восстановительные свойства.

Сложные вещества (химические соединения) - это вещества, мо­ лекулы которых образованы атомами различных химических элемен­ тов (гетероатомные или гетероядерные молекулы). Например, С 02, КОН. Известно более 10 млн сложных веществ.

Высшей формой химической организации материи являются ассоциаты и агрегаты. Ассоциаты - это объединения простых молекул или ионов в более сложные, не вызывающие изменения химической при­ роды вещества. Ассоциаты существуют главным образом в жидком и газообразном состоянии, а агрегаты-в твердом.

Смеси - системы, состоящие из нескольких равномерно распреде­ ленных соединений, связанных между собой постоянными соотношения­ ми и не взаимодействующие друг с другом.

1.2. Валентность и степень окисления

Составление эмпирических формул и образование названий хи­ мических соединений основано на знании и правильном использовании понятий степень окисления и валентность.

Степень окисления - эго условный заряд элемента в соединении, вычисленный из предположения, что соединение состоит из ионов. Эго величина условная, формальная, так как чисто ионных соедине­ ний практически нет. Степень окисления по абсолютной величине может быть целым или дробным числом; а по заряду может быть положительной, отрицательной и равной нулю величиной.

Валентность - это величина, определяемая количеством неспарен­ ных электронов на внешнем энергетическом уровне или числом свобод­ ных атомных орбиталей, способных участвовать в образовании химиче­ ских связей.

Некоторые правила определения степеней окисления химических элементов

1. Степень окисления химического элемента в простом веществе

равна 0 .

2. Сумма степеней окисления атомов в молекуле (ионе) равна 0

(заряду иона).

3. Элементы I-III А групп имеют положительную степень окис­ ления, соответствующую номеру группы, в которой находится данный элемент.

4. Элементы IV -V IIА групп, кроме положительной степени окис­ ления, соответствующей номеру группы; и отрицательной степени окис­ ления, соответствующей разнице между номером группы и числом 8 , имеют промежуточную степень окисления, равную разности между номером группы и числом 2 (табл. 1 ).

Таблица 1

Степени окисления элементов IV -V IIА подгрупп

Степень окисления

Промежуточная

5. Степень окисления водорода равна +1, если в соединении есть хотя бы один неметалл; - 1 в соединениях с металлами (гидридах); 0 в Н2.

Гидриды некоторых элементов

ВеН2

NaH MgH2 АШ3

СаН2

GaH3

GeH4

AsH3

SrH2

InH3

SnH4

SbH3

ВаН2

Соединения Н

Промежуточные

Соединения i t

соединения

6 . Степень окисления кислорода, как правило, равна -2, за ис­ ключением пероксидов (-1), надпероксидов (-1/2), озонидов (-1/3), озона (+4), фторида кислорода (+2).

7. Степень окисления фтора во всех соединениях, кроме F2> равна -1. В соединениях с фтором реализуются высшие формы окисления мно­ гих химических элементов (BiF5, SF6, IF?, OsFg).

8 . В периодах орбитальные радиусы атомов с возрастанием по­ рядкового номера уменьшаются, а энергия ионизации возрастает. При этом усиливаются кислотные и окислительные свойства; высшие сте­

пени окисления элементов становятся менее устойчивыми.

9. Для элементов нечетных групп периодической системы харак­ терны нечетные, а для элементов четных групп - четные степени

окисления.

10. В главных подгруппах с возрастанием порядкового номера элемента размеры атомов в общем увеличиваются, а энергия иониза­ ции - уменьшается. Соответственно усиливаются основные и ослабевают окислительные свойства. В подгруппах ^-элементов с увеличением порядкового номера участие «.^-электронов в образовании связей

уменьшается, а следовательно, уменьшается

абсолютное значение степе­

ни окисления (табл. 2 ).

Таблица 2

Значения степеней окисления элементов VA подгруппы

Степень окисления

Li, К, Fe, Ва

Кислотные С 02, S 0 3

Неметаллы

Амфотсрные ZnO ВеО

Амфигены

Двойные Fe304

Be, AL Zn

яолеобразующие

Аэрогены

СО, NO, SiO, N20

Основания Ва(ОН)2

Кислоты HNO3

ГИДРОКСИДЫ

Амфолиты Zti(OH)2

Средние КагСОз,

Кислые МаНКЮз,

Основные (СиОН)гСОз, 4--------

Двойные CaMg(COs)2

Смешанные СаСГСЮ

> w h o w J 3 w »

Рис, 2. Схема важнейших классов неорганических веществ

Неорганическая химия - раздел химии, который связан с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Эта область химии охватывает все соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различия между органическими и неорганическими соединениями , содержащими , являются по некоторым представлениям произвольными. Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических). Число известных сегодня неорганических веществ приближается к 500 тысячам.

Теоретическим основанием неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева . Главной задачей неорганической химии является разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами.

Классификация химических элементов

Периодическая система химических элементов (таблица Менделеева ) - классификация химических элементов, которая устанавливает зависимость различных свойств химических элементов от заряда атомного ядра. Система — это графическое выражение периодического закона, . Её первоначальный вариант был разработан Д. И. Менделеевым в 1869-1871 годах и назывался «Естественная система элементов», который устанавливал зависимость свойств химических элементов от их атомной массы. Всего предложено несколько сотен вариантов изображения периодической системы, но в современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в некоторой степени подобные друг другу.

Простые вещества

Они состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). В зависимости от того, какова химическая связь между атомами, все простые вещества в неорганической химии разделяются на две основные группы: и . Для первых характерна металлическая связь, для вторых - ковалентная. Также выделяются две примыкающие к ним группы - металлоподобных и неметаллоподобных веществ. Существует такое явление как аллотропия, которое состоит в возможности образования нескольких типов простых веществ из атомов одного и того же элемента, но с разным строением кристаллической решетки; каждый из таких типов называется аллотропной модификацией.

Металлы

(от лат. metallum - шахта, рудник) - группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118 химических элементов, открытых на данный момент, к металлам относят:

  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды+ лантан,
  • 14 в группе актиноиды + актиний,
  • вне определённых групп .

Таким образом, к металлам относится 96 элементов из всех открытых.

Неметаллы

Химические элементы с типично неметаллическими свойствами, занимающие правый верхний угол Периодической системы элементов. В молекулярной форме в виде простых веществ в природе встречаются

Новое на сайте

>

Самое популярное