Домой Удобрения Токовый сигнал 4 20 ма длина линии. Токовая петля. MAX5661 — ЦАП с токовым выходом

Токовый сигнал 4 20 ма длина линии. Токовая петля. MAX5661 — ЦАП с токовым выходом

Благодаря устойчивости к электромагнитным помехам, создаваемым электромоторами, контакторами, реле и другими источниками, управляющие токовые петли, особенно, популярная петля 4-20 мА, применяются во многих промышленных приложениях. У стандартных технологических контроллеров часто есть выходы 4-20 мА (иногда 0-20 мА), используемые для управления скоростью, давлением, температурой и другими параметрами в системах с замкнутым контуром регулирования.

Сделать схему приемника сигнала 4-20 мА не очень сложно. Существует несколько доступных компонентов, разработанных специально для этой цели. Однако цена этих компонентов, приобретаемых в небольших количествах, оказалась несколько выше, чем я ожидал (свыше $10).

В поисках более дешевой альтернативы я обнаружил выпускаемую микросхему . Это исключительно универсальный дифференциальный усилитель с единичным усилением и широким диапазоном напряжений питания. Используя сдвоенную версию усилителя (INA2134) и совсем немного точных резисторов, я сделал схему приемника 4-20 мА, которая стоит меньше $2.60.

Схема на Рисунке 1 моделировалась в MultiSim 8 с использованием микросхемы INA134. (Переназначение выводов для INA2134 никаких трудностей не вызывает). Моделирование выполнялось для источника переменного тока со средним значением 12 мА, изменяющегося с частотой 10 Гц, пиковая амплитуда которого 8 мА обеспечивала размах выходного сигнала от 4 мА до 20 мА. Здесь можно использовать любое разумное значение частоты, но в типичных системах петля 4-20 мА обычно управляет медленными процессами.

Одна из секций INA2134 используется для смещения выходного напряжения. Показанные на схеме однопроцентные резисторы и прецизионные внутренние резисторы с лазерной подгонкой микросхемы INA2134 обеспечивают достаточно точное смещение +2 В. Схема работает от одного источника питания 24 В, и это смещение ей необходимо, чтобы выходное напряжение не опускалось слишком близко к шине земли. (В технической документации указано, что выходное напряжение должно быть на 2 В выше напряжения отрицательной шины питания и на 2 В ниже напряжения положительной шины).

На резисторе 150 Ом с допуском 1%, включенном между входами усилителя, падает 0.6 В при токе 4 мА и 3 В при токе 20 мА. С учетом смещения 2 В это дает диапазон выходных напряжений то 2.6 В до 5 В (Рисунок 2). В моем устройстве это напряжение оцифровывается аналого-цифровым преобразователем (АЦП). Выход АЦП подключен к небольшому микроконтроллеру, управляющему процессом преобразования.

Обратите внимание, что при изменении входного тока от 0 мА до 20 мА выходное напряжение меняется в диапазоне от 2.0 В до 5.0 В. Простой заменой резисторов разработчики могут выбрать другой выходной диапазон, подходящий для конкретного приложения. Напряжение источника питания можно увеличить до 36 В. В случае двуполярного питания (до ±18 В) смещение не требуется, и в схеме можно использовать одиночный усилитель INA134 с одним входным резистором, благодаря чему ее стоимость становится меньше $1.60.

Юрий Курцевой (Maxim Integrated)

Высокоинтегрированный аналоговый формирователь сигнала токовой петли 4-20 мА MAX 12900 производства Maxim Integrated может конвертировать ШИМ сигнал микроконтроллера, который не обладает встроенным ЦАП, в сигнал петли 4 20мА для двух- , трех- или четырех проводных конфигураций .

Токовая петля 4…20 мА на сегодняшний день является одним из наиболее популярных методов передачи данных во многих отраслях промышленности. Благодаря своей устойчивости к помехам при передаче сигнала от передатчика к приемнику она идеально подходит для таких задач. Другое преимущество – относительная простота и бюджетность метода. Хотя, конечно, необходимость контроля за падением напряжения в некоторых участках цепи и за рядом других параметров часто приводит к усложнению схемы и увеличению стоимости решения. В таблице 1 обобщаются преимущества и недостатки метода передачи данных на основе токовой петли 4…20 мА.

Таблица 1. Преимущества и недостатки токовой петли 4…20 мА

Преимущества Недостатки
Основной стандарт во многих отраслях промышленности Одной токовой петле соответствует только один канал передачи данных
Возможность передачи значения только одной переменной
Простота в подключении и настройке Для одновременной работы нескольких каналов данных (для передачи значений нескольких переменных) требуется создать столько же токовых петель. Но использование большого количества проводов может приводить к проблемам с контурами заземления, если независимые петли не изолированы должным образом.
Сигнал не деградирует с увеличением дистанции Проблемы, связанные с изоляцией каналов, возрастают с увеличением количества каналов
Меньшая чувствительность к помехам
Отсутствие тока указывает на ошибку в канале передачи данных

Все датчики с интерфейсом 4…20 мА, в зависимости от конфигурации, могут быть разделены на три группы:

  1. двухпроводной (питаемый петлей) датчик 4…20 мА;
  2. трехпроводной датчик 4…20 мА;
  3. четырехпроводной датчик 4…20 мА.

Наиболее удобной конфигурацией является решение, питаемое петлей. Однако если сам датчик потребляет более 3…4 мА из бюджета петли 4…20 мА, то для его функционирования придется использовать дополнительный источник питания. При подключении таких датчиков придется использовать 4-проводную конфигурацию. 3-проводная конфигурация является упрощенной версией предыдущей, в которой объединен положительный вывод питания датчика с токовой петлей (рисунок 1б). На рисунке 1 показаны все описанные выше конфигурации. В таблице 2 приводятся преимущества и недостатки каждого из них.

Таблица 2. Преимущества и недостатки датчиков с разными схемами подключения

Конфигурация 2-проводная 3-проводная 4-проводная
Преимущества Не нужен локальный блок питания; малая стоимость; подходит для работы в агрессивных условиях Экономичнее варианта с четырьмя проводами; простота реализации; возможность использования устройств индикации и других устройств, требующих дополнительного питания; возможность использовать мощные выходы, реле Внешнее питание; возможность передавать переменный сигнал; изоляция цепи питания; возможность использования устройств индикации и других устройств, требующих дополнительного питания; возможность использовать мощные выходы, реле
Недостатки Падение напряжения на участках петли может вызвать проблемы; имеются ограничения по потреблению схемы Отсутствие изоляции петли питания; линии питания и петли нужно реализовывать с осторожностью Более высокая стоимость; больше проводов; неприменим в агрессивной среде эксплуатации

Применение MAX12900 в схемах датчиков с 2-, 3- или 4-проводными конфигурациями токовой петли

MAX12900 – это высокоинтегрированный аналоговый формирователь сигнала с ультрамалым потреблением для датчиков с передатчиком 2…20 мА. В его компактный корпус встроено 10 модулей:

  • LDO-преобразователь с широким входным диапазоном напряжений;
  • цепи обработки ШИМ-модулированных сигналов для двух входов;
  • два малопотребляющих операционных усилителя с малым дрейфом;
  • один операционный усилитель с малым дрейфом напряжения смещения и широкой полосой пропускания;
  • два диагностических компаратора;
  • контроллер включения с выходом индикации хорошего качества питания (power-good выход);
  • источник опорного напряжения с малым дрейфом.

Ключевое преимущество MAX12900 в том, что он может конвертировать ШИМ-сигнал микроконтроллера, который не обладает встроенным ЦАП, в сигнал петли 4…20мА для двух-, трех- или четырехпроводных конфигураций. Таким образом он является эквивалентом совокупности малопотребляющего ЦАП с высоким разрешением, обработчика ШИМ-сигнала, двух цепей обработки и активного фильтра с интегрированным малопотребляющим операционным усилителем. Две цепи обработки сигналов обеспечивают стабильную ШИМ-амплитуду, несмотря на колебания амплитуды сигнала, изменения температуры и напряжения питания. Усилитель с широкой полосой пропускания в сочетании с дискретным транзистором преобразует входное напряжение в выходной ток и позволяет использовать HART® и FOUNDATION Fieldbus H1 модуляцию сигнала. Благодаря ОУ с малым напряжением смещения и источнику опорного напряжения с низким дрейфом обеспечивается минимальный уровень ошибки в широком диапазоне температур. Малопотребляющий ОУ и компараторы являются блоками для создания продвинутых диагностических систем. Мониторинг шины питания, измерение выходного тока и детектирование разрыва цепи – вот некоторые примеры диагностических возможностей таких систем. Все это, наряду с высокой точностью и малым общим потреблением делает MAX12900 идеальным устройством для интеллектуальных датчиков с интерфейсом токовая петля.

Применение MAX12900 в качестве 2-проводного передатчика (питание через токовую петлю)

На рисунке 2 показана упрощенная блок-схема и модель того, как MAX12900 может быть сконфигурирован в качестве части датчика с питанием через петлю. Такая конфигурация требуется для систем, работающих в агрессивных средах, она должна соответствовать директиве ATEX Directive 94/9/EC и получить сертификат IECEx. Такая реализация схемы датчика возможна только в случаях, когда передатчик потребляет менее 4 мА. ШИМ-сигналы, генерируемые микроконтроллером, поступают на специальные цепи нормирования и обработки ШИМ-сигнала, встроенные в MAX12900. С использованием одного из встроенных операционных усилителей и внешней RC-цепи можно создать фильтр низких частот. Для конвертирования напряжения в ток используются внешние транзисторы.

На рисунке 3 показана реализация на уровне электрической принципиальной схемы двухпроводной токовой петли, питающей сенсор (обратите внимание, что весь выделенный бирюзовым цветом блок интегрирован в MAX12900).

Одни из наиболее распространенных датчиков такого типа – это датчики температуры. Давайте попробуем спроектировать передатчик датчика температуры на базе MAX12900 с применением прецизионной термопары и специализированного преобразователя сигнала термопары (MAX31856). MAX31856 обрабатывает сигнал с термопары и передает данные по интерфейсу SPI. Таким образом, чтобы считывать показания с датчика и генерировать ШИМ-сигналы для MAX12900, необходимо использовать микроконтроллер. В отладочном комплекте MAX12900EVKIT для этой задачи применяется микроконтроллер STM32L071 . Ключевой момент в такой схеме – оценить бюджет по потребляемой мощности для наихудших сценариев (максимальные потребления тока для всех рабочих значений температуры и напряжения). На основе этого можно принять решение о применении той или иной конфигурации токовой петли: двух-, трех- или четырехпроводной.

В соответствии с техническим описанием MAX12900EV, общее потребление малопотребляющего микроконтроллера и MAX12900 составляет 3,5 мА для худшего случая. MAX31856 потребляет максимум 2 мА при напряжении питания 3,3 В (таблица 3). Таким образом общее потребление превышает 4 мА, а это значит, что реализовать двухпроводной передатчик не представляется возможным.

Таблица 3. Потребление компонентов датчика температуры

Применение MAX12900 в схеме трехпроводного передатчика

Исключив возможность использовать двухпроводное решение, посмотрим, какова возможность проектирования трехпроводной схемы. Первое, что следует иметь в виду – это возможность применения только одного положительного вывода питания и для передачи данных, и для питания схемы. Напряжение 24 В (от ПЛК) является слишком высоким для микроконтроллера и MAX31856, для работы которых требуется напряжение 3,3 В. Существует несколько подходов решения этой проблемы. Первый – это использовать для преобразования 24 В в 3,3 В DC/DC-преобразователь, например, MAX17550 , как это изображено на рисунке 4. MAX17550 является ультракомпактным синхронным понижающим DC/DC-преобразователем с высоким КПД и выходным током до 25 мА. Для изоляции датчика/МК ШИМ-интерфейса с MAX12900 используется цифровой двухканальный изолятор MAX12930 . На рисунке 4 компоненты в пунктирном квадрате находятся в изолированным домене питания с плавающей землей, которая отличается от земли ПЛК.

Другой подход к решению проблемы с питанием – использовать линейный преобразователь напряжения с ультрамалым током покоя MAX15006AATT+ , который может обеспечить напряжение 3,3 В с током нагрузки до 50 мА, как это показано на рисунке 5.

Вторая проблема, о которой нужно помнить при разработке таких датчиков – плавающая земля передатчика. Датчик сам по себе, микроконтроллер и MAX12900 – передатчик для обмена данными – должны иметь общую шину земли. В то же самое время потенциал этой земли является плавающим потенциалом по отношению к земле ПЛК. Состояние плавающей земли зависит от передаваемых данных и уровня нагрузки петли. Для решения этой проблемы применяются несколько подходов, например использование двухканального малопотребляющего MAX12930 (как показано на рисунке 4) для изоляции PWMA- и PWMB-входов от передатчика.

Альтернативный подход заключается в том, чтобы использовать активную схему, которая занимается постоянным мониторингом и управляет общим уровнем земли микроконтроллера и датчика. Такой вариант реализации становится возможным и удобным благодаря присутствию ОУ общего назначения, а именно – OP2, интегрированного в MAX12900. Для этой схемы также требуется использовать внешний n-канальный MOSFET-транзистор с малым напряжением управления Q3 и PNP-транзистор общего назначения Q4, чтобы согласовать падения напряжения на RLOAD и RSENSE.

Применение MAX12900 в схемах с четырехпроводным передатчиком

Мы рассмотрели, как MAX12900 может быть применен в двух- и трехпроводных передатчиках. Реализация четырехпроводного решения по сравнению с ними очень проста, поскольку для датчика и ПЛК имеются отдельные контуры питания и земли.

Заключение

Ультрамалопотребляющий аналоговый формирователь сигнала MAX12900 производства компании Maxim Integrated для передатчиков 4…20 мА предлагает непревзойденный уровень гибкости в различных приложениях и идеально подходит для использования в промышленных датчиках для систем контроля и автоматизации, сигналы которых необходимо преобразовать в сигнал токовой петли 4…20 мА.

Датчики тока (преобразователи) предназначены для бесконтактного контроля тока в электрических цепях с номинальным напряжением до 660 В. Датчик преобразовывает входной сигнал переменного тока в выходной сигнал постоянного тока 4-20мА или 0-20мА или 0-10в, который можно направить на универсальные измерительные приборы или контроллеры управления.

Датчики герметизированы и могут устанавливаться в любом месте, включая скрытые и труднодоступные места. Не ремонтируются и не требуют обслуживания, содержат встроенный трансформатор тока и универсальную платформу «Айюми», разработанную специально для применения с выпускаемыми нами измерительными трансформаторами и состоящую из прецизионного выпрямителя на ОУ, интегрирующей цепи (постоянная времени 0.6-0.8сек) и формирователя выходного аналогового сигнала.

Номинальное напряжение питания датчиков составляет 24в(ДС), работоспособность полностью сохраняется в диапазоне напряжений 20-28в. Датчики малочувствительны к пульсациям и нестабильности питающих напряжений. Рабочий диапазон температур -40...+85 град С. В настоящее время для заказа доступны датчики:

ТП03С (фото 2)на номинальные токи от 1 до 90А с отв. 11мм ТТП60 (фото 5)- на токи от 10 до 500А с отв. 37мм ТП60 - на токи от 0,05 до 300А с отв. 37мм ТП102С (фото 4)- на токи от 0,05 до 40А с отв.14 мм.

Внутри указанных диапазонов для заказа доступны любые токи. Линейность и стабильность крайне высока в диапазоне 1-100% номинального тока.Приведенная погрешность преобразования составляет менее 2% без калибровки и менее 1% с дополнительной калибровкой при изготовлении.Датчики выпускаются по ТУ 27.11.50.120-001-11976052-2017

При заказе возможно указать пониженное напряжение питания 9(12)в при соответственном снижении макс. величины вых. сигнала до 3(5)в.

Наименование датчика тока для заказа: ТП03C-хх/yy-zz(mm), где

  • хх- номинальный ток (А)
  • yy- выходной сигнал: 0-1в/0-10в/0-20мА/4-20мА
  • zz- 00-жесткие вывода
  • mm - примечание, например (клеммник) - вывода выполнены в виде клеммника. Внимание! опция доступна в полном объеме для ТПП60 и ТП60. Для ТП03 и ТП102 только в отношении варианта 4-20мА

Например: ТП03С-30А/(4-20мА)-00, т.е. датчик ТП03С с ном. вх. током 30А, выходом 4-20мА, жесткие вывода для печатного монтажа.


Еще раз обратите внимание: При заказе, значения номинального тока и параметров выходного сигнала может быть указано любое в пределах указанных пределов, т.е. для ТП03С - 1...90А; ТП102С - 0,1...40А;ТП60 - 0,05...300А ТТП60 - 10...500А для входного тока, и 0...20мА; 1...20мА; 0...10в. для выходного сигнала! Чувствительность датчиков не хуже 0.1% от ном. тока. Это не отражается на цене.


Внимание: Входное сопротивление измерителя на принимающей стороне должно быть:

  • не ниже 50кОм для модификаций 0-1в;
  • не ниже 100кОм для 0-10в;
  • не выше 500 ом для 0-20мА (включая сопр. проводников)
  • не выше 500 ом для 4-20мА (включая сопр. проводников) при 24в. питания токовой петли

Корпус датчика обеспечивает прекрасную гальваническую развязку от контролируемой цепи, что достаточно для любых приложений.

Датчик ТП03С имеет отверстие диаметром 11мм, ТП102С - 14мм, ТТП60 и ТП60 - 37мм для контролируемых линий. При необходимости возможно применение любых трансформаторов тока нашего производства для увеличения отверстия или измеряемых токов. Пример такой реализации приведен на фото 1. Такая конструкция позволяет контролировать цепи бесконтактным способом, без снятия с них изоляции, что значительно повышает надежность и безопасность электросетей. Малый номинальный измеряемый ток и приличное отверстие ТП102С и ТП60 позволяет использовать его также в качестве дифференциального трансформатора тока для измерения токов утечки в линиях (трансформатор тока нулевой последовательности),например для версии 100мА диапазон измерения входного тока составляет от 1 до 100мА с хорошей линейностью.

Устройство и принцип работы

При протекании тока во внешней цепи, встроенный токовый трансформатор обеспечивает гальваническую развязку и трансформирует этот ток в более низкий, который усиливается усилителем-преобразователем ток-напряжение. Полученное напряжение выпрямляется прецизионным выпрямителем и поступает на RC цепь, позволяющую выделить среднее напряжение, пропорциональное вх. току. На выходе RC цепи установлен формирователь напряжение — ток, который дополнительно выполняет роль буфера и приводит выходной сигнал к 0. Выходное напряжение формируется при протекании тока формирователя через Rn. Благодаря этому, выходное напряжение может изменяться в широких пределах (0-1в;0-2в и т.д.) для заданного значения вх. тока, что позволяет корректировать коэфф. преобразования подстройкой резистора нагрузки. Данная подстройка может осуществляться и при необходимости снижения коэфф. передачи или подстройки АЦП под имеющийся ИОН. В то-же время величина вых. напряжения и внутреннее сопротивление (не более 49,9 ом для 0-1в и 499 ом для варианта 0-10в) аналогового выхода позволяет без труда сопрягать его с АЦП микроконтроллеров или стандартными измерительными приборами, имеющими вход 0-1в или 0-10в. При необходимости, на этапе изготовления, возможно снижение или увеличение постоянной времени RC цепи или настройки требуемого вых. напряжения или тока.

Модификация датчика с выходом 0-20мА не имеет встроенного резистора. Макс. напряжение на выходе 4 может достигать 10в. что ограничивает вх. сопротивление измерителя с учетом сопротивления проводов величиной 500 ом. В модификации 4-20мА установлен встроенный резистор 0...10 ом и применяется 2-х проводное подключение, что ограничивает вх. сопротивление измерителя уже до 800 ом при питании 24в.

Собственное потребление датчиков «Айюми» при отсутствии вх. тока не превышает 0,8-1мА в диапазоне напряжений 20-28в. При превышении вх. тока выше номинального включается встроенная схема защиты, ограничивающая выходной ток начиная с 20 до 35мА по логарифмическому закону (24-39мА для 4-20), при этом напряжение на выходе не может превышать 11в, а максимальный потребляемый ток - 38мА, что позволяет использовать его с маломощными источниками питания.Обратите внимание: предельно допускаемый входной ток для ТП03 и ТП102 не должен превышать 200А во избежание повреждения встроенного трансформатора или электронной схемы. Для ТТП60 это предел установлен в размере 500А длительно и 1000а длительностью до 2сек., для ТП60 с диапазоном 0.05-150а в размере 300а, для 150-300а в размере 500а

Типовые схемы подключения датчиков приведены на рис. 3.

  • На рис. 3а изображена схема подключения ТП03С-хх/(0-1в) к универсальному измерителю 0-1в и особенностей не имеет, аналогичное подключение имеет и Т03С-хх/(0-10в) к универсальному измерителю 0-10в.
  • На рис. 3б изображена схема сопряжения ТП03С-хх/(0-10в) с АЦП микроконтроллера со встроенным ИОН=5в. Для снижения выходного напряжения с 10 до 5в. установлен дополнительный резистор 510 ом. Для других напряжений ИОН величину добавочного резистора можно рассчитать по ф-ле: Rx=510*Ux/(10-Ux).
  • На рис. 3в изображена схема подключения ТП03С-хх/(4-20мА) к универсальному измерителю 4-20мА и особенностей не имеет.
  • На рис. 3г изображена схема подключения ТП03С-хх/(0-20мА) к универсальному измерителю 0-20мА.
Фундаментальные основы работы токовой петли 4..20 мА

С 1950-х годов токовая петля используется для передачи данных от измерительных преобразователей в процессе мониторинга и контроля. При низкой стоимости реализации, высокой помехоустойчивости и возможности передачи сигналов на большие расстояния, токовая петля оказалась особенно удобной для работы в промышленных условиях. Этот материал посвящен описанию базовых принципов работы токовой петли, основам проектирования, настройке.

Использование тока для передачи данных от преобразователя

Датчики промышленного исполнения часто используют токовый сигнал для передачи данных в отличие, от большинства других преобразователей, таких,например, как термопары или тензорезистивные датчики, которые используют напряжение сигнала. Несмотря на то, что преобразователи,использующие напряжение в качестве параметра передачи информации,действительно эффективно применяются во многих производственных задачах, существует круг приложений, где использование характеристик тока предпочтительнее. Существенным недостатком при использования напряжения для передачи сигналов в промышленных условиях является ослабление сигнала при его передаче на значительные расстояния вследствие наличия сопротивления проводных линий связи. Можно,конечно, использовать высокий входной импеданс устройств, чтобы обойти потери сигнала. Однако, такие устройства будут весьма чувствительны к шуму, которые индуцируют находящиеся поблизости моторы, приводные ремни или радиовещательные передатчики.

Согласно первому закону Кирхгофа сумма токов, втекающих в узел,равна сумме токов, вытекающих из узла.
В теории, ток,протекающий в начале контура,должен достичь его конца в полном объеме,
как показано на рис.1. 1.

Рис.1. В соответствии с первым законом Кирхгофа ток в начале контура равен току в его конце.

Это основной принцип, на котором работает контур измерения.. Измерение тока в любом месте токовой петли (измерительного контура) дает один и тот же результат. Используя токовые сигналы и приемные устройства для сбора данных с низким входным сопротивлением, в промышленных приложениях возможно получить значительный выигрыш от улучшения помехоустойчивости и увеличения длины линии связи.

Компоненты токовой петли
В состав основных компонентов токовой петли входят источник постоянного тока, первичный преобразователь, устройство сбора данных, и провода, соединяющие их в ряд, как показано на рисунке 2.

Рис.2. Функциональная схема токовой петли.

Источник постоянного тока обеспечивает питание системы. Преобразователь регулирует ток в проводах в диапазоне от 4 до 20 мА, где 4 мА представляет собой «живой» ноль, а 20 мА представляет максимальный сигнал.
0 mA (отсутствие тока) означает разрыв в цепи. Устройство сбора данных измеряет величину регулируемого тока. Эффективным и точным методом измерения тока является установка прецизионного резистора- шунта на входе измерительного усилителя устройства сбора данных (на рис.2) для преобразования тока в напряжение измерения, чтобы в конечном итоге получить результат,однозначно отражающий сигнал на выходе преобразователя.

Чтобы помочь лучше понять принцип работы токовой петли, рассмотрим для примера конструкцию системы с преобразователем, имеющую следующие технические характеристики:

Преобразователь используется для измерения давления
Преобразователь расположен в 2000 футов от устройства измерения
Ток,измеряемый устройством сбора данных, обеспечивает оператора информацией о величине давления, приложенного к преобразователю

Рассмотрение примера начнем с подбора подходящего преобразователя.

Проектирование токовой системы

Выбор преобразователя

Первым шаг в проектировании токовой системы является выбор преобразователя. Независимо от типа измеряемой величины (расход, давление, температура, и т.д.) важным фактором в выборе преобразователя является его рабочее напряжение. Только подключение источника питания к преобразователю позволяет регулировать величину тока в линии связи. Значение напряжения источника питания должно находиться в допустимых пределах: больше, чем минимально необходимое,меньше, чем максимальное значение, которое может привести к повреждению преобразователя.

Для токовой системы, рассматриваемой в примере, выбранный преобразователь измеряет давление и имеет рабочее напряжение от 12 до 30 В. Когда преобразователь выбран, требуется правильно измерить токовый сигнал, чтобы обеспечить точное представление о давлении, подаваемом на датчик.

Выбор устройства сбора данных для измерения тока

Важным аспектом, на который следует обратить внимание при построении токовой системы, является предотвращение появления токового контура в цепи заземления. Общим приемом в таких случаях является изоляция. Использовав изоляцию, вы можете избежать влияния контура заземления, возникновение которого поясняет рис.3.

Рис.3. Контур заземления

Заземляющие контуры образуются при двух подключенных терминалов в цепи в разных местах потенциалов. Эта разница приводит к появлению дополнительного тока в линии связи, что может привести к появлению ошибок при измерениях.
Под изоляцией устройства сбора данных понимается электрическое отделение земли источника сигнала от земли входного усилителя измерительного устройства, как показано на рисунке 4.

Поскольку ток не может течь через барьер изоляции, точки заземления усилителя и источника сигнала имеют один и тот же потенциал. Таким образом исключается возможность непреднамеренно создать контур заземления.

Рис.4. Синфазное напряжение и напряжение сигнала в схеме с изоляцией

Изоляция также предотвращает от повреждения устройство сбора данных при наличии больших синфазных напряжений. Синфазным называют напряжение одинаковой полярности,которое присутствует на обоих входах инструментального усилителя. Например, на рис.4. и положительный (+) ,и отрицательный (-) входы усилителя имеют +14 V синфазного напряжения. Многие устройства сбора данных имеют максимальный входной диапазон ±10 В. Если устройство сбора данных не имеет изоляции и синфазное напряжение выходит за максимальный входной диапазон, вы можете повредить устройство. Хотя нормальное (сигнальное) напряжение на входе усилителя на рис.4 составляет только +2 В, добавка +14 в может дать в результате напряжение +16 В
(Сигнальное напряжение - это напряжение между « + » и « - » усилителя, рабочее напряжение есть сумма нормального и синфазного напряжения),что представляет опасный уровень напряжения для устройств сбора с меньшим рабочим напряжением.

При изоляции общая точка усилителя электрически отделена от нуля заземления. В схеме на рисунке 4 потенциал в общей точке усилителя «приподнят» на уровень +14 V. Такой прием приводит к тому, величина входного напряжения падает с 16 до 2 В.Теперь сбора данных, устройства больше не на риск перенапряжения ущерб. (Обратите внимание, что изоляторы имеют максимальную синфазного напряжения они могут отвергнуть.)

После того как устройство сбора данных изолировано и защищено, последним шагом при комплектовании токовой петли является выбор соответствующего источника питания.

Выбор источника питания

Определить, какой источник питания наилучшим образом отвечает вашим требованиям, весьма просто. При работе в токовой петле, блок питания должен выдавать напряжение, равное или большее, чем сумма падений напряжений на всех элементах системы.

Устройство сбора данных в нашем примере использует прецизионной шунт для измерения тока.
Необходимо рассчитать падение напряжения на этом резисторе. Типовой шунтирующий резистор имеет сопротивление 249 Ω. Основные расчеты при диапазоне тока в токовой петле 4 .. 20 мА
показывают следующее:

I*R=U
0,004A*249Ω= 0,996 V
0,02A*249Ω= 4,98 V

С шунта сопротивлением 249 Ω мы можем снять напряжение в диапазоне от 1 до 5 В, увязав величину напряжения на входе устройства сбора данных с величиной выходного сигнала преобразователя давления.
Как уже упоминалось,преобразователь давления требует минимального рабочего напряжения 12 В при максимальным 30 В. Добавив падение напряжения на прецизионном шунтирующем резисторе к рабочему напряжению преобразователя, получаем следующее:

12 В+ 5 В=17 В

На первый взгляд, хватит напряжения 17В.Необходимо,однако, учесть дополнительную нагрузку на блок питания, которую создают провода, имеющее электрическое сопротивление.
В случаях, когда датчик находится далеко от измерительных приборов, вы должны учитывать фактор сопротивления проводов при расчетах токовой петли. Медные провода имеют сопротивление постоянному току, которое прямо пропорционально их длине. С датчиком давления из рассматриваемого примера вам необходимо учесть 2000 футов длины линии связи при определении рабочего напряжения источника питания. Погонное сопротивление одножильного медного кабеля 2.62 Ω/100 футов. Учет этого сопротивления дает следующее:

Сопротивление одной жилы длиной 2000 футов составит 2000*2,62/100= 52,4 м.
Падение напряжения на одной жиле составит0,02* 52,4= 1,048 В.
Чтобы замкнуть цепь,необходимы два провода,тогда длина линии связи удваивается, и
полное падение напряжения составит 2,096 В. В итоге около 2.1 В благодаря тому,что расстояние от преобразователя до вторичного прибора составляет 2000 футов. Просуммировав падения напряжения на всех элементах контура, получим:
2,096 В + 12 В+ 5 В=19,096 В

Если вы использовали 17 V для питания рассматриваемой схемы, то напряжение, подаваемое на преобразователь давления будет ниже минимального рабочего напряжения за счет падения на сопротивлении проводов и шунтирующем резисторе. Выбор типового источник питания 24 В удовлетворит требованиям по питанию для преобразователя. Дополнительно имеется запас напряжения для того, чтобы разместить датчик давления на большем расстоянии.

С выбором правильно подобранных преобразователя, устройства сбора данных, длины кабелей и источника питания разработка простой токовой петли завершена. Для более сложных приложений вы можете включить дополнительные каналы измерений в систему.

Нижний Новгород

Данная статья является продолжением серии публикаций в журнале ИСУП, посвященных нормирующим *, **, *** ****. Статья «Преобразование подобного в подобное в системах измерения и управления» (ИСУП. 2012. № 1) была посвящена нормирующим , которые преобразуют унифицированные сигналы на входе в унифицированные сигналы на выходе.

Почему именно сигнал 4…20 мА?

Широкое распространение токового унифицированного сигнала 4…20 мА объясняется следующими причинами:
- на передачу токовых сигналов не оказывает влияния сопротивление соединительных проводов, поэтому требования к диаметру и длине соединительных проводов, а значит, и стоимость, снижаются;
- токовый сигнал работает на низкоомную (по сравнению с сопротивлением источника сигнала) нагрузку, поэтому наведенные электромагнитные помехи в токовых цепях малы по сравнению с аналогичными цепями, в которых используются сигналы напряжения;
- обрыв линии передачи токового сигнала 4…20 мА однозначно и легко определяется измерительными системами по нулевому уровню тока в цепи (в нормальных условиях он должен быть не меньше 4 мА);
- токовый сигнал 4…20 мА позволяет не только передавать полезный информационный сигнал, но и обеспечивать электропитание самого нормирующего преобразователя: минимально допустимого уровня 4 мА достаточно для питания современных электронных устройств.

Характеристики преобразователей токовой петли 4…20 мА

Рассмотрим основные характеристики и особенности, которые необходимо учитывать при выборе . В качестве примера приведем нормирующие преобразователи НПСИ-ГРТП, выпускаемые научно-производственной фирмой «КонтрАвт» (рис. 2).


Рис. 2. Внешний вид НПСИ-ГРТП - выпускаемых НПФ «КонтрАвт» преобразователей с гальваническим разделением 1, 2, 4 каналов токовой петли

Предназначены для выполнения всего лишь двух основных функций:
- измерение активного токового сигнала 4…20 мА и преобразование его в такой же активный токовый сигнал 4…20 мА с коэффициентом преобразования 1 и с высоким быстродействием;
- гальваническое разделение входных и выходных сигналов токовой петли.

Основная погрешность преобразования НПСИ-ГРТП составляет 0,1 %, температурная стабильность - 0,005 % / °C. Рабочий диапазон температур - от -40 до +70 °C. Напряжение изоляции - 1500 В. Быстродействие - 5 мс.

Варианты подключения к источникам активных и пассивных сигналов показаны на рис. 3 и 4. В последнем случае требуется дополнительный источник питания.



Рис. 3. Подключение преобразователей НПСИ-ГРТП к активному источнику


Рис. 4. Подключение преобразователей НПСИ-ГРТП к пассивному источнику с применением дополнительного блока питания БП

В системах измерения, где необходимо разделение входных сигналов, источником входного сигнала, как правило, являются измерительные датчики (ИД), а приемниками - вторичные измерительные приборы (ИП) (регуляторы, контроллеры, регистраторы и пр.).

В системах управления, где требуется разделение выходных сигналов, источниками являются управляющие устройства (УУ) (регуляторы, контроллеры, регистраторы и пр.), а приемниками - исполнительные устройства (ИУ) с токовым управлением (мембранные исполнительные механизмы (МИМ), тиристорные регуляторы, частотные преобразователи и пр.).

Примечательно, что для преобразователя НПСИ-ГРТП, выпускаемого , не требуется отдельное питание. Он запитывается от входного активного источника тока 4…20 мА. При этом на выходе также формируется активный сигнал 4…20 мА, и дополнительного источника в выходных цепях не требуется. Поэтому решение на базе разделителей токовой петли, которое используется в НПСИ-ГРТП, является весьма экономичным.

Выпускаются три модификации преобразователя: . Они различаются по количеству каналов (1, 2, 4 соответственно) и конструктивному исполнению (рис. 2). Одноканальный преобразователь размещен в малогабаритном узком корпусе шириной всего 8,5 мм (габариты 91,5 × 62,5 × 8,5 мм), двухканальный и четырехканальный - в корпусе шириной 22,5 мм (габариты 115 × 105 × 22,5 мм). Преобразователи с гальванической развязкой применяются в системах с десятками и сотнями сигналов, для этих систем размещение такого количества преобразователей в конструктивных оболочках (шкафах) становится важнейшей проблемой. Ключевым фактором здесь является ширина одного канала преобразования вдоль DIN-рельса. в 1-, 2‑ и 4‑канальном исполнениях имеют предельно малую «ширину канала»: 8,5, 11,25 и 5,63 мм соответственно.

Следует обратить внимание, что в многоканальных модификациях НПСИ-ГРПТ2 и НПСИ-ГРТП4 все каналы полностью не связаны между собой. С этой точки зрения работоспособность одного из каналов никак не влияет на работу других каналов. Вот почему один из аргументов против многоканальных преобразователей - «сгорает один канал, а перестает работать весь многоканальный прибор, и это резко понижает безопасность и устойчивость системы» - не работает. Зато такое важное положительное свойство многоканальных систем, как более низкая «цена канала», проявляется в полной мере. Двух- и четырехканальные модификации преобразователей снабжены винтовыми разъемными соединителями, которые облегчают их монтаж, техническое обслуживание и ремонт (замену).

В ряде задач требуется подать сигнал 4…20 мА на несколько гальванически изолированных приемников. Для этого можно применить как одноканальные преобразователи НПСИ-ГРТП1, так и многоканальные НПСИ-ГРТП2 и НПСИ-ГРТП4. Схемы соединения приведены на рис. 5.



Рис. 5. Применение одноканальных и двухканальных преобразователей для размножения сигнала «1 в 2»

Для удобства монтажа и обслуживания подключение внешних соединений в одноканальной модификации производится пружинными клеммными соединителями, а в двух- и четырехканальных - разъемными винтовыми соединителями.



Рис. 6. Подключение внешних линий с помощью разъемных клеммных соединителей

Таким образом, новую линейку преобразователей для разделения токовой петли 4…20 мА, представленную НПФ «КонтрАвт», можно вполне обоснованно назвать компактным и экономичным решением, способным конкурировать по совокупности характеристик с соответствующими импортными аналогами. Преобразователи предоставляются в опытную эксплуатацию, поэтому пользователь имеет возможность опробовать устройства в работе, оценить их характеристики и принять взвешенное решение о целесообразности их применения.
____________________________

Новое на сайте

>

Самое популярное