Домой Плодовые деревья Причины митохондриальных заболеваний. Митохондриальная патология и проблемы патогенеза психических нарушений. Что можете сделать вы

Причины митохондриальных заболеваний. Митохондриальная патология и проблемы патогенеза психических нарушений. Что можете сделать вы

пост обновлен 28.02.2019

Введение (особенности митохондрий человека) . Особенностью функционирования митохондрий является наличие собственного митохондриального генома - кольцевой митохондриальной ДНК (мтДНК), содержащей 37 генов, продукты которых участвуют в процессе выработки энергии в дыхательной цепи митохондрий. мтДНК располагается во внутренней мембране митохондрий и состоит из пяти сопряженно функционирующих ферментных комплексов, которые в целом насчитывают 86 субъединиц. В основном они кодируются ядерными генами (яДНК), но семь субъединиц первого ферментного комплекса (ND1, 2, 3, 4, 4L, 5, 6), один - третьего (цитохром b), три - четвертого (COI, COII, COIII) и две - пятого (АТФазы 6 и 8) кодируются структурными генами мтДНК. Таким образом, в обеспечении многообразных биохимических функций митохондрий участвуют ферментные комплексы (т.е. белки), кодируемые как ядерными (яДНК), так и митохондриальными генами (мтДНК).

Обратите внимание ! Основными биохимическими процессами, которые имеют отношение к энергетическому обмену и происходят в митохондриях, являются: цикл трикарбоновых кислот (цикл Кребса), бета-окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи и окислительное фосфорилирование. Любой из указанных процессов может нарушаться и быть причиной митохондриальной недостаточности.

Причина возникновения митохондриальных болезней (далее МБ). Главные свойства митохондриального генома - это цитоплазматическое наследование генов, отсутствие рекомбинаций (т.е. реорганизации генетического материала посредством обмена отдельными сегментами, участками, двойных спиралей ДНК) и высокая скорость мутирования. Митохондриальный геном отличается выраженной нестабильностью и высокой скоростью нуклеотидных замен, в среднем в 10 - 17 раз выше скорости мутирования ядерных генов, и в течение жизни индивида в нем нередко возникают соматические мутации. Непосредственная причина возникновения и развития дисфункции митохондрий кроется в дефектах системы окислительного фосфорилирования, несовершенстве репарационных механизмов, отсутствии гистонов и присутствии свободных радикалов кислорода – побочных продуктов аэробного дыхания.

Для мутаций митохондриального генома характерно явление [!!! ] гетероплазмии, при котором (благодаря специфичности митохондриального наследования) в результате клеточного деления распределение (варьирующее в широких пределах - от 1 до 99%) мутантных мтДНК между дочерними клетками происходит случайно и неравномерно, вследствие чего в дочерних клетках одновременно присутствуют копии мтДНК, несущие нормальный и/или мутантный аллель. При этом различные ткани организма или соседние участки одной и той же ткани могут различаться по степени гетероплазмии, т.е. по степени присутствия и соотношения в клетках организма митохондрий как с мутантной, так и с нормальной мтДНК (в последующих поколениях часть клеток может обладать только нормальной мтДНК, другая часть только мутантной, а третья часть - и тем и другим типом мтДНК). Содержание митохондрий с мутантной мтДНК нарастает постепенно. Благодаря этому «лаг периоду» (от англ. «lag» - запаздывание), будущие пациенты нередко достигают половозрелого возраста (и дают потомство, почти всегда несущее те же мутации в мтДНК). Когда количество мутантных копий мтДНК достигает в клетке определенного порога концентрации, энергетический метаболизм в клетках оказывается значительно нарушенным и проявляется в виде заболевания (обратите внимание: особенностью наследственных МБ зачастую является полное отсутствие каких-либо патологических признаков в начале жизни больного).

Обратите внимание ! Гетероплазмия характеризуется одновременным существованием мутантных и нормальных мтДНК в одной клетке, ткани, органе, что определяет тяжесть, характер и возраст манифестации МБ. Количество измененных мтДНК также может увеличиваться с возрастом под влиянием различных факторов и постепенно достигать уровня, способного вызвать клиническое проявления заболевания.

В соответствии с вышеупомянутыми особенностями двойного генома митохондрий тип наследования МБ может быть различным. Поскольку мтДНК в организме имеет почти исключительно материнское происхождение, при передаче митохондриальной мутации потомству в родословной имеет место материнский тип наследования - болеют все дети больной матери. Если мутация происходит в ядерном гене (яДНК), кодирующем синтез митохондриального белка, заболевание передается по классическим менделевским законам. Иногда мутация мтДНК (обычно - делеция) возникает de novo на ранней стадии онтогенеза, и тогда заболевание проявляется как спорадический случай.

Обратите внимание ! В настоящее время известно более 100 точечных мутаций и несколько сотен структурных перестроек мтДНК, ассоциированных с характерными нейромышечными и другими митохондриальными синдромами - от летальных в неонатальном периоде жизни до заболеваний с поздним началом.

Дефиниция . МБ могут быть охарактеризованы как заболевания, обусловленные генетическими и структурно-биохимическими дефектами митохондрий и сопровождающиеся нарушением тканевого дыхания и, как следствие, системным дефектом энергетического метаболизма, вследствие чего поражаются в различной комбинации наиболее энергозависимые ткани и органы-мишени: мозг, скелетные мышцы и миокард (митохондриальные энцефаломиопатии), поджелудочная железа, орган зрения, почки, печень. Клинически нарушения в указанных органах могут реализоваться в любом возрасте. При этом гетерогенность симптоматики затрудняет клиническую диагностику этих заболеваний. Необходимость исключения МБ возникает при наличии мультисистемных проявлений, которые не укладываются в обычный патологический процесс. Частоту дисфункции дыхательной цепи оценивают от 1 на 5 - 10 тыс. до 4 - 5 на 100 тыс. новорожденных.

Семиотика . Нервно-мышечная патология при МБ обычно бывает представлена деменцией, судорогами, атаксией, оптической нейропатией, ретинопатией, нейросенсорнуой глухотой, периферической нейропатией, миопатией. Однако около 1/3 пациентов с МБ имеют нормальный интеллект, а нервно-мышечные проявления у них отсутствуют. К МБ относят, в частности, энцефалокардиомиопатию Kearns - Sayre (пигментный ретинит, наружная офтальмоплегия, полная блокада сердца); синдром MERRF (миоклонус-эпилепсия, «рваные» красные волокна); (митохондриальная энцефало-миопатия, лактат-ацидоз, инсультоподобные эпизоды); синдром Pearson (энцефаломиопатия, атаксия, деменция, прогрессирующая наружная офтальмоплегия); синдром NAPR (невропатия, атаксия, пигментный ретинит); и некоторые формы офтальмопатической миопатии. Все эти формы объединены выраженным в той или иной степени миопатическим синдромом.

Обратите внимание ! Двумя основными клиническими признаками МБ являются увеличение с течением времени числа вовлеченных в патологический процесс органов и тканей, а также практически неизбежное поражение центральной нервной системы. Полиморфизм клинических проявлений, включая поражение органов, на первый взгляд физиологически и морфологически не связанных, в сочетании с различными сроками манифестации и неуклонным прогрессированием симптоматики заболевания с возрастом и позволяет заподозрить [генетическую] мутацию мтДНК.

Обратите внимание ! В клинической практике большое значение имеет умение дифференцировать клиническую картину МБ от более распространенных соматических, аутоиммунных, эндокринных и других патологических состояний, большинство из которых поддаются лечению. Необходимо проводить тщательную оценку семейного анамнеза, данных рутинных клинических и лабораторно-инструментальных методов обследования, прежде чем назначать пациенту специфические генетические и биохимические тесты, направленные на поиск митохондриальной патологии.

Диагностика . Алгоритм диагностики любой МБ должен включать следующие этапы: [1 ] выявление типичной клинической картины митохондриального синдрома либо «необъяснимой» мультисистемности поражения и наследственного анамнеза, подтверждающего материнский тип наследования; [2 ] дальнейший диагностический поиск должен быть направлен на обнаружение общих маркеров митохондриальной дисфункции: повышение уровня лактата/пирувата в сыворотке крови и цереброспинальной жидкости, нарушение углеводного, белкового, аминокислотного обменов, а также клинической картины с вовлечением в патологический процесс как минимум трех из указанных систем: ЦНС, сердечно-сосудистой системы, мышечной, эндокринной, почечной, органов зрения и слуха; [3 ] при клинических и подтвержденных лабораторно-инструментальных признаках митохондриальной патологии проводят ПЦР-анализ лимфоцитов крови для прицельного поиска точковых мутаций мтДНК; исследование, которое считается золотым стандартом диагностики МБ [цитопатий], - биопсия скелетных мышц с проведением гистохимического, электронно-микроскопического, иммунологического и молекулярно-генетического анализов, характерные изменения в которых будут при любой МБ (см. далее); [5 ] наиболее чувствительными тестами для диагностики МБ служат методы оценки уровня гетероплазмии патологических мтДНК в различных органах и тканях: флуоресцентная ПЦР, клонирование, денатурирующая высокоразрешающая жидкостная хроматография, секвенирование, саузерн-блот-гибридизация и т.д.

Гистохимическое исследование биоптатов мышц пациентов, включающее окраску трихромом по методу Гомори, демонстрирует изменения, характерные для МБ, - рваные красные волокна миофибриллы, которые содержат большое количество пролиферирующих и поврежденных митохондрий, образующих агломераты по периферии мышечного волокна. При этом количество рваных красных волокон в биопсии должно быть ≥ 2%. Ферменто-гистохимический анализ показывает дефицит цитохром-С-оксидазы в 2 и 5% миофибрилл (для пациентов моложе 50 и старше 50 лет) их общего числа в биоптатах. Гистохимический анализ сукцинатдегидрогеназной (СДГ) активности демонстрирует CДГ-положительное окрашивание миофибрилл – рваные синие волокна (ragged blue fibers), что в сочетании с СДГ-позитивным окрашиванием стенок артерий, кровоснабжающих мышцы, свидетельствует о высокой степени повреждения митохондрий миоцитов. При проведении электронной микроскопии биоптатов мышц определяют патологические включения, структурные перестройки митохондрий, изменение их формы, размера и числа.

Обратите внимание ! Несмотря на значительный прогресс, достигнутый с момента открытия генетических мутаций мтДНК, большинство из используемых в клинической практике диагностических методов обладают низкой степенью специфичности в отношении отдельных МБ. Поэтому диагностические критерии для той или иной МБ, в первую очередь, складываются из сочетания специфической клинической и морфологической картин.

Принципы лечения . Терапия МБ (цитопатий) носит исключительно симптоматический характер и направлена на снижение скорости прогрессирования заболевания, а также улучшение качества жизни пациентов. С этой целью больным назначают стандартную комбинацию препаратов, включающую коэнзим Q10, идебенон - синтетический аналог СоQ10, креатин, фолиевую кислоту, витамины В2, В6, В12 и другие лекарственные средства, улучшающие окислительно-восстановительные реакции в клетках (препараты-переносчики электронов в дыхательной цепи и кофакторы энзимных реакций энергетического обмена). Эти соединения стимулируют синтез молекул АТФ и снижают активность свободно-радикальных процессов в митохондриях. Между тем, по данным систематического обзора, большинство из препаратов, обладающих антиоксидантным и метаболическим действием и применяемых при МБ, не оценивали в масштабных рандомизированных плацебо-контролируемых исследованиях. Поэтому сложно оценить выраженность их терапевтического эффекта и наличие значительных побочных эффектов.

Подробнее о МБ в следующих источниках :

статья «Нервно-мышечная патология при митохондриальных болезнях» Л.А. Сайкова, В.Г. Пустозеров; Санкт Петербургская медицинская академия последипломного образования Росздрава (журнал «Вестник Санкт-Петербургской медицинской академии последипломного образования» 2009) [читать ];

статья «Хроническиe заболевания невоспалительного генезa и мутации митохондриального генома человека» К.Ю. Митрофанов, А.В. Желанкин, М.А. Сазонова, И.А. Собенин, А.Ю. Постнов; Инновационный центр Сколково. Научно-исследовательский институт атеросклероза, Москва; ГБОУ Научно-исследовательский институт общей патологии и патофизиологии РАМН, Москва; Институт клинической кардиологии им. А.Л.Мясникова ФГБУ РКНПК Минздравсоцразвития РФ (журнал «Кардиологический вестник» №1, 2012) [читать ];

статья «Митохондриальная днк и наследственная патология человека» Н.С. Прохорова, Л.А. Демиденко; Кафедра медицинской биологии, ГУ «Крымский государственный медицинскый университет им. С.И. Георгиевского», г. Симферополь (журнал «Таврический медико-биологический вестник» №4, 2010) [читать ];

статья «Митохондриальный геном и митохондриальные заболевания человека» И.О. Мазунин, Н.В. Володько, Е.Б. Стариковская, Р.И. Сукерник; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск (журнал «Молекулярная биология» №5, 2010) [читать ];

статья «Перспективы митохондриальной медицины» Д.Б. Зоров, Н.К. Исаев, Е.Ю. Плотников, Д.Н. Силачев, Л.Д. Зорова, И.Б. Певзнер, М.А. Моросанова, С.С. Янкаускас, С.Д. Зоров, В.А. Бабенко; Московский государственный университет им. М.В. Ломоносова, Институт физико-химической биологии им. А.Н. Белозерского, НИИ Митоинженерии, Лазерный Научный Центр, факультет биоинженерии и биоинформатики; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова (журнал «Биохимия» №9, 2013) [читать ];

статья «Инсульты при митохондриальных заболеваниях» Н.В. Пизова; Кафедра нервных болезней с курсами нейрохирургии и медицинской генетики ГБОУ ВПО «Ярославская государственная медицинская академия» (журнал «Неврология, нейропсихиатрия, психосоматика» №2, 2012) [читать ];

статья «Диагностика и профилактика ядерно-кодируемых митохондриальных заболеваний у детей» Е.А. Николаева; Научно-исследовательский клинический институт педиатрии, Москва (журнал «Российский вестник перинатологии и педиатрии» №2, 2014) [читать ];

статья «Эпилепсия у детей с митохондриальными заболеваниями: особенности диагностики и лечения» Заваденко Н.Н., Холин А.А.; ГБОУ ВПО Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздравсоцразвития России, Москва (журнал «Эпилепсия и пароксизмальные состояния» №2, 2012) [читать ];

статья «Митохондриальная патология и проблемы патогенеза психических нарушений» В.С. Сухоруков; Московский НИИ педиатрии и детской хирургии Росмедтехнологий (Журнал неврологии и психиатрии, №6, 2008) [читать ];

статья «Алгоритм диагностики митохондриальных энцефаломиопатий» С.Н. Иллариошкин (журнал «Нервные болезни» №3, 2007) [читать ];

статья «Актуальные вопросы лечения митохондриальных нарушений» В.С. Сухоруков; ФГБУ «Московский НИИ педиатрии и детской хирургии» Минздрава России (журнал «Эффективная фармакотерапия. Педиатрия» №4, 2012 [читать ];

статья «Лейкоэнцефалопатия с преимущественным поражением ствола мозга, спинного мозга и повышенным лактатом при МР-спектроскопии (клиническое наблюдение)» В.И. Гузева, Е. А. Ефет, О. М. Николаева; Санкт-Петербургский педиатрический медицинский университет, Санкт-Петербург, Россия (журнал «Нейрохирургия и неврология детского возраста» №1, 2013) [читать ];

учебно-методическое пособие для студентов третьего курса медико-диагностического факультета медицинских вузов «Наследственные митохондриальные заболевания» Т.С. Угольник, И. В. Манаенкова; Учреждение образования «Гомельский государственный медицинский университет», кафедра патологической физиологии, 2012 [читать ];

пост: Митохондриальне заболевания (нейродегенерация) - на сайт c 17-ю ссылками на источники (статьи, презентации и т.д.) .


© Laesus De Liro

Возникновение этих заболеваний связано с изменением ДНК митохондрий. Геном митохондриальной ДНК полностью расшифрован. В нем есть гены рибосомальных РНК, 22 тр-РНК и 13 полипептидов, участвующих в реакциях окислительного фосфорилирования. Большинство митохондриальных белков кодируются генами ядерной ДНК, транслируются в цитоплазме, а затем поступают в митохондрии. ДНК митохондрий наследуется по материнской линии. В цитоплазме яйцеклетки содержатся тысячи митохондрий, в то время как митохондрии сперматозоида не оказываются в зиготе. Поэтому мужчины наследуют мт-ДНК от своих матерей, но не передают е своим потомкам.

В каждой митохондрии содержится 10 и более молекул ДНК. Обычно все копии мт-ДНК идентичны. Иногда, однако, в мт-ДНК возникают мутации, которые могут передаваться как дочерним митохондриям, так и дочерним клеткам.

Клинически мутации могут проявить себя в виде различных симптомов в любом органе или ткани и в любом возрасте. Наиболее энергозависимыми, а поэтому уязвимыми являются мозг, сердце, скелетные мышцы, эндокринная системы, печень. Поражения нервной системы обычно сопровождаются судорогами, нарушение координации (атаксия), снижением интеллекта, нейросенсорной глухотой.

Примеры наследственных болезней: атрофия дисков зрительных нервов Лебера (острая потеря центрального зрения, может проявиться в любом возрасте), митохондриальная энцефаломиопатия, синдром миоклонической эпилепсии и рваных мышечных волокон.

Мультифакторные заболевания

Возникают у лиц с соответствующим сочетанием предрасполагающих аллелей, имеет место полиморфизм клинических признаков, заболевания проявляются в любом возрасте, в патологический процесс может быть вовлечена любая система или орган. Примеры: гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, эпилепсия, глаукома, псориаз, бронхиальная астма и др.

Особенности :

    Высокая частота встречаемости в популяции

    Существование различных клинических форм

    Зависимость степени риска для родственников больного:

Чем реже болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственника

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник.

Медико-генетическое консультирование

Это один из видов специализированной медицинской помощи населению. В консультации работают врачи-генетики, а также другие специалисты (акушеры, педиатры, эндокринологи, невропатологи). Основные задачи консультации:

Оказание помощи врачам в постановке диагноза наследственного заболевания

Определение вероятности рождения ребенка с наследственной патологией

Объяснения родителям смысла генетического риска

Этапы консультирования:

1.Обследование больного и постановка диагноза наследственного заболевания . Для этого используются различные методы: цитогенетический, биохимический, ДНК-диагностики. Показаниями для консультирования являются:

Установленная или подозреваемая наследственная болезнь в семье

Рождение ребенка с пороками развития

Повторные спонтанные аборты, мертворождения, бесплодие

Отставание детей в психическом и физическом развитии

Нарушение полового развития

Кровнородственные браки

Возможное воздействие тератогенов в первые 3 месяца беременности

2. Определение риска рождения больного ребенка . При определении риска возможны следующие ситуации:

а) при моногенно наследуемых заболеваниях расчет риска основывается на законах Г.Менделя. При этом учитываются генотип родителей и особенности проявление гена (пенентрантность и экспрессивность).

б) при полигенно наследуемых заболеваниях (болезни с наследственной предрасположенностью) для расчета риска используют специальные таблицы и при этом учитываются следующие особенности:

Чем реже встречается болезнь в популяции, тем выше риск для родственников пробанда

Чем сильнее выражена болезнь у пробанда, тем выше риск заболевания у его родственников

Риск для родственников пробанда будет выше, если имеется другой больной кровный родственник

в) спорадические случаи заболевания: у фенотипически здоровых родителей рождается больной ребенок, при этом отсутствуют данные в сходной патологии у родственников. Причины:

Генеративные мутации у кого-то из родителей или соматические мутации на ранних стадиях эмбрионального развития

Переход рецессивного гена в гомозиготное состояние

Сокрытие одним из родителей семейной патологии.

3. Заключение консультации и советы родителям. Генетический риск до 5% рассматривается как низкий и не является противопоказанием для деторождения. Риск от 6 до 20 % - определяется как средний и расценивается как противопоказание к зачатию или как показание к прерыванию беременности. Независимо от степени риска целесообразно проведение пренатальной диагностики.

Пренатальная (дородовая) диагностика.

Многие болезни можно выявит еще до рождения ребенка. При обнаружении тяжелых заболеваний у плода, врач предлагает семье искусственное прерывание беременности. Окончательное решение вопроса об этом должна принять семья. К методам дородовой диагностики относятся:

1. Биопсия ворсин хориона. Производится на 7-9 неделе беременности. Служит для выявления хромосомных дефектов, активности ферментов с целью диагностики наследственных болезней обмена и ДНК- диагностики.

2. Амниоцентез (взятие околоплодной жидкости с содержащимися в ней клетками). Производится начиная с 12-14 недель беременности.

3. Кордоцентез (взятие крови из пупочных сосудов) производится на 20-25 неделе беременности и используется для тех же целей.

4. Анализ крови матери. Выявление α-фетопротеина (белок, который вырабатывается печенью плода и проникает через плацентарный барьер в кровь матери). Увеличение его в несколько раз на 16 неделе беременности может указывать на дефекты нервной трубки. Снижение его концентрации по отношении к норме может указывать на синдром Дауна.

5. Ультразвуковое исследование плода производится на всех сроках беременности. УЗИ исследование – главный метод визуального определения пороков развития плода и состояния плаценты. УЗИ исследование рекомендуется проводить всем женщинам не менее 2 раз в течение беременности.

Выделяют большое число хронических заболеваний, одним из патогенетических звеньев которых является вторичная митохондриальная недостаточность. Их перечень далеко не полон и расширяется по сей день.

Все эти нарушения полиморфны, могут иметь различную степень выраженности и представлять интерес для медицинских специалистов самых различных областей - невропатологов, кардиологов, неонатологов, нефрологов, хирургов, урологов, оториноларингологов, пульмонологов и др.

По нашим данным, не менее трети всех детей-инвалидов в симптомокомплексе своих заболеваний имеют признаки полисистемного нарушения клеточной энергетики. Следует отметить, что за последние годы значительно увеличилось число детей с заболеваниями, сопровождающимися высокой вероятностью тканевой гипоксии.

Проведенные недавно в Московском НИИ педиатрии и детской хирургии исследования у детей, поступивших в генетическую клинику с недифференцированными нарушениями физического и нервно-психического развития, показали, что у половины из них отмечены нарушения клеточного энергообмена. Сотрудниками этого института впервые обнаружено наличие митохондриальных нарушений при таких патологиях у детей: болезни соединительной ткани (синдромы Марфана и Элерса-Данло), туберозный склероз, ряд неэндокринных синдромов, сопровождающихся задержкой роста (остеохондродисплазии, синдромы Аарскога, Сильвера-Рассела и др.), выявлено влияние митохондриальной недостаточности на течение ряда кардиологических, наследственных, хирургических и других заболеваний. Совместно с сотрудниками Смоленской медицинской академии описана декомпенсирующая митохондриальная недостаточность при сахарном диабете 1 типа у детей со сроком заболевания более 5 лет.

Особо следует отметить полисистемные митохондриальные дисфункции, вызванные экопатогенными факторами. Среди последних - как хорошо известные (например, угарный газ, цианиды, соли тяжелых металлов), так и описанные сравнительно недавно (в первую очередь побочные действия ряда лекарственных веществ - азидотимидина, вальпроатов, аминогликозидов и некоторых других). Кроме того, к этой же группе относятся митохондриальные дисфункции, вызванные рядом алиментарных нарушений (прежде всего дефицит витаминов группы В).

Наконец, отдельно нужно упомянуть о том, что, по мнению многих исследователей, увеличение числа митохондриальных дисфункций является если не основным, то одним из важнейших механизмов старения. На международном симпозиуме по митохондриальной патологии, состоявшемся в Венеции в 2001 г., было сообщено об открытии специфических мутаций митохондриальной ДНК, появляющихся при старении. Эти мутации не обнаруживаются у молодых пациентов, а у лиц пожилого возраста определяются в различных клетках организма с частотой свыше 50%.

Патогенез.

Снижение доставки кислорода к нервной клетке в условиях острой ишемии приводит к ряду регуляторных функционально-метаболических изменений в митохондриях, среди которых нарушения состояния митохондриальных ферментных комплексов (МФК) играют ведущую роль и которые приводят к подавлению аэробного синтеза энергии. Общая ответная реакция организма на острую кислородную недостаточность характеризуется активацией срочных регуляторных компенсаторных механизмов. В нейрональной клетке включаются каскадные механизмы внутриклеточной сигнальной трансдукции, ответственные за экспрессию генов и формирование адаптивных признаков. Такая активация проявляется уже через 2-5 минут кислородного голодания и протекает на фоне снижения дыхания, связанного с подавлением МФК-1. Подтверждением вовлечения в адаптивные процессы внутриклеточных сигнальных систем, необходимых для формирования геномзависимых адаптивных реакций, являются активация протеинкиназ -- конечных звеньев этих систем, открытие мито-КАТФ-канала, усиление связанного с ним АТФ-зависимого транспорта К+, повышенная генерация H2O2.

На этом этапе приспособительных реакций ключевая роль отводится семействам так называемых ранних генов, продукты которых регулируют экспрессию генов позднего действия. На сегодняшний день установлено, что в мозге к таким генам относятся NGFI-A, c-jun, junB, c-fos, играющие важную роль в процессах нейрональной пластичности, обучения, выживаемости/гибели нейронов. В том случае, когда прекондиционирование оказывало защитное действие и корригировало нарушения, вызванные тяжелым гипоксическим воздействием в чувствительных к гипоксии структурах мозга, наблюдалось повышение экспрессии мРНк всех этих генов, так же как и мРНК генов митохондриальных антиоксидантов.

Более длительное пребывание в условиях сниженного содержания кислорода сопровождается переходом на новый уровень регуляции кислородного гомеостаза, который характеризуется экономизацией энергетического обмена (изменением кинетических свойств ферментов окислительного метаболизма, которому сопутствует увеличение эффективности окислительного фосфорилирования, появлением новой популяции мелких митохондрий с набором ферментов, позволяющих им работать в этом новом режиме). Кроме того, в данных условиях адаптация к гипоксии на клеточном уровне тесно связана с транскрипционной экспрессией индуцируемых гипоксией генов позднего действия, которые участвуют в регуляции множественных клеточных и системных функций и необходимы для формирования адаптивных признаков. Известно, что при низких концентрациях кислорода этот процесс контролируется прежде всего специфическим транскрипционным фактором, индуцируемым при гипоксии во всех тканях (HIF-1). Этот фактор, открытый в начале 90-х годов, функционирует как главный регулятор кислородного гомеостаза и является механизмом, с помощью которого организм, отвечая на тканевую гипоксию, контролирует экспрессию белков, ответственных за механизм доставки кислорода в клетку, т.е. регулирует адаптивные ответы клетки на изменения оксигенации тканей.

В настоящее время для него идентифицировано более 60 прямых генов-мишеней. Все они способствуют улучшению доставки кислорода (эритропоэза, ангиогенеза), метаболической адаптации (транспорту глюкозы, усилению гликолитической продукции АТФ, ионному транспорту) и клеточной пролиферации. Продукты регулируемых HIF-1 действуют на разных функциональных уровнях. Конечным результатом такой активации является увеличение поступления O2 в клетку.

Идентификация и клонирование HIF-1 позволили установить, что он представляет собой гетеродимерный redox-чувствительный белок, состоящий из двух субъединиц: индуцибельно экспрессируемой кислородочувствительной субъединицы HIF-1б и конститутивно экспрессируемой субъединицы HIF-1в (транслокатор арилгидрокарбонового ядерного рецептора -- aryl hydrocarbon receptor nuclear translocator -- ARNT). Гетеродимеризуясь с арилкарбоновым рецептором (AHR), он образует функциональный диоксиновый рецептор. Известны и другие белки семейства HIF-1б: HIF-2б, HIF-3б. Все они принадлежат к семейству основных белков, содержащих в аминокислотной концевой части каждой субъединицы базисный домен «спираль -- петля -- спираль» (basic helix-loop-helix -- bHLH), характерный для самых различных транскрипционных факторов и необходимый для димеризации и связывания ДНК.

HIF-1б состоит из 826 аминокислотных остатков (120 kD) и содержит два транскрипционных домена в C-терминальном конце. В нормоксических условиях его синтез происходит с невысокой скоростью и его содержание минимально, так как он подвергается быстрой убиквитинации и деградации протеосомами. Этот процесс зависит от взаимодействия имеющегося в первичной структуре HIF-1б и специфичного для него кислородозависимого домена деградации (ODDD -- oxygen dependant domen degradation) с широко распространенным в тканях белком von Hippel Lindau (VHL) -- супрессором опухолевого роста, который действует как протеинлигаза.

Молекулярной основой для такой регуляции является O2-зависимое гидроксилирование двух его пролиновых остатков P402 и P564, входящих в структуру HIF-1б, одним из трех ферментов, известных под общим названием «белки пролилгидроксилазного домена (PHD)», или «HIF-1б-пролилигидроксилазы», что необходимо для связывания HIF-1б с белком VHL. Обязательными компонентами процесса являются также б-кетоглутарат, витамин C и железо. Наряду с этим происходит гидроксилирование остатка аспарагина в C-терминальном трансактивационном домене (C-TAD), что приводит к подавлению транскрипционной активности HIF-1б. После гидроксилирования остатков пролина в ODDD и остатка аспарагина происходит связывание HIF-1б с белком VHL, которое делает доступной эту субъединицу протеосомной деградации.

В условиях резкого дефицита кислорода кислородозависимый процесс гидроксилирования пролиловых остатков, характерный для нормоксии, подавляется. В силу этого VHL не может связаться с HIF-1б, его деградация протеосомами ограничивается, что делает возможным его аккумуляцию. В отличие от этого p300 и CBP могут связываться с HIF-1б, так как этот процесс не зависит от аспарагинилгидроксилирования. Это обеспечивает активацию HIF-1б, его транслокацию в ядро, димеризацию с HIF-1в, приводящую к конформационным изменениям, образованию транскрипционного активного комплекса (HRE), запускающего активацию широкого спектра HIF-1-зависимых генов-мишеней и синтез защитных адаптивных белков в ответ на гипоксию.

Вышеприведенные механизмы внутриклеточной сигнальной трансдукции происходят в клетке при ее адаптации к гипоксии. В случае, когда наступает дезадаптация, в клетке накапливается значительная концентрация АФК, активизируются процессы ее апоптической гибели.

В числе первых можно назвать, в частности, переход фосфатидилсерина в наружный мембранный слой и фрагментацию ДНК под действием АФК и NO. В этой мембране фосфатидилсерин обычно присутствует только во внутреннем липидном слое. Такое асимметричное распределение данного фосфолипида обусловлено действием особой транспортной ATPазы, переносящей фосфатидилсерин из внешнего липидного слоя плазматической мембраны во внутренний. Эта ATPаза либо инактивируется окисленной формой фосфатидилсерина, либо просто «не узнает» окисленный фосфолипид. Вот почему окисление фосфатидилсерина посредством АФК ведет к его появлению во внешнем слое плазматической мембраны. По-видимому, существует специальный рецептор, обнаруживающий фосфатидилсерин в наружном липидном слое. Предполагается, что этот рецептор, связав фосфатидилсерин, шлет внутрь клетки сигнал апоптоза.

Фосфатидилсерин играет ключевую роль в так называемом принудительном апоптозе, вызываемом определенным типом лейкоцитов. Клетка с фосфатидилсерином во внешнем слое клеточной мембраны «узнается» этими лейкоцитами, которые инициируют ее апоптоз. Один из апоптогенных механизмов, используемых лейкоцитами, состоит в том, что лейкоциты начинают выделять в межклеточное пространство вблизи клетки-мишени белки перфорин и гранзимы. Перфорин проделывает отверстия во внешней мембране клетки-мишени. Гранзимы входят в клетку и запускают в ней апоптоз.

Иной способ, используемый лейкоцитом для принуждения клетки-мишени к вхождению в апоптоз, состоит в ее бомбардировке супероксидом, образующимся снаружи лейкоцита посредством специальной трансмембранной дыхательной цепи плазматической мембраны. Эта цепь окисляет внутриклеточный NADPH, с которого электроны переносятся на флавин и далее на особый цитохром b, способный окисляться кислородом с выделением супероксида снаружи лейкоцита. Супероксид и другие образующиеся из него АФК окисляют фосфатидилсерин плазматической мембраны клетки-мишени, тем самым усиливая апоптозный сигнал, посылаемый клетке этим фосфолипидом.

Кроме того, лейкоциты включают фактор некроза опухоли. TNF связывается с его рецептором на внешней стороне плазматической мембраны клетки-мишени, что активирует сразу несколько параллельных путей запуска апоптоза. В одном из них происходит образование активной каспазы-8 из прокаспазы-8. Каспаза-8 -- протеаза, расщепляющая цитозольный белок Bid с образованием его активной формы tBid (truncated Bid). tBid меняет конформацию другого белка, Bax, вызывая образование проницаемого для белков канала во внешней мембране митохондрий, что приводит к их выходу из межмембранного пространства в цитозоль.

Разнообразие путей АФК-зависимого апоптоза иллюстрирует рис. 1. Истинная картина, по всей вероятности, еще более сложна, так как помимо TNF есть и другие внеклеточные индукторы апоптоза (цитокины), действующие каждый через свой собственный рецептор. Кроме того, существуют антиапоптозные системы, противостоящие проапоптозным системам. Среди них белки типа Bcl-2, тормозящие проапоптическую активность Bax; уже упоминавшиеся ингибиторы каспаз (IAP); белок NFkB (nuclear factor kB), индуцируемый посредством TNF. NFkB включает группу генов, среди которых есть те, которые кодируют супероксиддисмутазу и другие антиоксидантные и антиапоптозные белки.

Все эти сложности отражают то очевидное обстоятельство, что для клетки «решение покончить с собой» есть крайняя мера, когда исчерпаны все другие возможности предотвращения ее ошибочных действий.

Приняв во внимание изложенное выше, можно представить себе следующий сценарий событий, призванных защитить организм от АФК, генерируемых митохондриями. Образовавшись в митохондриях, АФК вызывают открытие поры и, как следствие, -- выход цитохрома С в цитозоль, что немедленно включает дополнительные антиоксидантные механизмы, а затем митоптоз. Если в митоптоз уходит лишь небольшая часть внутриклеточной популяции митохондрий, концентрации цитохрома С и других митохондриальных проапоптических белков в цитозоле не достигают значений, необходимых, чтобы активировать апоптоз. Если же все больше и больше митохондрий становятся суперпродуцентами АФК и «открывают кингстоны», эти концентрации возрастают и начинается апоптоз клетки, содержащей много дефектных митохондрий. В результате происходит очистка ткани от клеток, митохондрии которых образуют слишком много АФК.

Таким образом, можно говорить о митохондриальной дисфункции как о новом патобиохимическом механизме нейродегенеративных расстройств широкого спектра. В настоящий момент выделяют два вида митохондриальной дисфункции -- первичную, как следствие врожденного генетического дефекта, и вторичную, возникающую под действием различных факторов: гипоксии, ишемии, оксидативного и нитрозирующего стресса, экспрессии провоспалительных цитокинов. В современной медицине все более значимое место занимает учение о полисистемных нарушениях клеточного энергообмена, так называемой митохондриальной патологии, или митохондриальной дисфункции.

Митохондриальные дисфункции -- разнородная группа патологии, вызванная генетическими, биохимическими и структурно-функциональными дефектами митохондрий с нарушением клеточно-тканевого дыхания. Классификация митохондриальной дисфункции имеет свою историю. Одной из первых была схема, основанная на биохимических дефектах метаболизма. Недостаточно глубокой оказалась и систематизация по клиническим синдромам, среди них ранее выделяли:

  • 1) синдромы установленной митохондриальной природы;
  • 2) синдромы предположительно митохондриальной природы;
  • 3) синдромы -- следствия митохондриальной патологии.

Первое упоминание о болезни, связанной с дефектом митохондрий, относится к 1962 г.: R. Luft и соавт. описали случай заболевания, при котором имело место нарушение сопряжения дыхания и фосфорилирования в митохондриях скелетных мышц у пациента с нетиреоидным гиперметаболизмом. В последующие годы были описаны клинические, биохимические и морфологические аспекты митохондриальных энцефаломиопатий. В развитии этого направления большую роль сыграло использование модифицированной окраски по Гомори, с помощью которой удавлось выявлять в скелетных мышцах волокна с измененными митохондриями -- так называемые ragged-red волокна (RRF).

Позднее, с открытием митохондриального генома и мутаций мДНК или яДНК, удалось применить генетический принцип классификации для первичной, врожденной митохондриальной дисфункции -- сначала в упрощенном виде, затем в усложненном. Ключевая область митохондриальной патологии -- наследственные синдромы, в основе которых лежат мутации генов, ответственных за митохондриальные белки (синдромы Кернса -- Сейра, MELAS, MERRF, Пирсона, Барта и др.). Митохондриальные дисфункции проявляются широким рядом клинических симптомов. Эти мутации способны вовлекать тРНК, рРНК или структурные гены и могут выражаться биохимически как дефекты всей электронно-транспортной цепи или как дефекты отдельных энзимов.

На протяжении 90-х годов XX столетия идентификация множества митохондриальных дефектов, обусловливающих клинически совершенно разные расстройства, ставила в тупик клиницистов в отношении диагностики гетерогенных и сложных синдромов, характеризующихся следующими признаками:

  • -- скелетные мышцы: низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз;
  • -- сердце: нарушение сердечного ритма, гипертрофическая миокардиопатия;
  • -- ЦНС: атрофия зрительного нерва, пигментная ретинопатия, мио­клонус, деменция, инсультоподобные эпизоды, расстройства психики;
  • -- периферическая нервная система: аксональная невропатия, нарушение двигательной активности гастроинтестинального тракта;
  • -- эндокринная система: диабет, гипопаратиреоидизм, нарушение экзокринной функции поджелудочной железы, низкий рост.

Поскольку первичные митохондриальные дисфункции проявляются у человека целым рядом различных симптомов, клиницисты попробовали объединить некоторые группы наиболее часто встречающихся комбинаций симптомов в синдромы:

  • · MELAS -- Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes (митохондриальная миопатия, энцефалопатия, лактат-ацидоз, инсультоподобные эпизоды).
  • · CPEO/PEO -- External Ophtalmoplegia, Ophtalmoplegia plus syndrome (офтальмоплегия, связанная с поражением глазодвигательных мышц, офтальмоплегия плюс синдром).
  • · KSS -- Kearns -- Sayre Syndrome -- retinopathy, proximal muscle weakness, cardiac arrhythmia and ataxia (ретинопатия, слабость проксимальных мышц, аритмия, атаксия).
  • · MERRF -- Myoclonic Epilepsy associated with Ragged Red Fibres (миоклоническая эпилепсия с обнаружением RRF).
  • · LHON -- Leber Hereditary Optic Neuropathy (врожденная невропатия глазного нерва).
  • · Leig syndrome -- infantile subacute necrotizing encephalopathy (инфантильная подострая некротизирующая энцефалопатия).
  • · NAPR -- Neuropathy, Ataxia and Pigmentary Retinopathy (невропатия, атаксия и пигментная ретинопатия).

Митохондриальные болезни — это группа наследственной патологии, возникающей в результате нарушений клеточной энергетики, характеризующаяся полиморфизмом клинических проявлений, выражающаяся в преимущественном поражении центральной нервной системы и мышечной системы, а также других органов и систем организма .

Альтернативное определение митохондриальной патологии гласит, что это обширная группа патологических состояний, обусловленных генетическими, структурными и биохимическими дефектами митохондрий, нарушением тканевого дыхания и, как следствие, недостаточностью энергетического обмена.

Как указывает A. Munnich, «митохондриальные заболевания могут вызывать любой симптом, в любой ткани, в любом возрасте, при любом типе наследования» .

Митохондриальные дыхательные цепи — главный конечный путь аэробного метаболизма. Поэтому митохондриальную патологию нередко называют «болезнями дыхательной цепи митохондрий» (БДЦМ); это сравнительно новый класс болезней.

Исторические аспекты митохондриальной патологии

R. Luft и соавт. (1962) обнаружили взаимосвязь между мышечной слабостью и нарушениями процессов окислительного фосфорилирования в мышечной ткани . S. Nass и M. Nass (1963) открыли существование собственного генетического аппарата митохондрий (обнаружены несколько копий кольцевой хромосомы) . В 1960-1970 гг. появилась концепция митохондриальных болезней, то есть патологии, этиологически опосредованной митохондриальной дисфункцией. В 1980-е гг. были получены точные молекулярно-генетические доказательства митохондриальной природы ряда заболеваний (болезнь Лебера, синдром Пирсона) .

Этиопатогенетические аспекты митохондриальной патологии

В зависимости от наличия основного метаболического дефекта принято рассматривать четыре основных группы митохондриальных болезней: 1) нарушения обмена пирувата; 2) дефекты обмена жирных кислот; 3) нарушения цикла Кребса; 4) дефекты электронного транспорта и окислительного фосфорилирования (OXPHOS) .

Причинами возникновения митохондриальной патологии являются мутации в генах, кодирующих белки, задействованные в процессах энергообмена в клетках (включая субъединицы комплекса пируватдегидрогеназы, ферменты цикла Кребса, компоненты цепи транспорта электронов, структурные белки цепи транспорта электронов (ЦТЭ), митохондриальные транспортеры внутренней мембраны, регуляторы митохондриального нуклеотидного пула, а также факторы, взаимодействующие с ДНК митохондрий (мтДНК) .

Митохондриальные нарушения связаны с большим числом болезней, не являющихся первичными митохондриальными цитопатиями. Тем не менее, при этих болезнях нарушения функций митохондрий вносят значимый вклад в патогенез и клинические проявления заболеваний. Описываемые болезни могут быть метаболическими, дегенеративными, воспалительными, врожденными/приобретенными мальформациями, а также неоплазмами.

Митохондрия является органеллой, которая присутствует практически в каждой клетке, за исключением зрелых эритроцитов. Именно поэтому митохондриальные болезни могут поражать любые системы и органы человеческого организма . В связи с этим правильнее называть эти состояния «митохондриальными цитопатиями» .

Основные особенности митохондриальных цитопатий включают выраженный полиморфизм клинических симптомов, мультисистемный характер поражения, вариабельность течения, прогрессирование и неадекватное реагирование на применяемую терапию.

Дыхательная цепь локализуется на внутренней мембране митохондрий и включает в себя пять мультиферментных комплексов, каждый из которых, в свою очередь, состоит из нескольких десятков субъединиц. Митохондриальная ДНК кодирует только 13 из белковых субъединиц дыхательной цепи, 2 белковых субъединицы мтРНК и 22 митохондриальных транспортных РНК (тРНК). Ядерный геном кодирует более 90% митохондриальных белков .

Конечным результатом окислительного фосфорилирования, происходящего в комплексах 1-γ, является производство энергии (АТФ). Аденозин трифосфат — основной источник энергии для клеток.

Митохондриальная ДНК тесно взаимодействует с ядерной ДНК (яДНК). В каждом из 5 дыхательных комплексов основная часть субъединиц кодируется яДНК, а не мтДНК. Комплекс I состоит из 41 субъединицы, из которых 7 кодируются мтДНК, а остальные — яДНК. Комплекс II имеет всего 4 субъединицы; большая их часть кодируется яДНК. Комплекс III представлен десятью субъединицами; кодирование мтДНК — 1, яДНК — 9. Комплекс IV имеет 13 субъединиц, из которых 3 кодируются мтДНК, а 10 — яДНК. Комплекс V включает 12 субъединиц, кодирование мтДНК — 2, яДНК — 10 .

Нарушения клеточной энергетики приводят к полисистемным заболеваниям. В первую очередь, страдают органы и ткани, являющиеся наиболее энергозависимыми: нервная система (энцефалопатии, полинейропатии), мышечная система (миопатии), сердце (кардиомиопатии), почки, печень, эндокринная система и другие органы и системы. До недавнего времени все эти заболевания определялись под многочисленными масками других нозологических форм патологии. К настоящему времени выявлено более 200 заболеваний, причиной которых являются мутации митохондриальной ДНК .

Митохондриальные болезни могут быть обусловлены патологией как митохондриального, так и ядерного генома. Как указывают P. F. Chinnery и соавт. (2004) и S. DiMauro (2004), мутации мтДНК были выявлены в 1 случае на 8000 населения, а распространенность митохондриальных заболеваний составляет порядка 11,5 случаев на 100 тысяч населения .

В каждой клетке находятся от нескольких сотен до нескольких тысяч органелл — митохондрий, содержащих от 2 до 10 кольцевых молекул митохондриальной ДНК, способных к репликации, транскрипции и трансляции, причем независимо от ядерной ДНК.

Генетические аспекты митохондриальной патологии

Митохондриальная генетика отличается от классической менделевской в трех важнейших аспектах: 1) материнское наследование (всю цитоплазму, вместе с находящимися в ней органеллами, потомки получают вместе с яйцеклеткой); 2) гетероплазмия — одновременное существование в клетке нормального (дикого) и мутантного типов ДНК; 3) митотическая сегрегация (оба типа мтДНК в процессе деления клетки могут распределяться случайным образом между дочерними клетками) .

Митохондриальная ДНК накапливает мутации более чем в 10 раз быстрее ядерного генома, так как она лишена защитных гистонов и ее окружение чрезвычайно богато реактивными видами кислорода, являющимися побочным продуктом метаболических процессов, протекающих в митохондриях. Пропорция мутантной мтДНК должна превышать критический пороговый уровень, прежде чем клетки начнут проявлять биохимические аномалии митохондриальных дыхательных цепей (пороговый эффект). Процентный уровень мутантной мтДНК может варьировать у индивидов внутри семей, а также в органах и тканях. В этом заключается одно из объяснений вариабельности клинической картины у больных с митохондриальными дисфункциями. Одни и те же мутации могут вызывать различные клинические синдромы (например, мутация A3243G — энцефалопатию с инсультоподобными пароксизмами — синдром MELAS, а также хроническую прогрессирующую наружную офтальмоплегию, сахарный диабет). Мутации в различных генах могут быть причиной одного и того же синдрома. Классическим примером такой ситуации является синдром MELAS .

Разновидности митохондриальной патологии

Если перечислить основные митохондриальные болезни, то в их числе окажутся следующие: митохондриальная нейрогастроинтестинальная энцефалопатия (MNGIE), синдром множественных делеций митохондриальной ДНК, липидная миопатия с нормальными уровнями карнитина, недостаточность карнитин пальмитоилтрансферазы, митохондриальный сахарный диабет, болезнь Альперса-Хуттенлохера, синдром Кернса-Сейра, болезнь Лебера (LHON), синдром Вольфрама, синдром MEMSA, синдром Пирсона, синдром SANDO, синдром MIRAS, синдром MELAS, синдром MERRF, синдром SCAE, синдром NARP, синдром Барта, синдром CPEO, синдром Ли и др. .

Наиболее часто в детском возрасте встречаются следующие клинические синдромы митохондриальной патологии: синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз и инсультоподобные пароксизмы), синдром MERRF (миоклонус-эпилепсия с рваными красными волокнами), синдром Кернса-Сейра (характеризуется птозом, офтальмоплегией, пигментным ретинитом, атаксией, нарушением сердечного проведения), синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром Ли (подострая некротизирующая энцефаломиелопатия), болезнь Лебера (наследственная оптическая нейропатия) .

Имеется большой пул заболеваний, причиной которых является не мутации митохондриальной ДНК, а мутации ядерной ДНК, кодирующей работу митохондрий. К ним относятся следующие виды патологии: болезнь Барта (миопатия, кардиомиопатия, транзиторные нейтро- и тромбоцитопении), митохондриальная гастроинтестинальная энцефалопатия (аутосомно-рецессивное мультисистемное заболевание): птоз, офтальмоплегия, периферическая нейропатия, гастроинтестинальная дисфункция, приводящая к кахексии, лейкоэнцефалопатия. Возраст дебюта последнего заболевания весьма вариабелен — от периода новорожденности до 43 лет.

Диагностика митохондриальной патологии

Клинические критерии диагностики митохондриальных болезней сравнительно многочисленны: 1) миопатический симптомокомплекс (непереносимость физических нагрузок, мышечная слабость, снижение мышечного тонуса); 2) судороги (миоклонические или мультифокальные); 3) мозжечковый синдром (атаксия, интенционный тремор); 4) поражение глазо-двигательных нервов (птоз, наружная офтальмоплегия); 5) полинейропатия; 6) инсультоподобные пароксизмы; 7) мигренеподобные головные боли; 8) черепно-лицевая дисморфия; 9) дисметаболические проявления (рвота, эпизоды летаргии, комы); 10) дыхательные нарушения (апноэ, гипервентиляция, тахипноэ); 11) поражение сердца, печени, почек; 12) прогрессирующее течение заболевания .

В диагностике митохондриальных болезней используются следующие клинические критерии: 1) признаки поражения соединительной ткани (гипермобильный синдром, гиперэластичность кожи, нарушения осанки и др.); 2) нейродегенеративные проявления, лейкопатии при проведении магнитно-резонансной томографии (МРТ) головного мозга; 3) повторные эпизоды нарушения сознания или необъяснимые эпизоды рвоты у новорожденных; 4) необъяснимая атаксия; 5) отставание в умственном развитии без определенных причин; 6) отягощенный семейный анамнез; 7) внезапное ухудшение состояния ребенка (судороги, рвота, расстройства дыхания, вялость, слабость, нарушения мышечного тонуса — чаще мышечная гипотония, кома, летаргия; поражение печени и почек, не поддающееся обычной терапии) .

Лабораторные (биохимические) исследования нацелены в первую очередь на выявление у пациентов лактат-ацидоза и/или пируват-ацидоза. При этом следует помнить, что нормальные показатели молочной кислоты не исключают наличия митохондриального заболевания. Другие биохимические показатели, исследуемые при подозрении на наличие митохондриальной патологии, включают кетоновые тела в крови и моче, ацилкарнитины плазмы крови, а также содержание органических кислот и аминокислот в крови и моче .

M. V. Miles и соавт. (2008) предложили оценивать содержание мышечного коэнзима Q10 у детей с дефектом ферментов дыхательной цепи митохондрий .

Цитоморфоденситометрические исследования позволяют оценивать активность митохондрий лимфоцитов (снижение количества, увеличение объема, снижение активности).

Из инструментальных исследований (помимо методов нейровизуализации) используется биопсия скелетных мышц с проведением специфических гистохимических реакций — для выявления феномена «рваных красных волокон» (ragged red fibers — RRF) в полученном биоптате. Синдромами с «рваными красными волокнами» являются следующие: MELAS, MERRF, KSS, PEO (прогрессирующая наружная офтальмоплегия), а также синдром Пирсона. Синдромы без RRF: болезнь Leigh, NARP, LHON (наследственная оптическая нейропатия Лебера) .

Генетические методы исследований сводятся к определению наиболее частых мутаций и секвенированию митохондриальной ДНК.

Лечение митохондриальной патологии

Терапия митохондриальных болезней, к сожалению, не разработана. С позиций доказательной медицины считается, что эффективное лечение для этой представительной группы болезней отсутствует. Тем не менее, в различных странах мира используются фармакологические средства и биологически активные вещества, нацеленные на нормализацию метаболизма и обеспечение адекватной энергетики митохондрий.

При синдроме MELAS лечение должно быть направлено на лечение судорог, эндокринных расстройств, устранение последствий инсульта.

P. Каufmann и соавт. (2006) указывают, что поскольку уровень лактата часто коррелирует с тяжестью неврологических проявлений, целесообразно применять дихлорацетат для снижения уровня лактата . В нашей стране с аналогичной целью используется диметилоксобутилфосфонилдиметилат (Димефосфон) .

В исследованиях японских авторов Y. Koga и соавт. (2002, 2005, 2006, 2007) с хорошим эффектом использовалось внутривенное введение L-аргинина (предшественника NO) — для стимуляции вазодилатации в остром периоде инсульта, а также пероральное его применение для снижения тяжести последующих эпизодов .

Среди средств, используемых в терапии митохондриальной патологии, фигурируют следующие: витамин В 1 (тиамин) — 400 мг/сут, витамин В 2 (рибофлавин) — 100 мг/сут, витамин С (аскорбиновая кислота) — до 1 г/сут, витамин Е (токоферол) — 400 МЕ/сут, никотинамид (ниацин) — до 500 мг/сут, коэнзим Q 10 — от 90 до 200 мг/сут, L-карнитин — от 10 мг до 1-2 г/сут, янтарная кислота — от 25 мг до 1,5 г/cут, Димефосфон 15% — 1,0 мл на 5 кг массы тела. Применяются также цитохром С (внутривенно), Реамберин (внутривенно) и Цитофлавин (внутривенно и перорально) .

В качестве других средств фармакотерапии выступают кортикостероиды, минералокортикоиды (при развитии надпочечниковой недостаточности), антиконвульсанты — при судорогах/эпилепсии (исключая вальпроевую кислоту и ее производные, ограничивая применение барбитуратов). В наших наблюдениях наиболее эффективной противосудорожной терапией являлось использование препаратов леветирацетам (Кеппра), топирамат (Топамакс) или их сочетаний.

Нейродиетология при митохондриальной патологии

Основным принципом диеты при митохондриальной патологии является ограничение нутриентов, оказывающих негативное влияние на механизмы обмена — до формирования метаболического блока (рацион питания одновременно обогащается другими компонентами на обычном или повышенном уровне). Такая терапевтическая стратегия получила название «обхождения блока» (going around the block). Важным исключением в этом плане является группа митохондриальных нарушений, ассоциированных с метаболизмом пирувата (недостаточность пируватдегидрогеназного комплекса с сопутствующими нарушениями со стороны углеводов/гликогена/аминокислот). При этом рекомендуются кетогенная диета и другие виды высокожировых диет .

Широко применяются вещества, являющиеся пищевыми кофакторами (коэнзим Q 10 , L-карнитин, ацетил-L-карнитин, витамин В 2 , аскорбиновая кислота, витамин Е, витамин В 1 , никотинамид, витамин В 6 , витамин В 12 , биотин, фолиевая кислота, витамин К, α-липоевая кислота, янтарная кислота, Se) . Рекомендуется избегание индивидуальных алиментарных факторов, индуцирующих обострение митохондриальной болезни (голодание, потребление жиров, белков, сахарозы, крахмала, алкоголя, кофеина, мононатрия глутамата; количественные нарушения приема пищи и неадекватное потребление пищевой энергии). При необходимости осуществляется клиническое питание (энтеральное, парентеральное, гастростомия) .

Чрезвычайно важными являются своевременная диагностика митохондриальных болезней, поиск клинических и параклинических критериев этих заболеваний на этапе предварительном, догенетическом. Это необходимо для подбора адекватной метаболической терапии и предотвращения ухудшения состояния или инвалидизации больных с этими редкими заболеваниями.

C. S. Chi (2015) подчеркивает, что подтверждение или исключение митохондриальной патологии остается принципиальным в педиатрической практике, особенно когда клинические признаки болезни не являются специфичными, вследствие чего необходим катамнестический подход к оценке симптомов и биохимических показателей .

Литература

  1. Martikainen M. H., Chinnery P. F. Mitochondrial disease: mimics and chameleons // Pract. Neurol. 2015. Vol. 15 (6): 424-435.
  2. Sarnat H. B., Menkes J. H. Mitochondrial encephalomyopathies. Ch. 2. In: Child Neuroloy (Menkes J. H., Sarnat H. B., Maria B. L., eds). 7 th ed. Philadelphia-Baltimore. Lippincott Williams & Wilkins. 2006. 143-161.
  3. Luft R., Ikkos D., Palmieri G., Ernster L., Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study // J. Clin. Invest. 1962. Vol. 41: 1776-1804.
  4. Nass M. M., Nass S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions // J. Cell. Biol. 1963. Vol. 19: 593-611.
  5. Nass S., Nass M. M. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments // J. Cell. Biol. 1963. Vol. 19: 613-629.
  6. Сухоруков В. С. Очерки митохондриальной патологии. М.: Медпрактика-М, 2011. 288 с.
  7. Chinnery P. F., DiMauro S., Shanske S., Schon E. A., Zeviani M., Mariotti C., Carrara F., Lombes A., Laforet P., Ogier H., Jaksch M., Lochmuller H., Horvath R., Deschauer M., Thorburn D. R., Bindoff L. A., Poulton J., Taylor R. W., Matthews J. N., Turnbull D. M. Risk of developing a mitochondrial DNA deletion disorder // Lancet. 2004. 364 (9434): 592-596.
  8. DiMauro S. Mitochondrial diseases // Biochim. Biophys. Acta. 2004. 1658 (1-2): 80-88.
  9. Siciliano G., Volpi L., Piazza S., Ricci G., Mancuso M., Murri L. Functional diagnostics in mitochondrial diseases // Biosci. Rep. 2007. Vol. 27 (1-3): 53-67.
  10. Miles M. V., Miles L., Tang P. H., Horn P. S., Steele P. E., DeGrauw A. J., Wong B. L., Bove K. E. Systematic evaluation of muscle coenzyme Q10 content in children with mitochondrial respiratory chain enzyme deficiencies // Mitochondrion. 2008. Vol. 8 (2): 170-180.
  11. Kaufmann P., Engelstad K., Wei Y., Jhung S., Sano M. C., Shungu D. C., Millar W. S., Hong X., Gooch C. L., Mao X., Pascual J. M., Hirano M., Stacpoole P. W., DiMauro S., De Vivo D. C. Dichloracetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial // Neurology. 2006. Vol. 66 (3): 324-330.
  12. Федеральное руководство по использованию лекарственных средств (формулярная система). Вып. XVI. М.: Эхо, 2015. 540.
  13. Koga Y., Ishibashi M., Ueki I., Yatsuga S., Fukiyama R., Akita Y., Matsuishi T. Effects of L-arginine on the acute phase of strokes in three patients with MELAS // Neurology. 2002. Vol. 58 (5): 827-828.
  14. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Tanabe Y., Fujimoto S., Matsuishi T. L-arginine improves the symptoms of strokelike episodes in MELAS // Neurology. 2005. Vol. 64 (4): 710-712.
  15. Koga Y., Akita Y., Junko N., Yatsuga S., Povalko N., Fukiyama R., Ishii M., Matsuishi T. Endothelial dysfunction in MELAS improved by L-arginine supplementation // Neurology. 2006. Vol. 66 (11): 1766-1769.
  16. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Katayama K., Matsuishi T. MELAS and L-arginine therapy // Mitochondrion. 2007. Vol. 7 (1-2): 133-139.
  17. Rai P. K., Russell O. M., Lightowlers R. N., Turnbull D. M. Potential compounds for the treatment of mitochondrial disease // Br. Med. Bull. 2015. Nov 20. pii: ldv046. .
  18. Finsterer J., Bindu P. S. Therapeutic strategies for mitochondrial disorders // Pediatr. Neurol. 2015. Vol. 52 (3): 302-313.
  19. Студеникин В. М., Горюнова А. В., Грибакин С. Г., Журкова Н. В., Звонкова Н. Г., Ладодо К. С., Пак Л. А., Рославцева Е. А., Степакина Е. И., Студеникина Н. И., Турсунхужаева С. Ш., Шелковский В. И. Митохондриальные энцефалопатии. Глава 37. В кн.: Нейродиетология детского возраста (коллективная монография)/Под ред. Студеникина В. М. М.: Династия, 2012. С. 415-424.
  20. Chi C. S. Diagnostic approach in infants and children with mitochondrial diseases // Pediatr. Neonatol. 2015. Vol. 56 (1): 7-18.

В. М. Студеникин* , 1 , доктор медицинских наук, профессор, академик РАЕ
О. В. Глоба**, кандидат медицинских наук

* ГОУ ВПО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва
** ГОУ ВПО ПМГМУ им. И. М. Сеченова МЗ РФ, Москва

Митохондриальные заболевания — неоднородная группа наследственных заболеваний, которые вызваны структурными, генетическими или биохимическими дефектами митохондрий, приводящих к нарушениям энергетических функций в клетках эукариотических организмов. У человека при митохондриальных заболеваниях в первую очередь поражается мышечная и нервная система.

МКБ-9 277.87
MeSH D028361
DiseasesDB 28840

Общие сведения

Митохондриальные заболевания как отдельный тип патологий выделены в конце ХХ века после выявления мутации генов, которые ответственны за синтез митохондриальных белков.

Открытые в 1960-х годах мутации митохондриальной ДНК и вызванные этими мутациями болезни более изучены, чем заболевания, вызванные нарушениями ядерно-митохондриальных взаимодействий (мутации ядерной ДНК).

По имеющимся на сегодняшний день данным не менее 50 известных медицине заболеваний связано с митохондриальными нарушениями. Распространенность этих заболеваний составляет 1:5000.

Виды

Митохондрии являются уникальными клеточными структурами, которые обладают собственным ДНК.

Согласно мнению многих исследователей, митохондрии – потомки архебактерий, превратившиеся в эндосимбионтов (микроорганизмы, которые живут в организме «хозяина» и приносят ему пользу). В результате внедрения в эукариотические клетки они постепенно утратили или передали ядру эукариотического хозяина большую часть генома, и это учитывается при классификации. Также принимается во внимание и участие дефектного белка в биохимических реакциях окислительного фосфорилирования, которое позволяет запасать энергию в виде АТФ в митохондриях.

Единой общепринятой классификации не существует.

Обобщенная современная классификация митохондриальных заболеваний выделяет:

  • Заболевания, которые возникают при мутациях митохондриальной ДНК. Дефекты могут быть вызваны точечными мутациями белков, тРНК или рРНК (обычно наследуются по материнской линии), или структурными перестановками – спорадическими (нерегулярными) дупликациями и делециями. Это первичные митохондриальные заболевания, к которым относятся наследственные ярко выраженные синдромы — синдром Кернса — Сейра, синдром Лебера, синдром Пирсона, синдром NAPR, синдром MERRF и др.
  • Заболевания, которые вызваны дефектами ядерной ДНК. Ядерные мутации могут нарушать функции митохондрий – окислительное фосфолирование, работу электронтранспортной цепи, утилизацию или транспорт субстратов. Также мутации ядерной ДНК вызывают дефекты ферментов, которые необходимы для обеспечения циклического биохимического процесса — цикла Кребса, являющегося ключевым этапом дыхания всех использующих кислород клеток и центром пересечения в организме метаболических путей. К данной группе относят гастроинтестинальное митохондриальное заболевание, синдром Люфта, атаксию Фридриха, синдром Альперса, болезни соединительной ткани, диабет и др.
  • Заболевания, которые возникают в результате нарушений в ядерной ДНК и вызванных этими нарушениями вторичных изменений в митохондриальной ДНК. Вторичными дефектами являются тканеспецифические делеции или дупликации митохондриальной ДНК и уменьшение количества копий митохондриальной ДНК или их отсутствие в тканях. В данную группу входят печеночная недостаточность, синдром Де Тони-Дебре-Фанкони и др.

Причины развития

Митохондриальные заболевания вызываются дефектами находящихся в клеточной цитоплазме органелл — митохондрий. Основной функцией этих органелл является выработка энергии из поступающих в цитоплазму продуктов клеточного обмена веществ, которая происходит благодаря участию около 80 ферментов. Выделяющаяся энергия запасается в виде молекул АТФ, а затем преобразуется в механическую или биоэлектрическую энергию и т.д.

Причины митохондриальных заболеваний – нарушение выработки и аккумуляции энергии из-за дефекта одного из ферментов. В первую очередь при хроническом дефиците энергии страдают самые энергозависимые органы и ткани – ЦНС, сердечная мышца и скелетные мышцы, печень, почки и эндокринные железы. Хронический дефицит энергии вызывает патологические изменения в данных органах и провоцирует развитие митохондриальных заболеваний.

Этиология митохондриальных заболеваний имеет свою специфику – большинство мутаций происходит в генах митохондрий, поскольку в этих органеллах интенсивно протекают окислительно-восстановительные процессы и образуются повреждающие ДНК свободные радикалы. У митохондриальной ДНК механизмы восстановления повреждений несовершенны, так как ее не защищают белки-гистоны. В результате дефектные гены накапливаются быстрее в 10-20 раз, чем в ядерной ДНК.

Мутировавшие гены передаются при делении митохондрий, поэтому даже в одной клетке находятся органеллы с разным вариантом генома (гетероплазмия). При мутации митохондриального гена у человека наблюдается смесь мутантной и нормальной ДНК в любом соотношении, поэтому даже при наличии одинаковой мутации митохондриальные заболевания у людей выражены в разной степени. Наличие 10% дефектных митохондрий не оказывает патологического влияния.

Мутация может длительное время не проявляться, так как нормальные митохондрии компенсируют на начальном этапе недостаточность функции дефектных митохондрий. Со временем дефектные органеллы накапливаются, и проявляются патологические признаки заболевания. При раннем манифесте течение болезни более тяжелое, прогноз может быть негативным.

Митохондриальные гены передаются только от матери, так как содержащая эти органеллы цитоплазма присутствует в яйцеклетке и практически отсутствует в сперматозоидах.

Митохондриальные заболевания, которые вызваны дефектами ядерной ДНК, передаются благодаря аутосомно-рецессивному, аутосомно-доминантному или Х-сцепленному типу наследования.

Патогенез

Геном митохондрий отличается от генетического кода ядра и больше напоминает код бактерий. У человека геном митохондрий представлен копиями небольшой кольцевой молекулы ДНК (их число колеблется от 1 до 8). Каждая митохондриальная хромосома кодирует:

  • 13 белков, которые отвечают за синтез АТФ;
  • рРНК и тРНК, которые участвуют в происходящем в митохондриях синтезе белка.

Около 70 генов белков митохондрий кодируются генами ядерной ДНК, благодаря чему осуществляется централизованная регуляция функций митохондрий.

Патогенез митохондриальных заболеваний связан с процессами, которые происходят в митохондриях:

  • С транспортом субстратов (органической кетокислоты пирувата, которая является конечным продуктом метаболизма глюкозы, и жирных кислот). Происходит под воздействием карнитин-пальмитоил-трансферазы и карнитина.
  • С окислением субстратов, которое происходит под влиянием трех ферментов (пируватдегидрогеназы, липоат-ацетилтрансферазы и липоамид-дегидрогеназы). В результате процесса окисления образуется ацетил-КоА, участвующий в цикле Кребса.
  • С циклом трикарбоновых кислот (цикл Кребса), который не только занимает центральное место в энергетическом обмене, но и поставляет промежуточные соединения для синтеза аминокислот, углеводов и других соединений. Половина стадий цикла является окислительными процессами, в результате которых выделяется энергия. Эта энергия аккумулируется в виде восстановленных коферментов (молекул небелковой природы).
  • С окислительным фосфорилированием. В результате полного разложения пирувата в цикле Кребса образуются коферменты NAD и FAD, участвующие в переносе электронов в дыхательную цепь переноса электронов (ЭТЦ). ЭТЦ контролируется митохондриальным и ядерным геномом и осуществляет транспорт электронов при помощи четырех мультиферментных комплексов. Пятый мультиферментный комплекс (АТФ-синтаза) катализирует синтез АТФ.

Патология может возникать как при мутациях генов ядерной ДНК, так и при мутациях генов митохондрий.

Симптомы

Митохондриальные заболевания отличаются значительным разнообразием симптомов, поскольку в патологический процесс вовлекаются разные органы и системы.

Нервная и мышечная системы являются самыми энергозависимыми, поэтому от дефицита энергии они страдают в первую очередь.

К симптомам поражения мышечной системы относятся:

  • снижение или потеря возможности выполнять двигательные функции в связи со слабостью мышц (миопатический синдром);
  • гипотония;
  • боли и болезненные спазмы мышц (крампи).

Митохондриальные заболевания у детей проявляются в головной боли, рвоте и слабости мышц после физической нагрузки.

Поражение нервной системы проявляется в:

  • задержке психомоторного развития;
  • утрате приобретенных ранее навыков;
  • наличии судорог;
  • наличии периодического появления апноэ и ;
  • повторных коматозных состояниях и смещении кислотно-щелочного баланса организма (ацидоз);
  • нарушениях походки.

У подростков наблюдаются головные боли, периферические нейропатии (онемение, утрата чувствительности, паралич и др.), инсультоподобные эпизоды, патологические непроизвольные движения, головокружение.

Для митохондриальных заболеваний также характерны поражения органов чувств, которые проявляются в:

  • атрофии зрительных нервов;
  • птозе и наружной офтальмоплегии;
  • катаракте, помутнении роговицы, пигментной дегенерации сетчатки;
  • дефекте поля зрения, которое наблюдается у подростков;
  • снижении слуха или нейросенсорной глухоте.

Признаками митохондриальных заболеваний являются и поражения внутренних органов:

  • кардиомиопатия и блокады сердца;
  • патологическое увеличение печени, нарушения ее функций, печеночная недостаточность;
  • поражения проксимальных почечных канальцев, сопровождающиеся повышенным выведением глюкозы, аминокислот и фосфатов;
  • приступы рвоты, дисфункция поджелудочной железы, диарея, целиакоподобный синдром.

Наблюдается также макроцитарная анемия, при которой увеличен средний размер эритроцитов, и панцитопения, для которой характерно снижение количества всех видов клеток крови.

Поражение эндокринной системы сопровождается:

  • задержкой роста и нарушением полового развития;
  • гипогликемией и диабетом;
  • гипоталамо-гипофизарным синдромом с дефицитом СТГ;
  • дисфункцией щитовидной железы;
  • гипотиреозом, нарушением обмена фосфора и кальция и .

Диагностика

Диагностика митохондриальных заболеваний основывается на:

  • Изучении анамнеза. Поскольку все симптомы митохондриальных заболеваний не являются специфическими, диагноз предполагается при комбинации трех и более симптомов.
  • Физикальном обследовании, которое включает тесты на выносливость и силу.
  • Неврологическом обследовании, включающем проверку зрения, рефлексов, речи и познавательных способностей.
  • Специализированных пробах, которые включают наиболее информативный тест – мышечную биопсию, а также фосфорную магнитно-резонансную спектроскопию и др. неинвазивные методы.
  • КТ и МРТ, которые позволяют выявить признаки повреждения головного мозга.
  • ДНК-диагностике, которая позволяет выявить митохондриальные заболевания. Не описанные ранее мутации определяются методом прямого секвенирования мтДНК.

Лечение

Эффективное лечение митохондриальных заболеваний активно разрабатывается. Внимание уделяется:

  • Увеличению эффективности энергетического обмена при помощи тиамина, рибофлавина, никотинамида, коэнзима Q10 (показывает хороший результат при синдроме MELAS), витамина С, цитохрома С и т.д.
  • Профилактике повреждения мембран митохондрий свободными радикалами, для которой используются a-липоевая кислота и витамин Е (антиоксиданты), а также мембранопротекторы (цитиколин, метионин и др.).

Лечение также включает применение креатина моногидрата как альтернативного источника энергии, снижение уровня молочной кислоты и физические упражнения.

Нашли ошибку? Выделите ее и нажмите Ctrl + Enter

Версия для печати

Новое на сайте

>

Самое популярное