Домой Цветы Как понять что число делится на 6. Основные признаки делимости

Как понять что число делится на 6. Основные признаки делимости

m и n имеется такое целое число k и nk = m , то число m делится на n

Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости .

Наиболее незамысловатый признак делимости для единицы : на единицу делится все числа . Так же элементарно и с признаками делимости на два , пять , десять . На два можно поделить четные число либо то у которого итоговая цифра 0, на пять - число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.

Например:

Цифру 79516 можно разделить на 2, так как она заканчивается на 6— четное число ; 9651 не поделится на 2, так как 1 - цифра нечетная; 1790 поделится на 2, так как конечная цифра нуль. 3470 поделится на 5 (заключительная цифра 0); 1054 не поделится на 5 (конечная цифра 4). 7800 поделится на 10 и на 100; 542000 поделится на 10, 100, 1000.

Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9 , 4 , 6 и 8, 25 . Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.

Характерная особенность деления на 3 и на 9 .

На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.

Например :

Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.

Характерная особенность деления на 4, 8, 16 и так далее .

Цифру можно без остатка разделить на четыре , если у нее две последние цифры нули или являются числом , которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.

Например :

Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.

Схожий принцип пригоден и для признака делимости на восемь . Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.

Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.

Характерная особенность делимости на 6.

Число делится на шесть , если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.

Например:

126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)

Характерная особенность делимости на 7.

Число делится на семь если разность его удвоенного последнего числа и "числа, оставшегося без последней цифры"делится на семь, то и само число делится на семь.

Например :

Число 296492. Возьмем последнюю цифру "2", удваиваем, выходит 4. Вычитаем 29649 - 4 = 29645. Проблематично выяснить делится ли оно на 7, следовательно анализируемом снова. Далее удваиваем последнюю цифру "5", выходит 10. Вычитаем 2964 - 10 = 2954. Результат тот же, нет ясности, делится ли оно на 7, следовательно продолжаем разбор. Анализируем с последней цифрой "4", удваиваем, выходит 8. Вычитаем 295 - 8 = 287. Сверяем двести восемьдесят семь - не делится на 7, в связи с этим продолжаем поиск. По аналогии последнюю цифру "7", удваиваем, выходит 14. Вычитаем 28 - 14 = 14. Число 14 делится на 7, итак исходное число делится на 7.

Характерная особенность делимости на 11 .

На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.

Например:

Число 103 785 делится на 11, так как сумма цифр, размещающихся на нечетных местах, 1 + 3 + 8 = 12 равна сумме цифр, размещающихся на четных местах 0 + 7 + 5 = 12. Число 9 163 627 делится на 11, так как сумма цифр, размещающихся на нечетных местах, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, размещающихся на четных местах, есть 1 + 3 + 2 = 6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461 025 не делится на 11, так как числа 4 + 1 + 2 = 7 и 6 + 0 + 5 = 11 не равны друг другу, а их разность 11 - 7 = 4 не делится на 11.

Характерная особенность делимости на 25 .

На двадцать пять поделятся числа , две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах - число невозможно поделить целиком на 25.

Например:

9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.

Потом, не помню в каком классе, нам рассказали о некоторых признаках делимости. Давайте вместе вспомним их. (Предупреждение: я не являюсь ни учителем математики, ни аспирантом математических наук, поэтому буду излагать не научно правильно, а как умею. Учителям математики просьба — не придираться по этому поводу ).

Число без остатка делится на 2, если делится на 2 его последняя цифра . То есть если последняя цифра — четная. Объясняется это просто. Число 10 — четное. Сколько десятков к четной цифре ни добавляй, оно все равно останется четным.

По-другому с тройкой. Число без остатка делится на 3, если делится на 3 сумма всех его цифр . Например, 327. Сумма его цифр: 3+2+7=12. 12 делится на 3 без остатка, значит, и число 327 делится на 3 без остатка. (327: 3 = 109).

Далее. Число без остатка делится на 4, если делится на 4 число из двух последних его цифр . Число 100 делится без остатка на 4, и, следовательно, сколько сотен ни добавляй, оно все равно будет делиться на 4. Если двухзначное число выходит за таблицу умножения, то от него следует отнять 40 и узнать, делится ли полученное число на 4.

Например, 56. Вы, допустим, затрудняетесь сказать, делится ли оно на 4. Тогда от его нужно отнять 40. Получается 16, а оно делится на 4. Следовательно, и 56 делится на 4. А также 156, 356, 756, 1556, 3756 и т. д. — все они будут делиться на 4. Значение имеют лишь две последние цифры числа.

Очень простой признак делимости на 5. Число без остатка делится на 5, если оно заканчивается цифрой 5, либо цифрой 0 . Здесь, я думаю, комментарии не требуются.

Про признак делимости на 6 в школе не рассказывают. Однако любой ученик с более-менее живым умом легко до него додумается. Поскольку 6 = 2×3, то для того, чтобы число делилось на 6, оно должно одновременно делиться и на 2, и на 3. А признаки делимости на эти числа нам уже известны. Число без остатка делится на 6, если оно четное и если его сумма цифр делится на 3 .

Важно ! Я в школьные годы очень часто делал ошибки, думая, что если сумма цифр числа делится на 6, то и само число будет делиться на 6. Это не так. Например, 123. Сумма его чисел равна 6. Но оно не делится на 6, так как является нечетным (123: 6 = 20,5).

Ну и еще в школе рассказывают про признак делимости на 9. Он полностью аналогичен признаку делимости на 3. Число без остатка делится на 9, если делится на 9 сумма всех его цифр.

Как видим, в этом списке нет признаков делимости на 7 и 8. Недавно я, пораскинув мозгами на досуге, сумел найти эти признаки.

Начнем с числа 8 — это проще. Число 100 не делится без остатка на 8 (100: 8 = 12,5). И, следовательно, такой финт, как с четверкой, не пройдет. Например, 332. Число из двух последних цифр делится на 8, но 332: 8 = 41,5. Однако на 8 делится без остатка число 1000 (1000: 8 = 125). Таким образом, если трехзначное число, например 256, делится на 8, то к нему можно прибавить тысячу (которая тоже делится на 8), и оно по-прежнему будет делиться на 8.

Здесь, наверно, у многих возникнет ехидная усмешка. Мол, спасибо, ты нам сильно помог. Как же мы узнаем, делится ли на 8 трехзначное число? Не волнуйтесь, есть способ.

Поскольку 8 = 2×4, то чтобы число делилось на 8, требуется, чтобы оно делилось и на 4. Это условие необходимое, но не достаточное. Далее можно поступить по аналогии с тысячей. Мы уже выяснили, что 100 не делится на 8 без остатка. Однако число 200 делится — 200: 8 = 25. Таким образом, если в трехзначном числе число из двух последних цифр делится на 8, а первая цифра четная, то и само трехзначное число разделится на 8. Если же первая цифра нечетная, то число из двух последних цифр должно делиться на 4, но не делиться на 8.

Подытожим все сказанное. Число без остатка делится на 8, если делится на 8 трехзначное число из трех последних цифр числа. Трехзначное число без остатка делится на 8, если:

1) его первая цифра четная, а число из двух последних цифр делится на 8;
2) его первая цифра нечетная, а число из двух последних цифр делится на 4, но не делится на 8.

Звучит это, возможно, грозно, однако ничего сложного здесь нет. Потренируйтесь, и вы быстро научитесь.

Ну и осталось у нас число 7. Раньше я думал, что для него признак делимости найти невозможно. Но оказалось, это не так. Случайно я заметил, что без остатка на 7 делится число 1001 (1001: 7 = 143). Соответственно, на 7 будут делиться 2002, 3002,7007 и т. д. , если к какому-либо трехзначному числу, кратному семи, прибавить что-то подобное, то оно тоже будет делиться на 7.

Значит, чтобы узнать, что число делится на 7, нужно от трехзначного числа, образованного тремя последними цифрами исходного, отнять число тысяч . Если полученное число делится на 7, то и исходное будет делиться на 7. Например, 3752. Здесь трехзначное число, образованное последними цифрами — 752, число тысяч — 3. Вычитаем: 752 — 3 = 749. Таким образом, задача свелась к отысканию делимости трехзначного числа 749.

Здесь у многих опять возникнет ехидная усмешка. Мол, как же узнать, делится ли это число на 7? Сразу скажу, способ есть. Подробно расписывать не буду, предлагаю читателям самим додуматься. Скажу лишь основную предпосылку: на 7 без остатка делится число 105 (105: 7 = 15).

Чтобы узнать, делится ли трехзначное число на 7, нужно число сотен умножить на 5 и полученное число отнять от двухзначного числа, образованного двумя последними цифрами . Так в числе 749 число сотен — 7; 7×5 = 35; 49 — 35 = 14, а 14 делится на семь. Следовательно, и 749, и 3752 делятся на 7 без остатка.

749: 7 = 107.
3752: 7 = 536.

Сформулируем признак делимости на 7. Число больше трехзначного без остатка делится на 7, если делится на 7 трехзначное число, равное разности между числом, образованным тремя последними цифрами исходного и количеством тысяч в числе. Трехзначное число без остатка делится на 7, если делится на 7 число, равное разности между числом, образованным двумя последними цифрами исходного и количеством сотен в числе, умноженным на 5.

Формулировка довольно сложная, поэтому разберем пример. Возьмем число 17 969. На первом этапе надо от трехзначного числа, образованного тремя последними цифрами (969), отнять количество тысяч в числе (17). Получим 969 — 17 = 952. Таким образом, наша задача свелась к отысканию делимости на 7 этого числа. В этом состоит второй этап. Для этого нужно от числа, образованного двумя последними цифрами (52), отнять число сотен (9), умноженное на 5 (9×5 = 45); 52 — 45 =7. Семь без остатка делится на 7, значит, делятся на 7 и 952 (952: 7 = 136), и 17 969 (17 969: 7 = 2 567).

На этом у меня все. Если есть вопросы, задавайте.

ПРИЗНАКИ ДЕЛИМОСТИ чисел - простейшие критерии (правила), позволяющие судить о делимости (без остатка) одних натуральных чисел на другие. Решение вопроса о делимости чисел признаки делимости сводят к действиям над небольшими числами, обычно выполняемым в уме.
Так как основанием общепринятой системы счисления является 10, то наиболее простыми и распространенными являются признаки делимости на делители чисел трех видов: 10 k , 10 k - 1, 10 k + 1 .
Первый вид - признаки делимости на делители числа 10 k , для делимости любого целого числа N на любой целый делитель q числа 10 k необходимо и достаточно, чтобы последняя k-циферная грань (к-циферное окончание) числа N делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 = 10 (I 1), 10 2 = 100 (I 2) и 10 3 = 1000 (I 3):
I 1 . На 2, 5 и 10 - одноциферное окончание (последняя цифра) числа должно делиться соответственно на 2, 5 и 10. Например, число 80 110 делится на 2, 5 и 10, так как последняя цифра 0 этого числа делится на 2, 5 и 10; число 37 835 делится на 5, но не делится на 2 и 10, так как последняя цифра 5 этого числа делится на 5. но не делится на 2 и 10.

I 2 . На 2, 4, 5, 10, 20, 25, 50 и 100-двуциферное окончание числа должно делиться соответственно на 2, 4, 5, 10, 20, 25, 50 и 100. Например, число 7 840 700 делится на 2, 4, 5, 10, 20, 25, 50 и 100, так как двуциферное окончание 00 этого числа делится на 2, 4, 5, 10, 20, 25, 50 и 100; число 10 831 750 делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100, так как двуциферное окончание 50 этого числа делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100.

I 3 . На 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000 - трехциферное окончание числа должно делиться соответственно на 2,4,5,8,10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000. Например, число 675 081 000 делится на все перечисленные в этом признаке числа, так как на каждое из них делится трехциферное окончание 000 заданного числа; число 51 184 032 делится на 2, 4 и 8 и не делится на остальные, так как трехциферное окончание 032 заданного числа делится только на 2, 4 и 8 и не делится на остальные.

Второй вид - признаки делимости на делители числа 10 k - 1: для делимости любого целого числа N на любой целый делительq числа 10 k - 1 необходимо и достаточно, чтобы сумма k-циферных граней числа N делилась на q. В частности (при к=1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 - 1 = 9 (II 1), 10 2 - 1=99 (II 2) и 10 3 - 1 = 999 (II 3):
II 1 . На 3 и 9 -сумма цифр (одноциферных граней) числа должна делиться соответственно на 3 и 9. Например, число 510 887 250 делится на 3 и 9, так как сумма цифр 5+1+0+8+8+7+2+5+0=36 (и 3+6=9) этого числа делится на 3 и 9; число 4 712 586 делится на 3, но не делится на 9, так как сумма цифр 4+7+1+2+5+8+6=33 (и 3+3=6) этого числа делится на 3, но не делится на 9.

II 2 . На 3, 9, 11, 33 и 99 - сумма двуциферных граней числа должна делиться соответственно на 3, 9, 11, 33 и 99. Например, число 396 198 297 делится на 3, 9, 11, 33 и 99, так как сумма двуциферных граней 3+96+19+ +82+97=297 (и 2+97=99) делится на 3, 9,11, 33 и 99; число 7 265 286 303 делится на 3, 11 и 33, но не делится на 9 и 99, так как сумма двуциферных граней 72+65+28+63+03=231 (и 2+31=33) этого числа делится на 3, 11 и 33 и не делится на 9 и 99.

II 3 . На 3, 9, 27, 37, 111, 333 и 999 - сумма трехциферных граней числа должна делиться соответственно на 3, 9, 27, 37, 111, 333 и 999. Например, число 354 645 871 128 делится на все перечисленные в этом признаке числа, так как на каждое из них делится сумма трехциферных граней 354+645+ +871 + 128=1998 (и 1 + 998 = 999) этого числа.

Третий вид - признаки делимости на делители числа 10 k + 1: для делимости любого целого числа N на любой целый делитель q числа 10 k + 1 необходимо и достаточно, чтобы разность между суммой k-циферных граней, стоящих в N на четных местах, и суммой k-циферных граней, стоящих в N на нечетных местах, делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 + 1 =11 (III 1), 10 2 + 1 = 101 (III 2) и 10 3 +1 = 1001 (III 3).

III 1 . На 11 - разность между суммой цифр (одноциферных граней), стоящих на четных местах, и суммой цифр (одноциферных граней), стоящих на нечетных местах, должна делиться на 11. Например, число 876 583 598 делится на 11, так как разность 8 - 7+6 - 5+8 - 3+5 - 9+8=11 (и 1 - 1=0) между суммой цифр, стоящих на четных местах, и суммой цифр, стоящих на нечетных местах, делится на 11.

III 2 . На 101 - разность между суммой двуциферных граней, стоящих в числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, должна делиться на 101. Например, число 8 130 197 делится на 101, так как разность 8-13+01-97 = 101 (и 1-01=0) между суммой двуциферных граней, стоящих в этом числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, делится на 101.

III 3 . На 7, 11, 13, 77, 91, 143 и 1001 - разность между суммой трехциферных граней, стоящих в числе на четных местах, и суммой трехциферных граней, стоящих на нечетных местах, должна делиться соответственно на 7, 11, 13, 77, 91, 143 и 1001. Например, число 539 693 385 делится на 7, 11 и 77, но не делится на 13, 91, 143 и 1001, так как 539 - 693+385=231 делится на 7, 11 и 77 и не делится на 13, 91, 143 и 1001.

Определение 1. Пусть число a 1) есть произведение двух чисел b и q так, что a=bq. Тогда a называется кратным b .

1) В данной статье под словом число будем понимать целое число.

Можно сказать также a делится на b, или b есть делитель a , или b делит a , или b входит множителем в a .

Из определения 1 вытекают следующие утверждения:

Утверждение 1. Если a -кратное b , b -кратное c , то a кратное c .

Действительно. Так как

где m и n какие то числа, то

Следовательно a делится на c.

Если в ряду чисел, каждое делится на следующее за ним, то каждое число есть кратное всех последующих чисел.

Утверждение 2. Если числа a и b - кратные числа c , то их сумма и разность также кратные числа c .

Действительно. Так как

a+b=mc+nc=(m+n)c,

a−b=mc−nc=(m−n)c.

Следовательно a+b делится на c и a−b делится на c .

Признаки делимости

Выведем общую формулу для определения признака делимости чисел на некоторое натуральное число m , которое называется признаком делимости Паскаля.

Найдем остатки деления на m следующей последовательностью. Пусть остаток от деления 10 на m будет r 1 , 10·r 1 на m будет r 2 , и т.д. Тогда можно записать:

Докажем, что остаток деления числа A на m равна остатку деления числа

(3)

Как известно, если два числа при делении на какое то число m дают одинаковый остаток, то из разность делится на m без остатка.

Рассмотрим разность A−A"

(6)
(7)

Каждый член правой части (5) делится на m следовательно левая часть уравнения также делится на m . Рассуждая аналогично, получим - правая часть (6) делится на m , следовательно левая часть (6) также делится на m , правая часть (7) делится на m , следовательно левая часть (7) также делится на m . Получили, что правая часть уравнения (4) делится на m . Следовательно A и A" имеют одинаковый остаток при делении на m . В этом случае говорят, что A и A" равноостаточные или сравнимыми по модулю m .

Таким образом, если A" делится на m m ) , то A также делится на m (имеет нулевой остаток от деления на m ). Мы показали что для определения делимости A можно определить делимость более простого числа A" .

Исходя из выражения (3), можно получить признаки делимости для конкретных чисел.

Признаки делимости чисел 2, 3, 4, 5, 6, 7, 8, 9, 10

Признак делимости на 2.

Следуя процедуре (1) для m=2 , получим:

Все остатки от деления на 2 равняются нулю. Тогда, из уравнения (3) имеем

Все остатки от деления на 3 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 4 кроме первого равняются 0. Тогда, из уравнения (3) имеем

Все остатки равны нулю. Тогда, из уравнения (3) имеем

Все остатки равны 4. Тогда, из уравнения (3) имеем

Следовательно число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц, делится на 6. То есть из числа отбрасываем правую цифру, далее суммируем полученное число с 4 и добавляем отброшенное число. Если данное число делится на 6, то исходное число делится на 6.

Пример. 2742 делится на 6, т.к. 274*4+2=1098, 1098=109*4+8=444, 444=44*4+4=180 делится на 6.

Более простой признак делимости. Число делится на 6, если оно делится на 2 и на 3 (т.е. если оно четное число и если сумма цифр делится на 3). Число 2742 делится на 6, т.к. число четное и 2+7+4+2=15 делится на 3.

Признак делимости на 7.

Следуя процедуре (1) для m=7 , получим:

Все остатки разные и повторяются через 7 шагов. Тогда, из уравнения (3) имеем

Все остатки все остатки нулевые, кроме первых двух. Тогда, из уравнения (3) имеем

Все остатки от деления на 9 равняются 1. Тогда, из уравнения (3) имеем

Все остатки от деления на 10 равняются 0. Тогда, из уравнения (3) имеем

Следовательно число делится на 10 тогда и только тогда, когда последняя цифра делится на 10 (то есть последняя цифра нулевая).

Признаки делимости чисел на 2, 3, 4, 5, 6, 8, 9, 10, 11, 25 и другие числа полезно знать для быстрого решения задач на Цифровую запись числа. Вместо того, чтобы делить одно число на другое, достаточно проверить ряд признаков, на основании которых можно однозначно определить, делится ли одно число на другое нацело (кратно ли оно) или нет.

Основные признаки делимости

Приведем основные признаки делимости чисел :

  • Признак делимости числа на «2» Число делится нацело на 2, если число является четным (последняя цифра равна 0, 2, 4, 6 или 8)
    Пример: Число 1256 кратно 2, поскольку оно заканчивается на 6. А число 49603 не делится нацело на 2, поскольку оно заканчивается на 3.
  • Признак делимости числа на «3» Число делится нацело на 3, если сумма его цифр делится на 3
    Пример: Число 4761 делится на 3 нацело, поскольку сумма его цифр равна 18 и она делится на 3. А число 143 не кратно 3, поскольку сумма его цифр равна 8 и она не делится на 3.
  • Признак делимости числа на «4» Число делится нацело на 4, если последние две цифры числа равны нулю или число, составленное из двух последних цифр, делится на 4
    Пример: Число 2344 кратно 4, поскольку 44 / 4 = 11. А число 3951 не делится нацело на 4, поскольку 51 на 4 не делится.
  • Признак делимости числа на «5» Число делится нацело на 5, если последняя цифра числа равна 0 или 5
    Пример: Число 5830 делится нацело на 5, поскольку оно заканчивается на 0. А число 4921 не делится на 5 нацело, поскольку оно заканчивается на 1.
  • Признак делимости числа на «6» Число делится нацело на 6, если оно делится нацело на 2 и на 3
    Пример: Число 3504 кратно 6, поскольку оно заканчивается на 4 (признак делимости на 2) и сумма цифр числа равна 12 и она делится на 3 (признак делимости на 3). А число 5432 на 6 нацело не делится, хотя число заканчивается на 2 (соблюдается признак делимости на 2), однако сумма цифр равна 14 и она не делится на 3 нацело.
  • Признак делимости числа на «8» Число делится нацело на 8, если три последние цифры числа равны нулю или число, составленное из трех последних цифр числа, делится на 8
    Пример: Число 93112 делится нацело на 8, поскольку число 112 / 8 = 14. А число 9212 не кратно 8, поскольку 212 не делится на 8.
  • Признак делимости числа на «9» Число делится нацело на 9, если сумма его цифр делится на 9
    Пример: Число 2916 кратно 9, поскольку сумма цифр равна 18 и она делится на 9. А число 831 не делится на 9 нацело, поскольку сумма цифр числа равна 12 и она не делится на 9.
  • Признак делимости числа на «10» Число делится нацело на 10, если оно заканчивается на 0
    Пример: Число 39590 делится на 10 нацело, поскольку оно заканчивается на 0. А число 5964 не делится на 10 нацело, поскольку оно заканчивается не на 0.
  • Признак делимости числа на «11» Число делится нацело на 11, если сумма цифр, стоящих на нечетных местах, равна сумме цифр, стоящих на четных местах или суммы должны отличаться на 11
    Пример: Число 3762 делится нацело на 11, поскольку 3 + 6 = 7 + 2 = 9. А число 2374 на 11 не делится, поскольку 2 + 7 = 9, а 3 + 4 = 7.
  • Признак делимости числа на «25» Число делится нацело на 25, если оно заканчивается на 00, 25, 50 или 75
    Пример: Число 4950 кратно 25, поскольку оно заканчивается на 50. А 4935 не делится на 25, поскольку заканчивается на 35.

Признаки делимости на составное число

Чтобы узнать, делится ли заданное число на составное, нужно разложить это составное число на взаимно простые множители , признаки делимости которых известны. Взаимно простые числа - это числа, не имеющие общих делителей кроме 1. Например, число делится нацело на 15, если оно делится нацело на 3 и на 5.

Рассмотрим другой пример составного делителя: число делится нацело на 18, если оно делится нацело на 2 и 9. В данном случае нельзя раскладывать 18 на 3 и 6, поскольку они не являются взаимно простыми, так как имеют общий делитель 3. Убедимся в этом на примере.

Число 456 делится на 3, так как сумма его цифр равна 15, и делится на 6, так как оно делится и на 3 и на 2. Но если разделить 456 на 18 вручную, то получится остаток. Если же для числа 456 проверять признаки делимости на 2 и 9, сразу же видно, что оно делится на 2, но не делится на 9, так как сумма цифр числа равна 15 и она не делится на 9.

Новое на сайте

>

Самое популярное