Домой Цветы Что такое паренхима в биологии. Основная ткань растений: полная характеристика Какую функцию не выполняют клетки паренхимы

Что такое паренхима в биологии. Основная ткань растений: полная характеристика Какую функцию не выполняют клетки паренхимы

Паренхима - основная ткань, составляющая большую часть тела растений, внутри которой дифференцируются высокоспециализированные ткани. Термин «основные ткани», предложенный немецким ботаником Ю. Саксом, стал общепринятым. Ткани являются основ­ными потому, что в ходе онтогенеза, при развитии из семени пророс­тка, служат монолитной основой апексов, из которых развиваются разнообразные по структуре органы растений. Спектр функций основ­ных тканей может меняться благодаря физиологической пластично­сти паренхимных клеток. Однако на всех уровнях специализации основные ткани сохраняют свои характерные черты. Клетки паренхимы всегда живые, изодиаметрической формы. Оболочки тонкие, с про­стыми порами, реже утолщенные и одревесневшие. В типичных слу­чаях хорошо развиты межклетники. Клетки основной паренхимы не теряют способности к делению и могут возвращаться к меристемати-ческому состоянию, например, при заживлении ран, регенерации, образовании придаточных корней. Выделяют несколько групп основ­ных тканей.

АССИМИЛЯЦИОННЫЕ, ИЛИ ХЛОРОФИЛЛОНОСНЫЕ, ТКАНИ (ХЛОРЕНХИМА)

Главная функция ассимиляционных тканей - фотосинтез. Имен­но в этих тканях синтезируется основная масса органических веществ и связывается энергия, получаемая растениями от солнца.

Клетки хлоренхимы тонкостенны, содержат хлоропласты, которые располагаются одним слоем вдоль стенок, не затемняя друг дру­га. Хлоренхима, обращенная к солнечной стороне, имеет продолго­ватой формы клетки и называется столбчатой, или палисадной. В этом типе хлоренхимы активно идут реакции фотосинтеза. С тыльной стороны клетки хлоренхимы округлой формы, с большими межклет­никами, называются губчатой хлоренхимой. Хлоренхима залегает не­посредственно под эпидермисом, что обеспечивает хорошее освеще­ние и газообмен в стебле. Просвечивая сквозь прозрачную кожицу, хлоренхима окрашивает в зеленый цвет молодые части растений. Иногда она располагается в глубине стебля вокруг пучков или более поверхностно под механической тканью. В этом случае ее функция связана со снабжением внутренних тканей стебля и, в первую очередь, живых клеток проводящих пучков кислородом, который образуется в процессе фотосинтеза. В редких случаях хлоренхима образуется в корнях, доступных свету (в воздушных, в корнях водных растений).

ЗАПАСАЮЩИЕ ТКАНИ

Вещества, поступающие из внешней среды или синтезированные растением, могут запасаться. Массовое отложение органических веществ происходит только в специализированных запасающих тканях, являющихся основным типом тканей ряда органов.

Запасные вещества накапливаются в определенных частях растения: у деревьев и кустарников - в паренхимных клетках коры, сердце­винных лучей, древесинной паренхимы стволов и корней, а у молодых побегов - в клетках сердцевины. У многолетних травянистых растений имеются специализированные органы запаса - корнеплоды, луковицы, клубни, корневища. Накопленные летом запасы органических веществ расходуются весной на образование молодых побегов и корней. В пло­дах и семенах запасающая паренхима составляет основу органов.

Специализация запасающих тканей определяется в значительной степени составом аккумулируемых продуктов. Вещества накапливаются в растворимом или твердом состоянии. В семенах откладывают­ся высокомолекулярные запасные соединения в виде твердых зерен (белки, крахмал); жиры представлены гидрофобными липидами. Чаще всего в запасающих тканях семян присутствуют одновременно два (белок и крахмал или белок и жиры) или все три типа основных запасных веществ. В клубнях, корневищах, околоплодниках уровень оводненности лишь незначительно изменяется по мере созревания, поэтому здесь редко накапливаются белки и липиды. В этих органах запасными продуктами обычно являются высокомолекулярные уг­леводы (крахмал, инулин, гемицеллюлоза) или водорастворимые са­хара (корнеплоды свеклы, моркови, мякоть плодов, арбуза).

Различие химической природы запасных веществ приводит к специализации тканей. Так, отложение крахмала происходит в амилопластах, местом запасания белков и сахаров служат вакуоли, липидные капли накапливаются непосредственно в гиалоплазме, а гемицеллюлоза - в клеточной оболочке.

Растения, периодически испытывающие недостаток воды, иногда образуют особые водоносные запасающие ткани. Чаще всего эти ткани состоят из крупных тонкостенных паренхимных клеток, которые за­полнены смесью слизи и воды. Водоносная паренхима встречается в стеблях и листьях растений-суккулентов (кактусы, агавы, алоэ).

ВОЗДУХОНОСНЫЕ ТКАНИ (АЭРЕНХИМА)

Во всех органах и тканях растений имеются межклетники, осуществляющие газообмен и сообщающиеся с внешней средой через отверстия покровных тканей. В процессе жизнедеятельности (фотосинтез, дыхание, испарение) растения выделяют в межклетники одни газы и поглощают другие, поэтому газовый состав в межклетниках сильно отличается от атмосферного. Характер циркуляции газов по межклетникам, обеспечивающий нормальную жизнедеятельность, обусловлен типом растения, условиями обитания. Во многих случаях в растениях образуется ткань с крупными межклетниками и пре­обладающей функцией газообмена (вентиляции). Такая ткань называется аэренхимой.

Рис. 15. Воздухоносная паренхима в стебле рдеста блестящего:

1 - кутикула, 2 - эпидермис, 3 - клетки воздухоносной паренхимы, 4 - воздухоносные полости, 5 – эндодерма

Аэренхима бывает разнообразной конфигурации. В одних случаях крупные паренхимные клетки звездчатой формы образуют перемычки и между ними остаются большие полости, заполненные воз­духом (камыш, ситник), в других - небольшого размера паренхимные клетки, располагаясь цепочкой, окружают воздушную полость (рдест, кубышка, белокрыльник).

Аэренхима хорошо развита у болотных и водных растений, у которых затруднен нормальный газообмен. Помимо аэрации, воздушные полости внутри стебля и в листьях позволяют растению свободно плавать в воде. Аэренхима выполняет также и механическую функцию: ее структура, напоминающая пчелиные соты, наиболее плотно и экономно обеспечивает прочность и эластичность органов тела рас­тений в водной среде.


ВСАСЫВАЮЩИЕ ТКАНИ

ВЫДЕЛИТЕЛЬНЫЕ ТКАНИ

В отличие от животных, обмен у которых всегда связан с непрерывным выделением азотистых продуктов распада, у растений происходит реутилизация, или накопление, как поступающих, так и син­тезируемых веществ в течение всей жизни с частичными потерями в виде листопада, веткопада, слущивания наружных слоев корки и т. п. Мно­гие древесные растения в течение сотен лет сохраняют органические вещества в виде отмерших тканей, не прерывая роста и наращивая фитомассу.

Рис. 16. Выделительные ткани различных растений:

А - уфиро масличная наружная железа на листе петрушки, Б - выделительный ход в корне петрушки на поперечном срезе, видны эпителиальные клетки, окружающие выделительный ход, В - идиобласты с эфирным маслом, в центральной части черешка листа герани, Г - смоляной ход в древесине сосны эльдарской на продольно-тангентальном срезе, Д - вместилище эфирного масла в кожуре плода мандарина, Е - группа клеток в листе бука кавказского с дубильными веществами (1 и 2); указанные клетки размещены вокруг проводящего пучка (3) поперек листовой пластинки от нижнего до верхнего эпидермиса

Классификация секреторных (выделительных) комплексов основана на их расположении. Одни располагаются на поверхности над­земных частей растения и выделяют секрет наружу - наружные вы­делительные ткани; другие локализованы внутри органов, не связаны непосредственно с наружной средой и имеют вид каналов (ходов) или полостей - внутренние выделительные ткани.

Основные ткани составляют большую часть тела растения. По происхождению основные ткани почти всегда первичны, образуются из апикальных меристем. Они состоят из живых паренхимных клеток, чаще почти изодиаметрических, тонкостенных, с простыми порами. Основная паренхима способна возвращаться к меристематической активности, например при заживлении ран, образовании придаточных корней и побегов. Основные ткани связаны с синтезом, накоплением и использованием органических веществ. В зависимости от выполняемой функции различают основную (типичную), ассимиляционную, запасающую и воздухоносную основные ткани. Основная паренхима не имеет специфических, строго определенных функций. Она располагается внутри тела растения достаточнокрупными массивами. Типичная основная паренхима заполняет сердцевину стебля, внутренние слои коры стебля и корня. Ее клетки образуют вертикальные и горизонтальные тяжи (лучи), по которым осуществляется радиальный транспорт веществ. Из основной паренхимы могут возникать вторичные меристемы. Ассимиляционная паренхима (хлоренхима). Главная ее функция -- фотосинтез. Хлоренхима расположена в надземных органах, обычно под эпидермой. Особенно хорошо развита в листьях, меньше -- в молодых стеблях. Характерно наличие межклетников, облегчающих газообмен. Клетки тонкостенные, в постенном слое цитоплазмы много хлоропластов. Общий объем их может достигать 70...80 % объема протопласта. Запасающая паренхима. Служит местом отложения избыточных в данный период питательных веществ. Запасающие ткани состоят из живых тонкостенных клеток. Они могут содержать много лейкопластов (крахмал), крупные вакуоли (сахара, инулин), много мелких вакуолей, образующих алейроновые зерна (белок), толстые клеточные стенки (гемицеллюлозы в семенах финиковой пальмы), жировые клетки. В этих тканях накапливаются многие растительные продукты, используемые человеком. У культурных пищевых растений обычно гипертрофировано развитие запасающей паренхимы. Запасающие ткани широко распространены, развиваются в самых разных органах. Их можно обнаружить в клубнях картофеля, корнеплодах свеклы, моркови, луковицах лука, зерновках злаков, в семенах подсолнечника, клещевины, а также в стеблях сахарного тростника, корневищах, корнях. У растений засушливых мест -- суккулентов (агавы, алоэ, кактусы) -- в клетках запасающей паренхимы накапливается вода, также как у растений засоленных местообитаний (солерос). Крупные водоносные клетки есть в стеблях злаков. В вакуолях водоносных клеток имеются слизистые вещества с высокой водоудерживающей способностью. Воздухоносная паренхима (аэренхима). Выполняет вентиляционные, отчасти дыхательные функции, обеспечивая ткани кисло родом. Состоит из клеток различной формы (например, звездчатых) и крупных межклетников. Хорошо развита в органах растений, погруженных в воду (в цветоножках кувшинки, в стеблях пушицы, белокрыльника, рдеста, в корнях камыша). Под этим названием объединяют ткани, составляющие основную массу различных органов растения. Их называют т акже выполняющими, основной паренхимой или просто паренхимой. Основная ткань состоит из живых паренхимных клеток с тонкими стенками. Между клетками имеются межклетники. Паренхимные клетки выполняют разнообразные функции: фотосинтез, хранение запасных продуктов, поглощение веществ и др. Выделяют следующие основные ткани. Ассимиляционная, или хлорофиллоносная, паренхима (хлоренхима) расположена в листьях и коре молодых стеблей. Клетки ассимиляционной паренхимы содержат хлоропласты и осуществляют фотосинтез. Строение и функции. Главная функция ассимиляционных тканей -- фотосинтез. Именно в этих тканях синтезируется основная масса органических веществ и связывается энергия, получаемая Землей от Солнца.

Процесс фотосинтеза определяет характер всей биосферы нашей планеты и делает ее пригодной для жизни человека. Ассимиляционные ткани имеют относительно простое строение и состоят из довольно однородных тонкостенных паренхимных клеток. В их постенном слое цитоплазмы содержатся многочисленные хлоропласты. Такое расположение имеет определенный приспособительный смысл: в клетке умещается большое число хлоропластов, которые в наименьшей мере затеняют друг друга и приближены к источнику СО 2 , поступающего извне. В зависимости от условий освещения и газообмена хлоропласты легко перемещаются (что хорошо видно в листьях элодеи). В некоторых случаях увеличение поверхности постенного слоя цитоплазмы, а следовательно, и числа хлоропластов в клетке достигается тем, что оболочка образует складки, вдающиеся клетки, как в хвоинках сосны. Как показали наблюдения с помощью электронного микроскопа и математические расчеты, в растущей клетке хлоренхимы число хлоропластов быстро увеличивается в 5 и более раз; увеличивается т акже число рибосом и тилакоидов в них. Общий объем хлоропластов может достигать 70--80% всего объема клеточного протопласта. После того как фотосинтез достиг максимума, во взрослой клетке наблюдаются изменения обратного характера, определяющие старение. Однако если в растущих клетках хлоропласты формируются у всех растений в течение 5-- 10 дней, то продолжительность их существования и скорость старения могут колебаться от немногих недель (у трав, листопадных деревьев) до нескольких лет (например, у вечнозеленых растений). Расположение в теле растения. Ассимиляционные ткани в теле растения чаще всего залегают непосредственно под прозрачной кожицей (эпидермой), что обеспечивает газообмен и хорошее освещение. В хлоренхиме находятся большие межклетники, облегчающие циркуляцию газов. Просвечивая сквозь прозрачную эпидерму, хлоренхима придает зеленый цвет листьям и молодым стеблям. Иногда хлоренхима находится в глубине стебля, под механической тканью или еще глубже,вокруг проводящих пучков. В последнем случае, вероятно, главное значение имеет не синтез углеводов, а выделение кислорода в процессе дыхания. Этот кислород потребляется в процессе дыхания внутренними тканями стебля, в первую очередь живыми клетками проводящих пучков, дыхание которых необходимо для интенсивной деятельности, связанной с проведением веществ. Хлоренхима имеется также в органах цветка, в плодах. В редких случаях она образуется и в корнях, доступных свету (в воздушных корнях, в корнях водных растений). Запасающая паренхима находится преимущественно в сердцевине стебля и коре корня, а также в органах размножения -- семенах, плодах, луковицах, клубнях и др. К запасающей ткани можно отнести также водозапасающую ткань растений засушливых местообитаний (кактусов, алоэ и др.). Строение и функции. Вещества, синтезированные растением или воспринятые извне, могут откладываться в виде запасов. К накоплению запасных веществ способны все живые клетки. О запасающих тканях говорят в тех случаях, когда запасающая функция выступает на первое место. Запасающие ткани широко распространены у многих растений и в самых различных органах. Запасаются они в семенах и служат для будущего развития зародыша. У однолетних растений, проходящих весь жизненный цикл за один сезон, обычно не бывает значительных отложений веществ в вегетативных органах. Многолетние растения накапливают запасы веществ как в обычных корнях и побегах, так и в специализированных органах -- клубнях, корневищах, луковицах, расходуя эти запасы после периодов покоя. Запасающие ткани состоят из живых, чаще всего паренхимных клеток. Типы запасных веществ. Вещества накапливаются в твердом или растворенном виде. В виде твердых зерен откладываются крахмал и запасные белки. У некоторых растений запасным веществом могут служить гемицеллюлозы, входящие в состав оболочек. Например, много гемицеллюлоз содержат толстые клеточные оболочки в семенах финиковой пальмы. При прорастании семени гемицеллюлозы под действием ферментов превращаются в сахара, мобилизуемые проростком.

В растворенном виде накапливаются сахара, например в корнеплодах свеклы, моркови, в луковицах лука, в стеблях сахарного тростника, в мякоти плодов винограда, арбуза и т. д.

Растения, периодически испытывающие недостаток воды, иногда образуют особые водоносные запасающие ткани. Чаще всего эти ткани состоят из крупных тонкостенных паренхимных клеток, которые содержат слизи, помогающие удерживать воду. Поглощающая паренхима наиболее типично представлена во всасывающей зоне корня слоем клеток с корневыми волосками (эпиблема). Аэренхима особенно хорошо выр ажен а в подводных органах растений, в воздушных и дыхательных корнях. Она имеет крупные межклетники, соединенные между собой в одну вентиляционную сеть. Функции межклетников. Во всех органах и почти--во всех тканях имеются межклетники, образующие связные системы. Несмотря на то что системы межклетников сообщаются с внешней атмосферой через многочисленные проходные отверстия в покровных тканях, газовый состав в межклетниках сильно отличается от газового состава атмосферы, так как клетки в процессе своей жизнедеятельности (фотосинтеза, дыхания, испарения) выделяют в межклетники одни газы и поглощают другие. Условия обитания и общая организация того или иного растения определяют характер циркуляции газов по межклетникам, необходимый для нормальной жизни. Довольно часто в растениях образуется ткань с очень большими межклетниками. Строение аэренхимы. Чаще всего она представляет собой своеобразную модификацию паренхимы. Однако клетки в ней могут иметь самую различную форму, и крупные межклетники воз никают при различных сочетаниях клеток. В цветоножке кубышки аэренхима составлена округлыми клетками, а в стебле ситника -- звездчатыми. Иногда в состав аэренхимы входят механические, выделительные и другие клетки. Особенно сильного развития аэренхима достигает у растений, которые обитают в среде, затрудняющей нормальный газообмен и снабжение внутренних тканей кислородом, например у растений, погруженных в воду или растущих на болотной почве. Прямыми экспериментами было показано, что кислород из н ад земных органов поступает в корневища и корни по межклетникам. Всасывающие ткани, играют важную роль в жизни растений. Через них в тело растения из внешней среды поступают вода и растворенные в ней вещества. Они очень различны по структуре и по распространенности среди высших растений. Наибольшее значение имеет ризодерма (греч. риза -- корень; дерма -- кожа) -- наружный слой клеток на всех молодых корнях. Через ризодерму в корень всасывается из почвы вода и поглощаются растворенные в ней вещества. Остальные типы всасывающих тканей встречаются или в каких-то определенных систематических группах, или их наличие связано с приспособлением к особым условиям существования. Поэтому они будут рассмотрены более подробно при описании соответствующих органов или групп растений. Веламен особенно хорошо развит на воздушных корнях орхидей. Их можно видеть на нижней стороне плавающих листьев кубышки.

Ткани — это структуры, состоящие из множества похожих клеток, которые объединены общими функциями. Все многоклеточные животные и растения (за исключением водорослей) состоят из различных типов тканей.

Какими бывают ткани?

У разделяются на четыре типа:

  • эпителиальные;
  • мышечные;
  • соединительные;
  • нервная ткань.

Все они, за исключением нервной, подразделяются, в свою очередь, на виды. Так, эпителий может быть кубическим, плоским, цилиндрическим, реснитчатым и чувствительным. Мышечные ткани делятся на поперечно-полосатую, гладкую и сердечную. Группа соединительных объединяет жировую, плотную волокнистую, рыхлую волокнистую, ретикулярную, костную и хрящевую, кровь и лимфу.

Растительные ткани бывают таких типов:

  • образовательные;
  • проводящие;
  • покровные;
  • выделительная (секреторная);
  • основная ткань (паренхима).

Все они делятся на подгруппы. Так, к относятся верхушечные, вставочные, боковые и раневые. Проводящие делятся на ксилему и флоэму. объединяют три вида: эпидерма, пробка и корка. Механическая делится на колленхиму и склеренхиму. Секреторная ткань не делится на виды. А основная ткань растений, как и все другие, бывает нескольких видов. Рассмотрим их подробнее.

Какой бывает основная ткань растений?

Существует четыре ее вида. Так, основная ткань бывает:

  • водоносной;
  • воздухоносной;
  • ассимиляционной;
  • запасающей.

Они обладают подобным строением, но имеют и некоторые отличия друг от друга. Функции основных тканей этих четырех видов тоже несколько различны.

Строение основной ткани: общая характеристика

Основная ткань всех четырех видов состоит из живых клеток с тонкими стенками. Ткани этого типа называются так потому, что они составляют основу всех жизненно важных органов растения. Теперь давайте рассмотрим функции и строение основных тканей каждого вида по отдельности более подробно.

Водоносная ткань: строение и функции

Основная ткань данного вида построена из крупных клеток, обладающих тонкими стенками. В вакуолях клеток этой ткани содержится специальное слизистое вещество, которое предназначено для того, чтобы удерживать влагу.

Функции водоносной ткани заключаются в том, что она запасает влагу.

Находится водоносная паренхима в стеблях и листьях таких растений, как кактусы, агава, алоэ и других, растущих в засушливом климате. Благодаря такой ткани растение может запастись водой на случай, если дождя долго не будет.

Особенности воздухоносной паренхимы

Клетки основной ткани данного вида находятся на расстоянии друг от друга. Между ними находятся межклетники, в которых запасается воздух.

Функция этой паренхимы заключается в том, что она снабжает клетки других тканей растения углекислым газом и кислородом.

Присутствует такая ткань в основном в организме болотных и водных растений. У сухопутных она встречается редко.

Ассимиляционная паренхима: строение и функции

Она состоит из средних по размеру клеток с тонкими стенками.

Внутри клеток ассимиляционной ткани в большом количестве находятся хлоропласты — органоиды, отвечающие за фотосинтез.

Эти органоиды обладают двумя мембранами. Внутри хлоропластов находятся тилакоиды — дисковидные мешочки с содержащимися в них ферментами. Они собраны в стопки — граны. Последние соединяются между собой с помощью ламелл — вытянутых структур, похожих на тилакоиды. Кроме того, в хлоропластах находятся крахмальные включения, рибосомы, необходимые для синтеза белков, собственная РНК и ДНК.

Процесс фотосинтеза — выработки органических веществ из неорганических под действием ферментов и солнечной энергии — происходит именно в тилакоидах. Основной фермент, который обеспечивает эти химические реакции, называется хлорофилл. Это вещество зеленого цвета (именно благодаря ему листья и стебли растений обладают такой окраской).

Итак, функции основных тканей этого вида — упомянутый выше фотосинтез, а также газообмен.

Ассимиляционная ткань наиболее развита в листьях и верхних слоях стеблей травянистых растений. Также она присутствует в плодах зеленого цвета. Ассимиляционная ткань находится не на самой поверхности листьев и стеблей, а под прозрачной защитной кожицей.

Особенности запасающей паренхимы

Клетки этой ткани характеризуются как средние по размеру. Их стенки обычно тонкие, но могут быть и утолщенными.

Функция запасающей паренхимы — хранение питательных веществ. В качестве таковых в большинстве случаев служит крахмал, инулин, а также другие углеводы, а иногда — белки, аминокислоты и жиры.

Находится ткань такого типа в зародышах семян однолетних растений, а также в эндосперме. У многолетних трав, кустов, цветов и деревьев запасающая ткань может находиться в луковицах, клубнях, корнеплодах, а также в сердцевине стебля.

Заключение

Основная ткань — самая важная в организме растения, так как она является основой всех органов. Ткани данного типа обеспечивают все жизненно необходимые процессы, в том числе фотосинтез и газообмен. Также основные ткани отвечают за создание запасов органических веществ (в наибольшем количестве это крахмал) в самих растениях, а также в их семенах. Кроме питательных органических соединений, в паренхиме может запасаться воздух и вода. Воздухоносными и водоносными тканями обладают не все растения. Первые присутствуют только у пустынных, а вторые — у болотных разновидностей.

Наибольший объём в растении занимают основные ткани или паренхимы. Они, защищены снаружи покровными тканями, составляют основу органов растений и заполняют пространство между проводящими и механическими ткаными. Паренхима в виде сплошной массы клеток встречается в стебле, корне, листьях и мякоти плодов.

Паренхимы – ткани которые составляют основу органов растений – стебли, корни, листья и мякоть плодов, и занимают пространство между механическими и проводящими тканями. Паренхимы обычно первичные по происхождению и образуются из клеток апикальных меристем. Паренхимы в процессе эволюции специализировались и приобрели различия в строения. Они выполняют различные функции – фотосинтез, хранение запасных веществ, поглощение и проведение веществ и аэрация.

В зависимости от выполняемых функций существует 4 типа паренхимных тканей:

1) основная - заполняет сердцевину стебля, кору стебля и корня, образует вертикальные и радиальные тяжи – лучи, внутри осевых органов растений, по которым осуществляется радиальный транспорт запасных веществ и воды; 2) ассимиляционная (хлоренхима) - располагается в листьях и в меньшей степени в молодых стеблях под эпидермой. Клетки содержат большое количество хлоропластов (до 80% объёма клеток); 3) запасающая – формируется в подземных органах – клубнях, корневищах, корнях, луковицах, корнеплодах, а также в семенах, ее клетки содержат много лейкопластов (запасают крахмал) крупные вакуоли (содержат запасные сахара) и мелкие вакуоли (содержат мелкие вакуоли – алейроновые зерна); 4) воздухоносная (аэренхима) – развивается во всех органах растений, произрастающих в условиях избыточного увлажнения как резервуар кислорода, состоит из клеток различной формы и крупных межклетников, воздух в которых помогает листьям держаться на поверхности.

Проводящие ткани

Пронизывают все тело растения, соединяя все органы друг с другом, и способствуют проведению по телу растения воды с растворенными минеральными и органическими веществами. Появились у растения в связи с выходом их на сушу и с необходимостью проводить по телу воду и различные вещества. В соответствии с этими функциями клетки проводящих тканей имеют форму вытянутых трубочек, поперечные стенки которых могут полностью отсутствовать или они пронизаны многочисленными отверстиями Существует 2 комплекса проводящих тканей: I - Ксилема и II - Флоэма, Ксилема (древесина) - ткань, которая обеспечивает восходящий ток воды и минеральных веществ, которые всасываются корнями из почвы и проводятся во все органы. Весной по ксилеме поднимается пасока, состоящая из органических веществ. Флоэма (луб) - обеспечивает нисходящий ток органических веществ (ассимилятов) - белков и углеводов, растворенных в воде.

По происхождению ксилема и флоэма бывают первичными, т.к. образуются из клеток первичной меристемы - прокамбия, и вторичными, т.к. образуются из клеток вторичной меристемы - камбия.

Ксилема (древесина) трахеид и сосудов, клеток паренхимы и механических волокон (древесинные волокна). Основные функции ксилемы - проведение, а также опорная и запасающая Трахеиды - мертвые удлиненные (прозенхимные) клетки со скошенными поперечными перегородками и одревесневшими клеточными стенками. Клеточные стенки пронизаны окаймленными порами (у хвойных с торусом). Встречаются у всех высших растений, но у хвощей, плаунов, папоротников и голосеменных являются единственной проводящей тканью. Сосуды - более совершенные проводящие элементы, которые представляют собой вертикальный ряд мертвых трубчатых клеток с одревесневшими стенками и отверстием вместо поперечной перегородки. По характеру утолщения и одревеснения клеточных стенок (лигнин) различают кольчатые, спиральные, лестничные, сетчатые и пористые сосуды и трахеиды Кольчатые, а также спиральные сосуды и трахеиды легко растягиваются, они свойственны молодым растущим органам растений. Сетчатые и пористые сосуды менее гибкие, они образуются в завершивших свой рост частях растений. При повреждениях органов сосуды закупориваются тилами.

Флоэма (луб) - комплекс тканей, состоящий из проводящих элементов - ситовидных клеток и ситовидных, трубок, а также клеток паренхимы и механических волокон (лубяные волокна). Поэтому флоэма, также как и ксилема, выполняет не только функцию проведения, но еще запасающую и опорную функции. Ситовидные клетки - это живые вытянутые клетки с заостренными концам по боковым и поперечным стенкам которых расположены ситовидные поля. Присуще хвощам, плаунам, папоротникам и голосеменным растениям. Ситовидные трубки - вертикальный ряд жилых трубчатых клеток, поперечная перегородка которых имеет многочисленные перфорации и называется ситовидная пластинка. Через эти отверстия проходят цитоплазматические тяжи. В протопласте зрелого членика ситовидной трубки имеются митохондрии и каналы ЭПР (а вакуоли, ядро и рибосомы разрушаются). Каждый членик сопровождается клетками спутницами, протопласт которых содержит все органеллы и связывается с ситовидной трубкой через плазмодесмы. Осенью ситовидные пластинки закупориваются слоем каллезы.

Ксилема и флоэма в растении располагаются рядом и образуют проводящие пучки, развитие которых начинается под конусом нарастания из клеток прокамбия. Проводящие пучки часто окружены механической тканью, которая повышает их прочность. Выделяют закрытые и открытые проводящие пучки. Закрытые - пучки, которые закончили свой рост, т.к. в них нет меристематических клеток (весь прокамбий дифференцируется в клетки первичной ксилемы и первичной флоэмы). Развиваются у однодольных, некоторых двудольных и папоротников. Открытые - пучки, которые способны для дальнейшего роста, т.к. в них имеется камбий (вторичная меристема), дающий начало вторичным ксилеме и флоэме. Развиваются у большинства двудольных растений. По взаиморасположению ксилемы и флоэмы различают 4 типа проводящих пучков: I) Коллатеральный, открытый и закрытый (флоэма располагается к наружной поверхности органов, а ксилема - к центру); 2) Биколлатеральный, открытый (флоэма располагается к наружной поверхности органов и к их центру, а между ними формируется ксилема), 3) Концентрический, закрытый и открытый (ксилема сплошным кольцом окружает флоэму или наоборот), 4) Радиальный, закрытый (ксилема образуется радиальными лучами, между которыми находятся участки флоэмы).

Выделительные ткани

Служат для накопления и выведения из организма конечных продуктов обмена веществ, которые не участвуют в дальнейшем метаболизме клетки. Клетки выделительных тканей паренхимные, тонкостенные, с большим количеством ЭПР и АГ, которые участвуют в образовании мембран, а также клеточной стенки, секреторных волосков и желёзок. С помощью этих образований происходит выведение (секреция) таких веществ - как эфирные масла, смолы, бальзамы, соли, сахара и др. Различают выделительные ткани внутренней и внешней секреции. К тканям внутренней секреции относятся: секреторные вместилища - схизогенные (смоляные ходы) и лизигенные (плоды цитрусовых), а также млечники, заполненные латексом белого, оранжевого или красного цвета (чистотел, одуванчик, цикорий и др.). К тканям внешней секреции относятся: железистые волоски и железки, которые выделяют эфирные масла или соли (мята, черная смородина, полынь); нектарники, секретирующие нектар - водный раствор сахаров с примесью белков, спиртов и ароматических веществ (липа, клевер, гречиха и др.); гидатоды, выделяющие воду и растворенные в ней соли в капельно - жидком состоянии (манжетка, земляника и др); переваривающие железки, выделяющие пищеварительные ферменты пепсин и трипсин (росянка, жирянка, венерина мухоловка и др).

МОРФОЛОГИЯ И АНАТОМИЯ


Похожая информация.


Ткани растений: Меристема, Паренхима и Покровные

Ткани растений

Различают такие типы растительных тканей: образовательные (меристема), покровные, основные (паренхима), проводящие, механические и выделительные. Простые ткани состоят из одинаковых по форме и функциям клеток. Это – образовательные, основные, механические ткани. Сложные ткани состоят из клеток, неодинаковых по форме и функциям. Например, покровные, проводящие. В процессе эволюции наиболее совершенные ткани сформировались у покрытосеменных растений.

Образовательная или Меристема (от греч. меристос – делимый). Клетки живые, тонкостенные, имеют тонкие клеточные стенки с незначительным количеством целлюлозы, с большим ядром, часто делятся. Дают начало почти всем клеткам других типов тканей и обеспечивают рост растения на протяжении всей жизни. При каждом делении одна из новообразовавшихся клеток остается меристематической, а вторая превращается в клетку какой-нибудь ткани. Деление регулируется фитогормонами.

Виды образовательных тканей

По месту расположения различают верхушечную, вставочную и боковую меристемы. Верхушечная (апикальная ) находится в зоне деления корня и конусе нарастания на верхушке побега. Она обеспечивает их рост в длину. Закладывается в теле зародыша. На каждом боковом побеге и боковом корне образуется собственная верхушечная меристема.

Боковая находится внутри стебля или корня, охватывает их центральную часть. Обеспечивает рост этих органов в толщину. Например, камбий встречается преимущественно у деревьев, иногда – у травянистых.

Вставочная (интеркалярная) содержится в основе междоузлий стебля у некоторых растений (злаковых, хвощей) и обеспечивает вставочный рост. Эта меристема перестает существовать и превращается в постоянные ткани, когда заканчивается рост стебельного участка или листка.

Различают также первичную и вторичную меристемы. Первичная меристема развивается в зародыше, обусловливает рост и развитие проростка. Закладывается она на верхушках зародышевых корешка и стебелька. Вторичная образуется из первичной и закладывается позднее. Вторичные меристемы обеспечивают вторичный рост в толщину стебля и корня (камбий и феллоген). Из клеток основной ткани или эпидермы возникает пробковый камбий. Среди вторичных меристем различают раневую , которая дает начало особой защитной ткани в местах повреждения.


Основная ткань или паренхима (от греч. паренхима – налитое рядом). Составляет большую часть всех органов растений. Она заполняет промежутки между проводящими и механическими тканями, имеется во всех органах. Состоит паренхима из живых клеток, имеющих относительно тонкие стенки. Они могут иметь большие промежутки – межклетники . Отдельные клетки паренхимы могут выполнять секреторную функцию. При определенных условиях клетки паренхимы могут восстанавливать способность к делению и образуют пробковый камбий и т. п.

Виды основной ткани

Различают: ассимиляционную, запасающую, воздухоносную, водоносную паренхимы.

Ассимиляционная , или хлорофиллоносная (хлоренхима) . В ней осуществляется фотосинтез. Состоит из живых клеток, содержащих хлоропласты. Встречается в зеленых органах растения, преимущественно в листьях. В листьях ее называют еще мезофилл .

Запасающая . Встречается во всех органах растения (стебель, корень, корневище и т. п.). Иногда образует отдельные пласты. Запасающую паренхиму составляют бесцветные клетки с большим количеством включений. В клетках расположены лейкопласты, в паренхиме цветков, плодов – иногда еще и хромопласты. Запасающие вещества – углеводы, белки, жиры.

Воздухоносная , или аэренхима (от греч. аэр – воздух). Эта ткань имеет большие межклетники, заполненные воздухом. Выполняет функции газообмена и перенесения газов в разные ткани. Характерна преимущественно для водных растений.

Водоносная . Клетки имеют вакуоли, способствующие удержанию влаги. Характерна для растений, которые растут в засушливых местах.

Они отделяют органы растений от внешней среды. Основная функция – это защита растений от ее неблагоприятного воздействия. Различают первичную (эпидерма, или кожица) и вторичные.

Эпидерма

Эпидерма (от греч. эпи – над, сверху и дерма – кожа) состоит из одного или нескольких слоев бесцветных живых клеток. Образуется из апикальной (верхушечной) меристемы. Клетки плотно прилегают одна к другой. Они некоторое время сохраняют способность к делению. Их внешняя стенка утолщена, может быть пропитана минеральными веществами. У хвощей, например, откладывается двуоксид кремния (Si0 2). Извне эпидерма покрыта слоем кутикулы (от лат. cuticula – кожа), которая является продуктом секреции эпидермальных клеток и состоит из липопротеидного вещества кутина и полисахарида пектина. Иногда эпидерма покрыта слоем воска разной толщины. Кутикула предупреждает интенсивное испарение воды через ее поверхность, поэтому особенно хорошо развита у растений, которые растут в засушливом климате.

В эпидермальных клетках отсутствуют хлоропласты, но есть лейкопласты. Хлоропласты содержат особые клетки эпидермы – замыкающие клетки устьиц . Устьица окружены опорными клетками . Замыкающие клетки имеют бобовидную форму, окружают устьичные щели . Под щелью расположена большая полость, которая называется дыхательной . Она окружена клетками мезофилла листа. Устьица расположены преимущественно на листьях, иногда на стебле.

Стенки замыкающих клеток утолщены неравномерно. Те стенки, которые формируют устьичную щель, значительно утолщены по сравнению с другими. Размеры щели могут регулироваться в зависимости от интенсивности процессов фотосинтеза. При солнечном освещении в хлоропластах замыкающих клеток происходит интенсивно процесс фотосинтеза. Насыщение клеток продуктами фотосинтеза (крахмалом, сахарами) ведет к активному поступлению в клетку ионов калия, вследствие чего концентрация клеточного сока повышается. Возникает различие концентраций клеточного сока опорных и замыкающих клеток. Вода из опорных клеток поступает в замыкающие клетки, что приводит к увеличению их объема, возрастанию тургора. Замыкающие клетки приобретают выраженную бобовидную форму и устьичная щель открывается. При понижении интенсивности освещения уменьшается процесс образования сахаров, крахмала в замыкающих клетках. Ионы калия не поступают. Концентрация клеточного сока в замыкающих клетках по сравнению с опорными падает. Вода путем осмоса выходит из замыкающих клеток, и тургор снижается, что ведет к закрытию устьичной щели.

Устьичные клетки расположены на нижней стороне листьев. У водных растений, листья которых плавают, устьица расположены на внешней поверхности листа. Основные функции устьиц – газообмен и транспирация (испарение воды).

Часто из эпидермы развиваются одно- или многоклеточные волоски. Они имеют разнообразное строение и выполняют разные функции (защищают растение от перегревания, от поедания животными, выполняют секреторную функцию), могут быть живыми или мертвыми.

Покровная ткань всасывательной зоны корня имеет корневые волоски и называется эпиблемой , или ризодермой (от греч. ризь – корень). Корневые волоски поглощают воду с минеральными веществами.

Вторичная покровная ткань

К ней преимущественно относятся пробка и кора . Вторичная покровная ткань заменяет эпидерму или возникает в глубинных слоях коры. Осенью зеленая окраска побегов заменяется на бурую. Из части клеток основной ткани, которые входят в состав коры и восстанавливают способность к делению, образуется слой вторичной меристемы – пробковый камбий или феллоген . Он производит наружу пробку – слой клеток, которые имеют утолщенные стенки, пропитанные жирообразным веществом, становятся непроницаемыми для газов и воды, содержимое которых отмирает. Клетки пробки имеют прямоугольную форму, плотно прилегают одна к другой, расположены рядами. Пробка сохраняет внутренние живые клетки от потери влаги, резких колебаний температуры, проникновения микроорганизмов. Чтобы живые клетки могли под пробкой дышать, удалять остатки влаги, феллоген под устьицами откладывает живые клетки паренхимы с большими межклетниками, которые разрывают эпидерму и образуют чечевички . Чечевички четко видны на поверхности коры деревьев и кустов. Они не способны открываться и закрываться. Зимой закупориваются особым веществом.

Пробковый камбий сохраняет активность на протяжении всей жизни растения и образует новые пробковые слои. Верхние слои коры постоянно отшелушиваются. Внутрь растения пробковый камбий производит живые клетки основной ткани.

Вследствие многоразового формирования слоев пробки и отмирания живых клеток между ними образуется характерная для деревьев кора , которая включает еще и низшие слои клеток.

Новое на сайте

>

Самое популярное