Домой Виноград Энергия связи c h. Энергия разрыва химической связи. Длина химической связи

Энергия связи c h. Энергия разрыва химической связи. Длина химической связи

равна работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов) и удалить их друг от друга на бесконечное расстояние. Например, если рассматривается Э. х. с. H 3 C-H в молекуле метана, то такими частицами являются метильная группа CH 3 и атом водорода Н, если рассматривается Э. х. с. Н-Н в молекуле водорода, такими частицами являются атомы водорода. Э. х. с. - частный случай энергии связи (См. Энергия связи), обычно ее выражают в кдж/моль (ккал/моль ); в зависимости от частиц, образующих химическую связь (См. Химическая связь), характера взаимодействия между ними (Ковалентная связь, Водородная связь и другие виды химической связи), кратности связи (например, двойные, тройные связи) Э. х. с. имеет величину от 8-10 до 1000 кдж/моль. Для молекулы, содержащей две (или более) одинаковых связей, различают Э. х. с. каждой связи (энергию разрыва связи) и среднюю энергию связи, равную усредненной величине энергии разрыва этих связей. Так, энергия разрыва связи HO-H в молекуле воды, т. е. Тепловой эффект реакции H 2 O = HO + H равен 495 кдж/моль, энергия разрыва связи Н-О в гидроксильной группе - 435 кдж/моль, средняя же Э. х. с. равна 465 кдж/моль. Различие между величинами энергий разрыва и средней Э. х. с. обусловлено тем, что при частичной диссоциации (См. Диссоциация) молекулы (разрыве одной связи) изменяется электронная конфигурация и взаимное расположение оставшихся в молекуле атомов, в результате чего изменяется их энергия взаимодействия. Величина Э. х. с. зависит от начальной энергии молекулы, об этом факте иногда говорят как о зависимости Э. х. с. от температуры. Обычно Э. х. с. рассматривают для случаев, когда молекулы находятся в стандартном состоянии (См. Стандартные состояния) или при 0 К. Именно эти значения Э. х. с. приводятся обычно в справочниках. Э. х. с. - важная характеристика, определяющая реакционную способность (См. Реакционная способность) вещества и использующаяся при термодинамических и кинетических расчетах реакций химических (См. Реакции химические). Э. х. с. может быть косвенно определена по данным калориметрических измерений (см. Термохимия), расчетным способом (см. Квантовая химия), а также с помощью масс-спектроскопии (См. Масс-спектроскопия) и спектрального анализа (См. Спектральный анализ).

"Энергия химической связи" в книгах

17. Длина химической связи

Из книги Химия автора Данина Татьяна

17. Длина химической связи Расстояние между химическими элементами – это длина химической связи – величина, известная в химии. Она определяется соотношением Сил Притяжения и Отталкивания взаимодействующих химических

03. Энергия, сила, импульс, кинетическая энергия, теплород…

Из книги Механика тел автора Данина Татьяна

03. Энергия, сила, импульс, кинетическая энергия, теплород… В физике существует немалая путаница, связанная с использованием понятий «энергия», «сила», «импульс» и «кинетическая энергия».Сразу скажу, что, несмотря на то, что эти четыре понятия существуют в физике

Галактическая Энергия – Энергия Мысли

Из книги Золотые ангелы автора Климкевич Светлана Титовна

Галактическая Энергия – Энергия Мысли 543 = Галактическая энергия – это энергия мысли = «Числовые коды». Книга 2. Крайон Иерархия 06.09.2011 г.Я ЕСМЬ Что Я ЕСМЬ!Я ЕСМЬ Манас! Приветствую Тебя, Владыка!Что мне сегодня надо знать?Светлана, Дорогая! Умница ты моя! Как хорошо, что ты

А энергия – Космическая энергия (Кундалини)

Из книги Ангелы автора Климкевич Светлана Титовна

А энергия – Космическая энергия (Кундалини) 617 = Только добро встречая зло и не заражаясь им, побеждает зло = Утратив веру, человек теряет способность любить = «Числовые коды». Книга 2. Крайон Иерархия 11.04.14 г.Я ЕСМЬ ЧТО Я ЕСМЬ!Я ЕСМЬ Отец Небесный! Я ЕСМЬ Вечность!Светлана, ты

МАГНИТНАЯ ЭНЕРГИЯ - ЭНЕРГИЯ НОВОГО ВРЕМЕНИ (KPАЙON)

Из книги Крайон. Я выбираю тебя. Ченнелинг через Нама Ба Хала автора Крайон Нам Ба Хал

МАГНИТНАЯ ЭНЕРГИЯ - ЭНЕРГИЯ НОВОГО ВРЕМЕНИ (KPАЙON) Мой дорогой друг, ты - сияющий Высший Свет, решивший когда-то в теле человека с целью приобрести жизненный опыт погрузиться в призрачную реальность, которой, собственно говоря, и не существует.Я, Крайон, приветствую тебя

Ангел – Вселенская Энергия – Энергия Жизни

Из книги Я ЕСМЬ Вечность. Литературные беседы с Творцом (сборник) автора Климкевич Светлана Титовна

Ангел – Вселенская Энергия – Энергия Жизни 958 = Есть много вещей которые не увидишь глазами, их надо видеть душой – в том-то и сложность = «Числовые коды». Книга 2. Крайон Иерархия И тот в ком светоч разума горит, Дурных деяний в мире не свершит. Ливий Тит (380 лет до

ЭНЕРГИЯ СВОБОДНАЯ – ЭНЕРГИЯ СВЯЗАННАЯ

Из книги Словарь по психоанализу автора Лапланш Ж

ЭНЕРГИЯ СВОБОДНАЯ – ЭНЕРГИЯ СВЯЗАННАЯ Нем.: freie Energie – gebundene Energie. – Франц.: йnergie libre – йnergie liйe. – Англ.: free energy – bound energy. – Исп.: energia libre – energia ligada. – Итал.::energia libйra – energia legata. – Португ.: energia uvre – energia ligada. Термины, которые подразумевают, с точки зрения экономической,

12. Энергия действия и энергия сдерживания

Из книги Образ жизни, который мы выбираем автора Фёрстер Фридрих Вильгельм

12. Энергия действия и энергия сдерживания Упражнения в энергии сдерживания необычайно важны и для развития энергии действия. Кто хочет совершить что-то определенное, тот должен все свои силы сконцентрировать на одной цели. Поэтому он должен решительно противостоять

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

ЭНЕРГИЯ ИЗ СРЕДЫ - ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ - ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА - ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в

№175 Доклад инспектора химической подготовки РККА В.Н. Баташева начальнику ГУ РККА С.С. Каменеву о реорганизации химических войск и органов химической службы военного и мирного времени

Из книги Реформа в Красной Армии Документы и материалы 1923-1928 гг. [Книга 2] автора Военное дело Коллектив авторов --

№175 Доклад инспектора химической подготовки РККА В.Н. Баташева начальнику ГУ РККА С.С. Каменеву о реорганизации химических войск и органов химической службы военного и мирного времени №049015/сс5 мая 1927 г.Сов. секретноИнспекция химподготовки считает необходимым

Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла?

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Что больше: энергия, выделяемая при распаде одного ядра урана, или энергия, затрачиваемая комаром на один взмах крыла? Энергия, выделяемая при распаде одного ядра урана, составляет величину порядка 10 триллионных джоуля, а затрачиваемая комаром на один взмах крыла –

Энергия связи

БСЭ

Энергия химической связи

Из книги Большая Советская Энциклопедия (ЭН) автора БСЭ

III. Порядок присоединения сетей связи телерадиовещания и их взаимодействия с сетью связи телерадиовещания оператора сети связи телерадиовещания, занимающего существенное положение

Из книги Комментарий к правилам оказания услуг связи автора Сухарева Наталия Владимировна

III. Порядок присоединения сетей связи телерадиовещания и их взаимодействия с сетью связи телерадиовещания оператора сети связи телерадиовещания, занимающего существенное положение Комментарий к пункту 14Реестр ведется по форме, установленной Мининформсвязи .

Сексуальная энергия – энергия денег

Из книги Меня любят деньги. Прямой путь к вашему изобилию! автора Тихонова – Айыына Снежана

Сексуальная энергия – энергия денег Власть – это возбуждающее средство. Секс равен власти. Майкл Хатчинсон Психолог Карл Юнг изобрел психологическую модель для мужчин и женщин, которых он обозначал anima и animus. Он допустил, что каждый мужчина обладает внутренней

Гибридизация атомных орбиталей. Понятие о методе молекулярных орбиталей. Энергетические диаграммы образования молекулярных орбиталей для бинарных гомоядерных молекул. При образовании химической связи изменяются свойства взаимодействующих атомов и прежде всего энергия и заполненность их внешних орбиталей.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 13

Лебедев Ю.А. Лекция 0 2

Лекция №0 2

Химическая связь. Характеристики химической связи: энергия, длина, валентный угол. Типы химической связи. Полярность связи. Квантово-механические представления о природе ковалентной связи. Понятие о методе валентных связей. Гибридизация атомных орбиталей. - (c игма) и (пи)-связи. Геометрическая конфигурация молекул. Электрический момент диполя молекулы. Понятие о методе молекулярных орбиталей. Энергетические диаграммы образования молекулярных орбиталей для бинарных гомоядерных молекул. Сигма () и Пи()-молекулярные орбитали. Диа- и парамагнитные молекулы.

НАПОМИНАНИЕ

Уравнение Шредингера. - волновая функция.

Е= f (n , l , m , s ).

Химическая связь. Характеристики химической связи: энергия, длина, валентный угол.

Мы рассмотрели структуру электронных уровней изолированных атомов. Это – весьма редкие в практике объекты. Единственное исключение – это инертный газ аргон с электронной формулой 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 . И хотя его в атмосфере «только» 0,93% об, каждый из вас за один вдох буквально «заглатывает» около трехсот квинтиллионов штук атомов аргона.

Все остальные вещества и материалы, с которыми мы имеем дело, содержат химически связанные атомы. Взаимодействие свободных атомов друг с другом приводит к образованию молекул, ионов и кристаллов. Это – «классические» химические объекты. Однако в последнее время важную роль приобрели такие объекты, как наноструктуры, поверхностные соединения, бертоллиды и ряд других, практически важных «неклассических» химическх объектов.

Химическая связь обусловлена взаимодействием электронов внешних электронных оболочек атомов. Те орбитали, которые принимают участие в образовании химической связи, называются валентными орбиталями, а находящиеся на нах электроны – валентными электронами.

При образовании химической связи изменяются свойства взаимодействующих атомов и, прежде всего, энергия и заполненность их внешних орбиталей.

При образовании химической связи суммарная энергия электронов на валентных орбиталях меньше, чем их энергия в свободных атомах. Эта разница в энергиях называется энергией химической связи.

Типичная величина энергии химической связи – это сотни кДж/моль.

Важной количественной характеристикой химической связи является ее длина. Длина связи – это расстояние между ядрами химически связанных атомов в стабильном состоянии молекулы.

Типичная длина химической связи – это десятые доли нанометра. 1

Если в образовании молекулы при взаимодействии с данным атомом принимают участие два и более других атомов, то возникает вопрос о её геометрической структуре или химическом строении. Основы теории химического строения молекул положил А.М.Бутлеров 2

Одной из важнейших количественных характеристик строения сложных молекул является валентный угол - угол, образованный двумя направлениями химических связей, исходящими из одного атома.

Типы химической связи. Полярность связи.

По характеру взаимодействия валентных электронов и типу образующихся в ходе взаимодействия орбиталей, химические связи подразделяются на следующие основные типы: ковалентные (полярные и неполярные), ионные, донорно-акцепторные, водородные и межмолекулярные (называемые также ван-дер-ваальсовскими).

Ещё в 1916 году американский химик Г.Н.Льюис 3 высказал идею о том, что химическая связь образуется электронной парой, которая графически изображается валентной чертой:

F + F = F 2 (F-F).

Если электроотрицательности атомов равны, то такая связь называется неполярной. Если различны – полярной.

При образовании полярной ковалентной связи атомы приобретают дополнительный заряд – отрицательный у атома с большей электроотрицательностью и положительный – у атома с меньшей электроотрицательностью:

H+Cl = HCl (
–
)

В случае, когда разница электроотрицательностей взаимодействующих атомов велика, связь считается ионной:

Na + Cl = NaCl (Na + Cl - ).

Если электронная пара, образующая связь, до взаимодействия принадлежала одному из атомов, то такая связь называется донорно-акцепторной. Атом, который предоставил электронную пару называется донором, а принявший ее на свободную орбиталь – акцептором.

Особенно характерно возникновение донорно-акцепторных связей d - металлами, имеющими свободные или частично заполненные d -орбитали с образованием комплексных соединений.

О других видах связи мы поговорим позже.

Квантово-механические представления о природе ковалентной связи.

С современной точки зрения ковалентная связь возникает при квантово-механическом взаимодействии всех электронов всех взаимодействующих атомов. Но, как мы уже говорили на лекции №1, точного решения уравнения Шредингера, описывающего орбитали многих электронов в молекулах, нет. Облегчает задачу квантово-механического описания химической связи то, что при ее образовании роль электронов, находящихся на внутренних и внешних электронных оболочках, существенно различна.

Поэтому удалось создать различные приближенные методы описания химической связи.

Квантовая химия имеет богатый арсенал прикладных программ, позволяющих проводить расчеты с большой точностью для широкого класса молекул и ионов. 4

Однако универсального и достаточно точного квантово-химического алгоритма пока нет.

Для качественного понимания структуры химических соединений используются два метода – метод валентных связей (МВС) и метод молекулярных орбиталей (МО).

Понятие о методе валентных связей. Геометрическая конфигурация молекул. Электрический момент диполя молекулы.

Основными постулатами метода валентных связей являются:

1. Одинарная ковалентная химическая связь осуществляется двумя валентными электронами, которые занимают две орбитали – по одной от каждого из взаимодействующих атомов. При этом у образующих валентную пару электронов спины должны быть противоположными (связь образуют электроны с антипараллельными спинами).

2. Исходные атомные орбитали (АО) сохраняют свой абрис и в составе молекулы.

3.Связь образуется за счет перекрытия орбиталей, приводящего к увеличению электронной плотности между ядрами взаимодействующих атомов в направлении, обеспечивающем максимальное перекрытие.

Рассмотрим образование химической связи по МВС в молекуле водяного пара – H 2 O .

Молекула состоит из одного атома кислорода O и двух атомов водорода H . Электронная формула атома кислорода 1 s 2 2 s 2 2 p 4 . На внешнем энергетическом уровне находятся 6 электронов. Подуровень 2 s является заполненным. На подуровне 2 p на одной из p -орбиталей (положим, p y ,) находится электронная пара, а на двух других (p x и p z ) – по одному неспаренному электрону. Именно они и будут участвовать в образовании химической связи.

Электронная формула атома водорода 1 s 1 . У водорода один s -электрон, абрис орбитали которого сфера, и он будет участвовать в перекрытии с p -орбиталью кислорода, образуя химическую связь. Всего таких sp -перекрытий в молекуле воды будет два. И структура молекулы будет выглядеть так:

Как видно из рисунка, в молекуле воды имеется две ковалентные химические связи, направленные по осям Z и X . Следовательно, валентный угол в этой модели равен 90 о . Эксперимент свидетельствует – этот угол равен 104,5 o .

Совсем неплохое совпадение для простейшей качественной модели без всяких расчетов!

Электроотрицательность кислорода по Малликену – 3,5, а водорода – 2,1. Следовательно, каждая из связей будет полярной, причем заряд - будет на кислороде, а + - на водороде, т.е. образуются три центра электрического заряда. В молекуле образуются два электрических диполя.

Диполь – это два равных по величине заряда, расположенные на конечном расстоянии l друг от друга. Диполь характеризуется дипольным моментом

=

Диполь является вектором, направленным от отрицательного полюса к положительному. В молекуле воды образуются два дипольных момента связей, которые при сложении дают общий дипольный момент молекулы. Схема дипольных моментов молекулы воды по модели МВС имеет вид:

Важно подчеркнуть, что дипольные моменты связей складываются векторно и суммарный дипольный момент зависит от геометрии молекулы. Как видим, в данном случае, из-за того, что связи направлены под прямым углом друг к другу, молекула в целом оказывается полярной. И эксперимент подтверждает это – дипольный момент молекулы воды равен 1,84 Дебая. (1 Дебай равен 0,33*10 -29 Кл*м)

Геометрическая структура связей в молекулах может быть весьма разнообразной. Связи могут располагаться как на плоскости, так и в пространстве, образуя молекулы в виде объемных тел различной конфигурации (тригональные, тетрагональные, гексагональные пирамиды, бипирамиды, кольца, составленные из пирамид и т.д.)

Подробнее о взаимосвязи структуры химических связей и геометрией молекул нужно прочитать в учебнике на стр. 119 –128).

- (c игма) и (пи)-связи.

Вернемся к перекрытию орбиталей при образовании связей. В нашем примере область максимального перекрытия s и p -орбиталей лежит на линии, соединяющей центры атомов. Такой вид перекрытия получил название -связи.

Рассмотрим другой случай – молекулу кислорода O 2 . Как мы уже видели, атом кислорода имеет две p -орбитали, на которых находятся электроны, способные образовать химическую связь. Хорошо известная структурная формула кислорода O = O . В молекуле кислорода – двойная связь. Одна из них – это только что рассмотренная -связь. А вторая? Оказывается, что вторая связь образуется за счет другого типа перекрытия орбиталей, которое называется -связью.

Понятие о и связях выдвинул Ф.Хунд.

При образовании -связи орбитали перекрываются таким образом, что образуются две области перекрытия, причем располагаются они симметрично относительно плоскости, на которой лежат ядра взаимодействующих атомов.

Геометрически это выглядит так:

Обратите внимание на то, что -связь образована меньшими по объему частями p -орбиталей, в которых плотность «электронного облака» больше, а потому эта связь прочнее -связи. Действительно, эксперимент показывает, что в соединениях углерода этане С 2 H 6 (CH 3 - CH 3 – одна -связь), этилене C 2 H 4 (CH 2 = CH 2 - одна -связь и одна -связь) и ацетилене С 2 H 2 (C НС H - одна -связь и две -связи) энергия их разрыва соответственно равна 247, 419 и 515 кДж/моль.

Теперь мы можем дополнить список постулатов МВС:

4. Если в молекуле образуются кратные (двойные и тройные) связи, то одна из них будет -связью, а другие - -связями).

Отметим, что в соединениях d - и f -металлов возможно образование ещё одного типа связей - -связей, когда перекрытие происходит в четырех пространственных областях и плоскость симметрии перпендикулярна линии, соединяющей ядра атомов.

Гибридизация атомных орбиталей.

При образовании химических связей может происходить важное явление, которое называется гибридизацией орбиталей.

Рассмотрим атом бериллия Be . Его электронная формула – 1 s 2 2 s 2 . Судя по тому, что все электроны бериллия являются спаренными, такой атом должен вести себя химически подобно инертным газам – не вступать в химические взаимодействия.

Однако, посмотрим внимательно на электронографическую диаграмму атома бериллия:

Из диаграммы видно, что атом бериллия имеет кроме заполненной 2 s -орбитали ещё три свободных 2 p -орбитали! Правда, энергия этих орбиталей больше, чем энергия 2 s -орбитали на величину E . Но эта энергия невелика и меньше той, которая высвобождается при образовании химической связи. Поэтому атом стремится перестроить свои орбитали в ходе взаимодействия для достижения энергетически выгодного конечного состояния. Для такой перестройки используется кинетическая энергия взаимодействующих с данным атомом частиц. Подробнее об этом источнике энергии мы будем говорить при обсуждении вопросов химической кинетики. 5

Такая перестройка получила название гибридизации орбиталей, поскольку в ходе этого процесса из «двух сортов» орбиталей возникает новый.

На языке волновых функций это описывается уравнением, связывающим гибридную волновую функцию получившихся орбиталей с исходными волновыми функциями.

Количество образовавшихся гибридных орбиталей равно количеству орбиталей, принявших участие в процессе гибридизации.

Графически этот процесс может быть изображен следующей диаграммой:

Отметим, что энергия, необходимая для гибридизации E гибр меньше, чем разница энергий гибридизирующихся орбиталей E .

В обозначении гибридных орбиталей сохраняются обозначения исходных орбиталей. Так, в данном случае (атом Be ), гибридизируются одна s и одна p -орбиталь, и обе гибридные орбитали обозначаются как sp -орбитали. Необходимость гибридизации только двух орбиталей связана с тем, что у атома бериллия на внешнем энергетическом уровне только два электрона.

В других случаях, когда в гибридизации участвуют несколько одинаковых орбиталей, их количества отмечаются показателем степени. Например, при гибридизации одной s и двух p -орбиталей получаются три sp 2 -орбитали, а при гибридизации одной s и трех p -орбиталей – четыре sp 3 орбитали.

В рассматриваемом случае в соответствии с правилом Хунда атом бериллия получает два неспаренных электрона и способность образовать две ковалентные химические связи.

Гибридные орбитали, образованные s , p и даже d -орбиталями мало отличаются по форме и выглядят так («несимметричная гантель»):

Отметим, что количество гибридных орбиталей равно количеству орбиталей, участвующих в их создании вне зависимости от количества и типа гибридизирующихся орбиталей.

Расположение гибридных орбиталей в пространстве определяется их количеством.

Конкретно у атома бериллия две гибридные sp -орбитали расположены вдоль одной прямой (под углом 180 o ), что соответствует стремлению занимающих их одноименно заряженных электронов максимально удалиться друг от друга:

Подробнее о методе валентных связей и гибридизации можно прочесть здесь:

http://center.fio.ru/method/resources/Alikberovalyu/2004/stroenie/gl_10.html#104

Часто в молекулах имеются орбитали, занятые электронной парой («неподеленная электронная пара»). Такие орбитали не принимают участия в образовании химических связей, но влияют на геометрическую структуру молекулы.

Модификация МВС, учитывающая влияние таких орбиталей, называется теорией отталкивания электронных пар валентных орбиталей (ОЭПВО) и познакомиться с ней можно по учебнику на стр.124 – 128.

Понятие о методе молекулярных орбиталей.

Мы рассмотрели явление гибридизации АО в рамках МВС. Оказалось, что идея гибридизации является плодотворной и при более глубоком моделировании химических связей. Она является основой второго метода их описания, который рассматривается в нашем курсе – метода молекулярных орбиталей (МО).

Главным постулатом этого метода является утверждение о том, что АО взаимодействующих друг с другом атомов утрачивают свою индивидуальность и образуют обобщенные МО, т.е. что электроны в молекулах «принадлежат» не какому-то конкретному атому, а квантово-механически движутся по всей молекулярной структуре.

Существует несколько разновидностей метода МО, учитывающих б о льшее или меньшее число факторов и, соответственно, более или менее сложных математически. Наиболее простым является приближение, которое учитывает только линейные эффекты взаимодействия электронов. Это приближение называется методом МО ЛКАО (линейной комбинации атомных орбиталей).

На языке квантовой механики это утверждение для простейшего случая взаимодействия двух орбиталей записывается так:

Где - волновая функция МО,
- волновая функция АО первого атома,
- волновая функция АО второго атома, a и b – численные коэффициенты, характеризующие вклад данной АО в общую структуру МО.

Поскольку в правой части записан линейный многочлен, эта модификация метода МО и получила название ЛКАО.

Из уравнения видно, что при взаимодействии двух АО получаются две МО . Одна из них называется связывающей МО, а другая – разрыхляющей МО.

Почему они получили такое название, ясно из рисунка, на котором изображена энергетическая диаграмма орбиталей в молекуле:

Как видно из рисунка, связывающая МО имеет энергию меньшую, чем энергии исходных АО, а разрыхляющая – большую. (Соответственно,). Естественно, в соответствии с принципом минимальной энергии электроны в молекуле будут при образовании связи в первую очередь занимать связывающую орбиталь.

В общем случае, при взаимодействии N AO получается N MO .

Сигма () и пи()-молекулярные орбитали.

В результате количественных расчетов по методу МО ЛКАО выяснилось, что введенные в методе МВС понятия о и видах симметрии орбиталей сохраняются и в методе МО ЛКАО.

Вот как выглядят абрисы -связывающих (обозначаются как или) и -разрыхляющих (обозначаются как или) орбиталей в методе МО ЛКАО:

А вот как выглядят абрисы - связывающих () и -разрыхляющих (* ) орбиталей методе МО ЛКАО:

Энергетические диаграммы образования молекулярных орбиталей для бинарных гомоядерных молекул.

Расчет энергии молекулярных орбиталей для сложных молекул, в состав которых входят ядра различных элементов (гетероядерных молекул) является сложной вычислительной задачей даже для современных компьютеров. Поэтому каждый расчет индивидуальных молекул является отдельной творческой работой.

Тем не менее оказалось, что энергетическая диаграмма для бинарных гомоядерных молекул элементов второго периода Периодической системы Д.И.Менделеева является универсальной и имеет вид:

Иногда в литературе приводятся разные диаграммы для элементов B ,C,N и последующих O , F , Ne , однако исследования магнитных свойств молекулы B 2 при сверхнизких температурах не подтверждают однозначно необходимости усложнения вида энергетических диаграмм для B ,C,N.

Диа- и парамагнитные молекулы. Кратность связей по МО ЛКАО.

Одним из серьезных преимуществ метода МО ЛКАО по сравнению с методом ВС является более правильное описание магнитных свойств молекул и, в частности, объяснение парамагнетизма молекулярного кислорода. 6

Вспомним структуру молекулы кислорода по МВС, рассмотренную нами ранее. В соответствии с этой структурой все валентные электроны и и -связей в молекуле O 2 образуют электронные пары и суммарный спин молекулы равен нулю.

Структура орбиталей этой молекулы по методу МО ЛКАО, полученная заполнением электронами МО в соответствии с приведенной выше энергетической диаграммой имеет вид:

Как видно из этой диаграммы, в молекуле кислорода присутствуют два неспаренных электрона на разрыхляющих
и
орбиталях. Их магнитные моменты складываются и дают суммарный магнитный момент молекулы. Эксперимент показывает, что магнитный момент молекулы кислорода равен 2,8 (Собственный магнитный момент электрона – 1 ). Учитывая, что полный магнитный момент кроме собственного электронного включает в себя и орбитальный, количественное совпадение весьма убедительно свидетельствует в пользу справедливости именно метода МО.

При наличии магнитного момента вещество становится парамагнетиком – оно «притягивается магнитом». 7 При отсутствии магнитного момента вещество диамагнитно – оно «выталкивается» магнитным полем . 8

Кроме магнитных свойств анализ энергетических диаграмм МО ЛКАО дает возможность определить кратность (или порядок) химической связи (КС или ПС).

КС= ½(N связ – N разр )

где N связ – общее число электронов на связывающих орбиталях; N разр – общее число электронов на разрыхляющих орбиталях).

Мы рассмотрели различные случаи проявления и описания ковалентных химических связей. Это основной вид химической связи, поскольку причина ее возникновения – наличие валентных электронов – есть у подавляющего большинства химических элементов.

Однако в некоторых случаях взаимодействия атомов возникают особые условия, которые порождают особые виды связи, которые мы рассмотрим на следующей лекции.

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то этим электронам принадлежит главная роль в образовании химической связи. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Электроны, принимающие участие в образовании химической связи, называются валентными: у s- и р элементов -- это внешние электроны, у d- элементов -- внешние (последние) s-электроны и предпоследние d-электроны. С энергетической точки зрения наиболее устойчивым является атом, на внешнем уровне которого содержится максимальное число электронов (2 и 8 электронов). Такой уровень называют завершенным. Завершенные уровни отличаются большой прочностью и характерны для атомов благородных газов, поэтому при обычных условиях они находятся в состоянии химически инертного одноатомного газа.

У атомов других элементов внешние энергетические уровни незавершенные. В процессе химической реакции осуществляется завершение внешних уровней, что достигается либо присоединением, либо отдачей электронов, а также образованием общих электронных пар. Эти способы приводят к образованию двух основных типов связи: ковалентной и ионной. Таким образом, при образовании молекулы каждый атом стремится приобрести устойчивую внешнюю электронную оболочку: либо двухэлектронную (дублет), либо восьми-электронную (октет). Эта закономерность положена в основу теории образования химической связи. Образование химической связи за счет завершения внешних уровней в образующих связь атомах сопровождается выделением большого количества энергии, то есть возникновение химической связи всегда протекает экзотермически, поскольку оно приводит к появлению новых частиц (молекул), обладающих при обычных условиях большей устойчивостью, а следовательно, они меньшей энергией, чем у исходных. Одним из существенных показателей, определяющих какая связь образуется между атомами, является электроотрицательность, то есть способность атомом притягивать к себе электроны от других атомов. Электроотрицательность атомов элементов изменяется постепенно: в периодах периодической системы слева направо ее значение возрастает а в группах сверху вниз -- уменьшается.

Химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар, называется ковалентной.1) Разберем пример образования химической связи между атомами с одинаковой электроотрицательностью, например, молекулы водорода Н2 Образование химической связи в молекуле водорода можно представить в виде двух точек: Н- + -Н -> Н: Н или черточкой, которая символизирует пару электронов: H-H Ковалентная связь, образованная атомами с одинаковой электроотрицательностью называется неполярной. Такую связь образуют двухатомные молекулы, состоящие из атомов одного химического элемента: H 2, Cl 2 и др.2) Образование ковалентной связи между атомами, электроотрицательность которых различается незначительно. Ковалентная связь, образованная атомами с различной электроотрицательностью, называется полярной. При ковалентной полярной связи электронная плотность от общей пары электронов смещена к атому с большей электроотрицательностью. Примерами могут служить молекулы Н2О, NH3, H2S, CH3Cl. Ковалентная (полярная и неполярная) связь в наших примерах образовалась за счет неспаренных электронов связывающихся атомов. Такой механизм образования ковалентной связи называется обменным. Другой механизм образования ковалентной связи -- донорно-акцепторный. В этом случае связь возникает за счет двух спаренных электронов одного атома (донора) и свободной орбитали другого атома (акцептор). Хорошо известный пример -- образование иона аммония: Н++:NH 3 -> [ Н: NH3 | + <=====> NH4+ акцептор донор ион аммония электронов. При образовании иона аммония электронная пара азота становится общей для атомов N и Н, то есть возникает четвертая связь, которая не отличается от остальных трех. Их изображают одинаково:

Ионная связь возникает между атомами, электроотрицательность которых резко различается Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na ls2 2s2 2p 6 3s1; 17 Cl ls2 2p 6 Зs2 3р5 Как это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. -- l е --> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е -->.Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение.

Химическая связь, осуществляемая за счет электростатического притяжения между ионами, называется ионной связью. Соединения, образованные путем притяжения ионов называются ионными. Ионные соединения состоят из отдельных молекул только в парообразном состоянии. В твердом (кристаллическом) состоянии ионные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом случае отсутствуют. Ионные соединения образуют резко различные по величине электроотрицательности элементы главных подгрупп I и II групп и главных подгрупп VI и VII групп. Ионных соединений сравнительно немного. Например неорганические соли: NH4Cl (ион аммония NH4 + и ион хлора Cl-), а также солеобразные органические соединения: алкоголяты соли карбоновых кислот, соли аминов Неполярная ковалентная связь и ионная связь -- два предельных случая распределения электронной плотности. Неполярной связи отвечает равномерное распределение связующего двух электронного облака между одинаковыми атомами. Наоборот, при ионной связи связующие электронное облако практически полностью принадлежит одному из атомов. В большинстве же соединений химические связи оказывают промежуточными между этими видами связи, то есть в них осуществляется полярная ковалентная связь.

Металлическая связь существует в металлах в твердом в жидком состоянии. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов (1-3 электрона) и низкую энергию ионизации (отрыва электрона). Поэтому валентные электроны слабо удерживаются в атоме, легко отрываются и имеют возможность перемещаться по всему кристаллу. В узлах кристаллической решетки металлов находятся свободные атомы, положительно заряженные коны, а часть валентных электронов, свободно перемещаясь в объеме кристаллической решетки, образует «электронный газ», обеспечивающий связь между атомами металла. Связь, которую осуществляют относительно свободные электроны между ионами металлов в кристаллической решетке, называется металлической связью. Металлическая связь возникает за счет обобществления атомами валентных электронов. Однако между этими видами связи есть существенное различие. Электроны, осуществляющие ковалентную связь, в основном пребывают в непосредственной близости от двух соединенных атомов. В случае металлической связи электроны, осуществляющие связь, перемещаются по всему куску металла. Этим определяются общие признаки металлов: металлический блеск, хорошая проводимость теплоты и электричества, ковкость, пластичность и т. д. Общим химическим свойством металлов является их относительно высокая восстановительная способность.

Водородные связи могут образовываться между атомом водорода, связанным с атомом электроотрицательного элемента, и электроотрицательным элементом, имеющим свободную пару электронов(О,F,N). Водородная связь обусловлена электростатическим притяжением, которому способствуют малые размеры атома водорода, и отчасти, донорно-акцепторным взаимодействием. Водородная связь может быть межмолекулярной и внутримолекулярной. Связи 0-Н имеют выраженный полярный характер: Водородная связь гораздо более слабая, чем ионная или ковалентная, но более сильная, чем межмолекулярное взаимодействие. Водородные связи обуславливают некоторые физические свойства веществ (например, высокие температуры кипения). Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, обеспечивая им определенную пространственную структуру (организацию).

Энергия связи(Eсв). Кол-во энергии, выделяющейся при образовании химической связи, называется энергией химической связи[кДж/моль]. Для многоатомных соединений принимают среднее её значение. Чем больше Eсв тем устойчивее молекула.

Длина связи(lсв). Расстояние между ядрами в соединении. Чем больше длина связи -- тем меньше энергия связи.

Метод валентных связей.

  • А) химическая связь между двумя атомами возникает как результат перекрытия АО с образованием электронных пар.
  • Б) атомы вступающие в химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. Энергия обмена электронами между атомами(энергия притяжения атомов) вносит основной вклад в энергию химической связи. Дополнительный вклад в энергию связи дают кулоновские силы взаимодействия частиц.
  • В) в соответствии с принципом Паули химическая связь образуется лишь при взаимодействии электронов с разными спинами.
  • Г)характеристики химической связи(энергия, длина, полярность) определяются типом перекрывающихся АО.

Метод валентных связей. Ковалентная связь направлена в сторону максимального перекрывания АО реагирующих атомов.

Валентность. Способность атома присоединять или замещать определённое число других атомов с образованием химических связей.

При переходе в возбуждённое состояние, один из спаренных электронов переходит в свободную орбиталь той же оболочки.

Донорно-акцепторный механизм: образуется общая электронная пара за счёт неподелённой пары электронов одного атома и вакантной орбитали другого атома.

Метод молекулярных орбиталей. Электроны в молекуле распределены по МО, которые подобно АО характеризуются определённой энергией и формой. МО охватывают всю молекулу. Молекула рассматривается как единая система.

  • 1. Число МО равно общему числу АО, из которых комбинируется МО.
  • 2. Энергия одних МО оказывается выше, других -- ниже энергии исходных АО. Средняя энергия МО, полученная из набора АО, приблизительно совпадает с средней энергией этих АО.
  • 3. Электроны заполняют МО, как и АО, в порядке возрастания энергии, при это соблюдается принцип запрета Паули и правило Гунда.
  • 4. Наиболее эффективно комбинируются АО с теми АО которые характеризуются сопоставимыми энергиями и соответствующей симметрией.
  • 5. Как и в методе ВС, прочность связи в методе МО пропорциональна степени перекрывания атомных орбиталей.

Порядок и энергия связи. Порядок связи n=(Nсв-Nр)/2. Nсв -- число e на связывающих молекулярных орбиталях, Nр -- число e на разрыхляющих молекулярных орбиталях.

Если Nсв = Nр, то n=0 и молекула не образуется. С увеличением n в однотипных молекулах растёт энергия связи. В отличии от метода АО, в методе МО допускается, что связь может быть образована одним электроном.

Комплексные соеденения. Сложные соединения у которых имеются ковалентные связи, образованные по донорно акцепторному механизму

Учебное пособие

    1. Астрахань

Химическая связь: Учебное пособие / Рябухин Ю. И. – Астрахань: Астрахан. гос. техн. ун-т, 2013. – 40 с.

Предназначено для студентов инженерно-технических нехимических специальностей.

Соответствует государственным образовательным стандартам высшего профессионального образования

Ил.: 15 рис., табл.: 1, библиография: 6 назв., прилож.

Печатается по решению кафедры «Общая, неорганическая и аналитическая химия» (протокол №__ от _________ 2013 г.)

Рецензент: канд. хим. наук, доцент Лебедева А.П.

© Рябухин Ю.И., 2013

© АГТУ, 2013

ВВЕДЕНИЕ

В природе химические элементы в виде свободных атомов (за исключением благородных газов – элементов VIIIА-группы) практически не встречаются. Обычно атомы какого-либо химического элемента взаимодействуют либо друг с другом, либо с атомами других элементов, образуя химические связи с возникновением соответственно простых или сложных веществ. В то же время и молекулы разных веществ взаимодействуют друг с другом.

Учение о химической связи составляет основу всей теоретической химии.

Химическая связь 1 – это совокупность сил, связывающих атомы друг с другом в более устойчивые структуры – молекулы или кристаллы.

Образование молекул и кристаллов обусловлено главным образом кулоновским притяжением между электронами и атомными ядрами.

Природа химической связи была уяснена лишь после открытия законов квантовой (волновой) механики, управляющих микромиром. Современная теория отвечает на вопросы, почему возникает химическая связь и какова природа её сил.

Образование химических связей - процесс самопроизвольный ; в противном случае не существовало бы ни простых, ни сложных веществ. С термодинамической точки зрения причиной образования химической связи является уменьшение энергии системы.

Образование химической связи сопровождается выделением энергии, а её разрыв требует затраты энергии.

Характеристиками химической связи являются её энергия и длина.

Энергия химической связи - это энергия, выделяющаяся в процессе её образования и характеризующая её прочность; энергию связи выражают в кДж на моль образовавшегося вещества (Е св , кДж/моль) 2 .

Чем больше энергия химической связи, тем связь прочнее. Энергию химической связи двухатомной молекулы оценивают, сравнивая с состоянием, предшествующим её образованию. Для многоатомных молекул с одинаковым типом связи рассчитывают среднюю энергию химической связи (например, для Н 2 О или СН 4).

Средняя энергия химической связи определяется делением энергии образования молекулы на число её связей.

Длиной химической связи называют расстояние между ядрами атомов в молекуле.

Длина связи обусловлена размерами связывающихся атомов и степенью перекрывания их электронных оболочек.

Например для фтороводорода и иодоводорода:

l HF < l HI

В зависимости от типа соединяемых частиц (атомов или молекул) различают внутримолекулярные связи, за счёт которых образуются молекулы, и межмолекулярные связи, приводящие к образованию ассоциатов из молекул или к связыванию атомов отдельных функциональных групп в молекуле. Эти виды связей резко отличаются по величине энергии: для внутримолекулярных связей энергия составляет 100–1000 кДж/моль 1 , а для межмолекулярных связей она обычно не превышает 40 кДж/моль.

Рассмотрим образование внутримолекулярной химической связи на примере взаимодействия атомов водорода.

При сближении двух атомов водорода между их электронами с антипараллельными спинами происходит сильное обменное взаимодействие, приводящее к появлению общей электронной пары. При этом увеличивается электронная плотность в межъядерном пространстве, что способствует притяжению ядер, взаимодействующих атомов. В результате энергия системы уменьшается и система становится более устойчивой - между атомами возникает химическая связь (рис. 1).

Рис. 1. Энергетическая диаграмма образования химической связи между атомами водорода

Система имеет минимум энергии при определённом расстоянии между ядрами атомов; при дальнейшем сближении атомов энергия увеличивается вследствие возрастания сил отталкивания между ядрами.

В зависимости от того, каким образом взаимодействует общая электронная пара с ядрами соединяемых атомов, различают три основных типа химической связи: ковалентную, ионную и металлическую, а также водородную связь.

Сравнение данных по количеству электронов на внешней оболочке с количеством химических связей, которые может образовать данный атом, показало, что основы образования химической связи, выявленные при изучении молекулы водорода, действительны и для других атомов. Это происходит потому, что связь имеет электрическую природу и образуется за счет двух электронов (по одному от каждого атома). Поэтому следует ожидать корреляции между первой энергией ионизации (ПЭИ) атомов (имеющей электростатическое происхождение) и энергией их связи в двухатомных молекулах.

Экспериментальные данные по определению энергии связи для ряда двухатомных молекул (в газовой фазе), образованных из атомов 2-го и 3-го периодов, приведены в таблице 4.2 и на рис. 4.2.1.

Таблица 4.2

Молекула A 2

Энергия связи

(кДж/моль)

Молекула

Энергия связи (кДж/моль)

Рис. 4.2-1 Энергия связи в молекулах из элементов второго и третьего периодов в зависимости от ПЭИ элемента

Эти данные (см. в таблице 4.2, рис. 4.2-1) показывают, что энергия связи между атомами практически не зависит от ПЭИ связываемых атомов.

Неужели в двухатомных молекулах (где больше, чем один электрон) связь образуется по другому механизму и существуют дополнительные силы, ранее не учитываемые нами?

Прежде чем перейти к выявлению этих сил, попробуем объяснить эту независимость на основе уже существующих взаимодействий.
Начнем с изучения дополнительных факторов, которые объясняют отсутствие ожидаемой корреляции и независимость экспериментальных данных по измерению ПЭИ от энергии связи в двухатомных молекулах.
Разобьем таблицу (4.2) на четыре группы:

Группа А включает в себя молекулы, состоящие из идентичных атомов, у которых энергия связи ниже 40 кДж/моль. В газовой фазе эти молекулы распадаются на атомы.

Группа В включает в себя двухатомные молекулы, состоящие из идентичных атомов, энергия связи в которых колеблется от 400 кДж/моль до 1000 кДж/моль. Действительно, энергия связи в этих молекулах значительно отличается в большую сторону по сравнению с энергией связи в молекуле водорода, которая составляет 429 кДж/моль.

Группа С включает в себя двухатомные молекулы, состоящие из разных атомов, энергия связи в которых варьирует от 340 кДж/моль до 550 кДж/моль.

Группа D включает в себя двухатомные молекулы с идентичными атомами, энергия связи в которых составляет 50-350 кДж/моль.

ТАБЛИЦА 4.4
ЭНЕРГИЯ СВЯЗИ В МОЛЕКУЛАХ

Энергия связи (кДж/моль) в ряду двухатомных молекул

группа А

группа В

молекула энергия связи молекула энергия связи
Be 2 30 C 2 602
Ne 2 4 N 2 941
7.6 O 2 493
Ar 2 7 P 2 477
S 2 421

группа С

группа D

молекула энергия молекула энергия
LiF 572 B 2 274
NaF 447 Br 2 190
LiCl 480 Cl 2 239
NaCl 439 F 2 139
Li 2 110
Na 2 72

Прежде, чем мы начнем объяснение, давайте уточним вопросы, которые мы должны охватить.
Первый
вопрос:
Почему энергия связи между многоэлектронными атомами гораздо меньше или гораздо больше (таблица 4.2), чем в молекуле водорода (H 2)?

Чтобы объяснить значительное отклонение энергии связи в многоатомных молекулах от энергии связи в молекуле водорода, необходимо углубить наше понимание причины, почему количество электронов на внешней оболочке ограничено.
Присоединение электрона к атому происходит, когда имеется выигрыш в энергии, или, другими словами, если абсолютное значение потенциальной энергии системы атом + электрон возрастает в результате связи электрона с атомом. Данные о сродстве атома к электрону, указанные в таблице 4.3, дают нам численное значение выигрыша в энергии при присоединения электрона к атому.

Таблица 4.3

Первая энергия ионизации (ПЭИ) и сродство электронов у элементов 1-го, 2-го и 3-го периодов в таблице элементов (кДж/моль)

Сродство

Сродство

При присоединении электрона к атому общая энергия притяжения электронов к ядру увеличивается из-за увеличения количества электронов, притягиваемых к ядру. С другой стороны, энергия межэлектронного отталкивания растет за счет увеличения количества электронов. То есть, присоединение электрона к атому происходит, если в результате этой связи, выигрыш в энергии притяжения больше, чем потеря энергии из-за увеличения энергии отталкивания.

Подсчет изменения энергии при присоединении электрона к атому водорода дает выигрыш в энергии в 3,4 эВ. Т.е., атом водорода должен иметь положительное сродство к электрону. Это и наблюдается в эксперименте.

Аналогичный расчет изменения потенциальной энергии при присоединении электрона к атому гелия показывает, что присоединение электрона приводит не к увеличению потенциальной энергии, а к ее снижению. И действительно, сродство атома гелия, в соответствии с экспериментом, меньше нуля.

Поэтому, возможность присоединять или не присоединять электрон к атому определяется различиями в изменении абсолютных значений потенциальной энергии притяжения всех электронов к ядру и взаимного межэлектронного отталкивания. Если эта разница больше нуля, то электрон присоединится, а если меньше нуля, то нет.

Данные о сродстве атомов к электрону приведенные в таблице 4.3, показывают, что для атомов 1-го, 2-го и 3-го периодов кроме Be, Mg, Ne, Ar увеличение энергии притяжения во время присоединения электронов к ядру больше, чем увеличение энергии отталкивания.
В случае с атомами Be, Mg, Ne, Ar, увеличение энергии притяжения во время присоединения электронов к ядру ниже, чем увеличение энергии межэлектронного отталкивания. Независимым подтверждением этого вывода является информация по ПЭИ для атомов 2-го и 3-го периодов, приведенная в таблице 4.2 (группа A).

При образовании химической связи, количество электронов на внешних электронных оболочках атомов увеличивается на один электрон, и согласно расчету модели молекулы водорода Н 2, эффективные заряды связываемых атомов изменяются. Эффективные заряды связываемых ядер изменяются из-за притяжения заряженных ядер, и в связи с увеличением количества электронов на внешних оболочках связываемых атомов.

В молекуле водорода сближение ядер приводит к увеличению силы притяжения связывающих электронов к ядрам на 50%, что равно увеличению эффективного заряда связываемых ядер на 0,5 протонных единицы (см.главу 3).

С точки зрения выигрыша в энергии, образование связи - это нечто вроде промежуточного процесса между присоединением электрона к нейтральному атому (измеренное сродство к электрону) и присоединением электрона к атому, заряд ядра которого увеличивается на 1 единицу.

Согласно данным таблицы 4.3, при переходе от лития (ПЭИ - 519 кДж/моль) к бериллию (ПЭИ - 900 кДж/моль), ПЭИ увеличивается на 400 кДж/моль, а при переходе от бериллия к бору (ПЭИ - 799 кДж/моль) выигрыш в энергии снижается до 100 кДж/моль.
Вспомним, что внешней электронной оболочке бора имеется 3 электрона, а на внешней оболочке бериллия находятся 2 электрона. То есть, когда электрон присоединяется к бериллию с одновременным увеличением заряда ядра на одну протонную единицу, связываемый электрон входит во внешнюю оболочку бериллия, при этом выигрыш в энергии будет на 100 кДж/моль меньше, чем при вхождении электрона во внешнюю оболочку лития (при переходе от лития к бериллию).

Теперь вполне понятно резкое уменьшение энергии связи у атомов с отрицательным сродством атома к электрону, указанное в таблице 4.3. Однако, хоть Ne, Be, Mg, Ar не присоединяют электроны, они создают молекулы, т.к. увеличивается эффективный заряд ядер. Энергия связи в этих молекулах (группа А ) значительно ниже, чем в остальных молекулах.

Теперь давайте ответим на второй вопрос: Почему энергия связи в двухатомных молекулах группы В, показанных в таблице 4.2. в 1,5-2 раза больше, чем энергия связи в молекуле водорода?

На внешних оболочках атомов углерода (C), азота (N) и кислорода (O) находятся, соответственно, 4, 5 и 6 электронов. Количество связей, которые образуют эти атомы, ограничивается количеством дополнительных электронов, которые могут войти во внешнюю оболочку при образовании связи. Таким образом, атомы углерода (C), азота (N) и кислорода (O ) могут образовать, соответственно, 4, 3 и 2 химические связи. Соответственно между двумя атомами, приведенными в таблице 4.4, может образоваться не одна, а несколько химических связей, что предполагает гораздо больший выигрыш в энергии, по сравнению с образованием 1 связи у двухатомной молекулы, где связываемые атомы имеют по 1 электрону во внешней оболочке

Если атомы связаны одной химической связью, то такая связь называется единичной химической связью или общей химической связью. Когда атомы связаны несколькими химическими связями (двойными или тройными), такие связи называются кратными связями . Кратные связи, например, у молекул азота (N 2) и кислорода (O 2) описываются структурными формулами: N ≡ N и O = O.

Теперь рассмотрим группу С : Почему энергия связи в некоторых из двухатомных молекул, состоящих из различных атомов, значительно больше, чем у других молекул, которые состоят из одинаковых атомов?

Разберем молекулу NaCl . Атомы натрия и хлора сильно отличаются по сродству к электрону. Представляем образование связи как двухстадийный процесс. На первой стадии выигрыш в энергии получается за счет сродства атомов к электронам. То есть, с этой точки зрения, выигрыш в энергии, при формировании молекулы Cl 2 , должен быть больше, чем при формировании молекулы NaCl на величину разницы их сродства к электрону.

При расчете молекулы водорода (глава 3) энергия связи (энергия, необходимая для того, чтобы разделить молекулы на атомы) представляла собой сумму двух составляющих:

    разница между электронной энергией молекулы водорода и двух атомов водорода;

    дополнительная энергия, расходуемая на нагрев неразделенных молекул.

Рассчитывая первый компонент, мы вычисляем энергию молекулы, которая равна разнице между энергией притяжения ядер атомов водорода к связывающей паре электронов и суммой энергии отталкивания межэлектронных и межъядерных сил.

Для оценки энергии притяжения ядер к связывающим парам электронов, а также для оценки энергии межэлектронного отталкивания, мы должны сначала узнать значение эффективного заряда связываемых ядер.

Потенциал ионизации и энергия связи в двухатомных молекулах

Новое на сайте

>

Самое популярное