Домой Заготовки на зиму Геологический цикл формирования горных пород. Методы изучения земных недр

Геологический цикл формирования горных пород. Методы изучения земных недр

Геологические циклы

Геологические циклы - это самая крупная единица установленной периодичности Калесник С.В. Общие географические закономерности земли: учебное пособие для географических факультетов университетов / С.В. Калесник. - М.: Мысль, 1970. - С. 85.. Они отразились в смене режимов осадконакопления, вулканизма и магматизма, эпохах расчленения и выравнивания рельефа, периодах формирования кор выветривания и элювиальных образований, в чередовании морских трансгрессий и регрессий, ледниковий и межледниковий, в изменении климата планеты и содержании атмосферных газов.

Вся известная нам геологическая история Земли обнаруживает циклы в несколько сотен миллионов лет, служащих фоном для более коротких (десятки миллионов, миллионы, сотни тысяч лет и др.) циклов, природа которых различна. Наиболее продолжительным астрономическим периодом является галактический год - время между двумя последовательными прохождениями Солнца через одну и ту же точку галактической орбиты. Этот период составляет 180-200 миллионов лет Там же. С. 86.. Колебательными движениями земной коры и обусловленными ими изменениями распределения суши и моря определяется геологическая периодичность с ритмом 35-45 миллионов лет, который положен в основу выделения периодов. Указанные отрезки времени представляют собой своеобразные «сезоны» галактического года, к которому приурочены различные феномены планетной системы: крупные тектоно-магматические циклы, эпохи трансгрессий и регрессий, выравнивания и расчленения суши, возникновение глобальных ледниковых эпох и др.

Существует цикл продолжительностью 85-90 миллионов лет (космическое полугодие, или драконический период у астрономов), обусловленный сменой положения плоскости эклиптики Солнечной системы относительно такой же плоскости Вселенной. При анализе крупных деформаций земной коры и ее поверхности намечается периодичность в 500-570 миллионов лет (утроенный галактический год), причина которого пока не ясна.

История развития Земли за последние 570 миллионов лет делится на три этапа: каледонский (кембрий, ордовик, силур), длительностью около 200 миллионов лет, герцинский (девон, карбон, пермь), длительностью 150-190 миллионов лет, альпийский (мезозой, кайнозой), длительностью около 240 миллионов лет. Последний часто разделяется на раннеальпийский (киммерийский) продолжительностью около 170 миллионов лет и позднеальпийский (альпийский), начавшийся около 70-90 миллионов лет назад Селиверстов Ю.П. Указ. соч. С. 98..

При некотором различии в длительности эти этапы обладают общими чертами, которые позволяют говорить о цикличности: начало каждого этапа ознаменовано общим опусканием земной коры, а завершение ее поднятием. В эпоху опускания господствуют морской режим и однообразный климат, в эпоху поднятий широко распространены суша, мощные складкообразовательные и горообразовательные движения, разнообразные климаты. Средняя (170-190 миллионов лет) продолжительность этих этапов примерно соответствует длительности галактического года. Прямого отражения во времени быть не может, так как надо учитывать запаздывание отражения воздействия на конкретный объект. Существуют предположения о возможном сопоставлении цикличности великих оледенений, повторявшихся примерно через 150-160 миллионов лет, и длительности галактического года (рис. 1) Селиверстов Ю.П. Указ. соч. С. 99..

Сложность проблемы геологических циклов состоит не только в установлении их причин, но и в степени достоверности их существования. Кроме того, отдаленные друг от друга регионы развиваются в тектоническом отношении по-разному. Например, в некоторых областях Южной Сибири проявления складчатости в каледонскую эпоху были разновременны: основная складчатость в Туве была в раннем ордовике, в Западном Саяне - в середине силура, в Кузнецком Алатау - на границе среднего и позднего кембрия.

Механизм, управляющий ритмическими движениями земной коры, еще не выяснен и может быть связан с внутренними особенностями развития Земли или обусловлен длительностью галактического года.

На рисунках 2 и 3 отражена общая картина наиболее существенных геологических ритмов Калесник С.В. Указ. соч. С. 86..

Геология √ одна из фундаментальных естественных наук, изучающая строение, состав, происхождение и развитие Земли. Она исследует сложные явления и процессы, протекающие на ее поверхности и в недрах. Современная геология опирается на многовековой опыт познания Земли и разнообразные специальные методы исследования. В отличии от других наук о Земле, геология занимается исследованием ее недр. Основные задачи геологии состоят в изучении наружной каменной оболочки планеты √ земной коры и взаимодействующих с ней внешних и внутренних оболочек Земли (внешние √ атмосфера, гидросфера, биосфера; внутренние √ мантия и ядро).

Объектами непосредственного изучения геологии являются минералы, горные породы, ископаемые органические остатки, геологические процессы.

2. Цикл геологических наук.

Геология тесно связана с другими науками о Земле, например с астрономией, геодезией, географией, биологией. Геология опирается на такие фундаментальные науки как математика, физика, химия. Геология является синтетической наукой, хотя в то же время распадается на множество взаимосвязанных отраслей, научных дисциплин, изучающих Землю в разных аспектах и получающих сведения об отдельных геологических явлениях и процессах. Так, изучением состава литосферы занимаются: петрология, исследующая магматические и метаморфические породы, литология, изучающая осадочные горные породы, минералогия √ наука, изучающая минералы как природные химические соединения и геохимия √ наука о распределении и миграции химических элементов в недрах земли.

Геологические процессы, формирующие рельеф земной поверхности, изучает динамическая геология, частью которой являются геотектоника, сейсмология и вулканология.

Раздел геологии, занимающийся изучением истории развития земной коры и Земли в целом, включает стратиграфию, палеонтологию, региональную геологию и носит название ╚Историческая геология.

Есть в геологии науки, имеющие большое практическое значение. Такие, как о месторождениях полезных ископаемых, гидрогеология, инженерная геология, геокриология.

В последние десятилетия появились и приобретают все большее значение науки связанные с исследованием космоса (космическая геология), дна морей и океанов (морская геология).

Наряду с этим есть геологические науки, находящиеся на стыке с другими естественными науками: геофизика, биогеохимия, кристаллохимия, палеоботаника. К таковым относятся также геохимия и палеогеография. Наиболее близкая и разносторонняя связь геологии с географией. Для географических наук, таких как ландшафтоведение, климатология, гидрология, океанография, более всего важны геологические науки, изучающие процессы, влияющие на формирование рельефа земной поверхности и историю образования земной коры всей Земли.

3. Методы изучения земных недр.

В геологии применяют прямые, косвенные, экспериментальные и математические методы.

Прямые √ это методы непосредственных наземных и дистанционных (из тропосферы, космоса) изучений состава и строения земной коры. Основной √ геологическая съемка и картирование. Изучение состава и строения земной коры производится путем изучения естественных обнажений (обрывы рек, оврагов, склоны гор), искусственных горных выработок (каналы, шуффы, карьеры, шахты) и буровых скважин (мах √ 3,5 √ 4 км. в Индии и ЮАР, Кольская скважина √ более 12 км., проект 15 км.) В горных районах можно наблюдать естественные разрезы в долинах рек, вскрывающих толщи горных пород, собранных в сложные складки и поднятых при горообразовании с глубин 16 √ 20 км. Таким образом, метод непосредственного наблюдения и исследования слоев горных пород применим лишь к небольшой, самой верхней части земной коры. Лишь в вулканических областях по извергнутой из вулканов лаве и по твердым выбросам можно судить о составе вещества на глубинах 50 √ 100 км. и больше, где обычно располагаются вулканические очаги.

Косвенные √ геофизические методы, которые основаны на изучении естественных и искусственных физических полей Земли, позволяющие исследовать значительные глубины недр.

Различают сейсмические, гравиметрические, электрические, магнитометрические и др. геофизические методы. Из них наиболее важен сейсмический (╚сейсмос╩ √ трясение) метод, основанный на изучении скорости распространения в Земле упругих колебаний, возникающих при землетрясениях или искусственных взрывах. Эти колебания называются сейсмическими волнами, которые расходятся от очага землетрясений. Бывают 2 типа: продольные Vp, возникающие как реакция среды на изменения объема, распространяются в твердых и жидких телах и характеризуются наибольшей скоростью, и поперечные волны Vs, представляющие реакцию среды на изменение формы и распространяются только в твердых телах. Скорость движения сейсмических волн в разных горных породах различна и зависит от их упругих свойств и их плотности. Чем больше упругость среды, тем быстрее распространяются волны. Изучение характера распространения сейсмических волн позволяет судить о наличии различных оболочек шара с разной упругостью и плотностью.

Экспериментальные исследования направлены на моделирование различных геологических процессов и искусственное получение различных минералов и горных пород.

Математические методы в геологии направлены на повышение оперативности, достоверности и ценности геологической информации.

4. Строение Земли.

Выделяют 3 оболочки Земли: ядро, мантию и земную кору.

Ядро √ наиболее плотная оболочка Земли. Полагают, что внешнее ядро находится в состоянии, приближающемся к жидкому. Температура вещества достигает 2500 √ 3000 0 С, а давление ~ 300Гпа. Внутреннее ядро, предположительно находится в твердом состоянии. Состав внешнего и внутреннего ~ одинаков √ Fe √ Ni, близкий к составу метеоритов.

Мантия √ самая крупная оболочка Земли. Масса √ 2/3 массы планеты. Верхняя мантия характеризуется вертикальной и горизонтальной неоднородностью. Под континентами и океанами ее строение существенно отличается. В океанах на глубине ~ 50 км., а материках √ 80 √ 120 км. начинается слой пониженных сейсмических скоростей, который носит название сейсмического волновода или астеносферы (т.е. геосфера ╚без прочности╩) и отличается повышенной пластичностью. (Волновод распространяется под океанами до 300 √ 400 км., под материками — 100- 150 км.) К ней приурочено большинство очагов землетрясений. Полагают, что в ней возникают магматические очаги, а также зона подкорковых конвекционных течений и зарождение важнейших эндогенных процессов.

В. В. Белоусов объединяет земную кору, верхнюю мантию, включая астеносферу в тектоносферу.

Промежуточный слой и нижняя мантия отличаются более однородной средой, чем верхняя мантия.

Верхняя мантия сложена преимущественно ферро-магнезиальными силикатами (оливин, пироксены, гранаты), что соответствует перидотитовому составу пород. В переходном слое С основной минерал √ оливин.

Химический состав: оксиды Si, Al? Fe (2+, 3+), Ti, Ca, Mg, Na, K, Mn. Преобладают Si и Mg.

5. Земная кора.

Земная кора √ это верхняя оболочка Земли, сложенная магматическими, метаморфическими и осадочными породами, мощностью от 7 до 70 √ 80 км. Это наиболее активный слой Земли. Для нее характерен магматизм и проявления тектонических процессов.

Нижняя граница земной коры симметрична поверхности Земли. Под материками она глубоко опускается в мантию, и под океанами приближается к поверхности. Земная кора с верхней мантией до верхней границы астеносферы (т.е. без астеносферы) образует литосферу.

В вертикальном строении земной коры выделяют три слоя, сложенных различными по составу, свойствам и происхождению породам.

1 слой √ верхний или осадочный (стратосфера) сложен осадочными и вулканогенно-осадочными породами, глинами, глиняными сланцами, песчаными, вулканогенными и карбонатными породами. Слой покрывает почти всю поверхность Земли. Мощность в глубоких впадинах достигает 20 √ 25 км., в среднем √ 3 км.

Для пород осадочного чехла характерна слабая дислоцированность, сравнительно низкие плотности и небольшие изменения, соответствующие диагенетическим.

2 слой √ средний или гранитный (гранито √ гнейсовый), породы имеют сходство со свойствами гранитов. Сложена: гнейсами, гранодиоритами, диоритами, окализами, а так же габбро, мраморами, силинитами и др.

Породы этого слоя разнообразны по сотаву и степени их дислоцированности. Они могут быть неизменными и метаморфированными. Нижняя граница гранитного слоя называется сейсмический раздел Конрада. Мощность слоя √ от 6 до 40 км. На отдельных участках Земли этот слой отсутствует.

3 слой √ нижний, базальтовый состоит из более тяжелых пород, которые по свойствам близки к магматическим породам, базальтам.

В отдельных местах между базальтовым слоем и мантией залегает так называемый эклогитовый слой с более высокой плотностью, чем базальтовый.

Средняя мощность слоя в континентальной части ~ 20 км. Под горными хребтами достигает 30 √ 40 км., а под впадинами снижается до 12 √ 13 и 5-7 км.

Средняя мощность земной коры в континентальной части (Н. А. Белявский) √40,5 км., мин. √ 7 √ 12 км. в океанах, макс. √ 70 √ 80 км. (высокогорье на континентах).

Геология и цикл геологических наук

Геология – одна из фундаментальных естественных наук, изучающая строение, состав, происхождение и развитие Земли. Она исследует сложные явления и процессы, протекающие на ее поверхности и в недрах. Современная геология опирается на многовековой опыт познания Земли и разнообразные специальные методы исследования. В отличии от других наук о Земле, геология занимается исследованием ее недр. Основные задачи геологии состоят в изучении наружной каменной оболочки планеты – земной коры и взаимодействующих с ней внешних и внутренних оболочек Земли (внешние – атмосфера, гидросфера, биосфера; внутренние – мантия и ядро).

Объектами непосредственного изучения геологии являются минералы, горные породы, ископаемые органические остатки, геологические процессы.

Геология тесно связана с другими науками о Земле, например с астрономией, геодезией, географией, биологией. Геология опирается на такие фундаментальные науки как математика, физика, химия. Геология является синтетической наукой, хотя в то же время распадается на множество взаимосвязанных отраслей, научных дисциплин, изучающих Землю в разных аспектах и получающих сведения об отдельных геологических явлениях и процессах. Так, изучением состава литосферы занимаются: петрология, исследующая магматические и метаморфические породы, литология, изучающая осадочные горные породы, минералогия – наука, изучающая минералы как природные химические соединения и геохимия – наука о распределении и миграции химических элементов в недрах земли.

Геологические процессы, формирующие рельеф земной поверхности, изучает динамическая геология, частью которой являются геотектоника, сейсмология и вулканология.



Раздел геологии, занимающийся изучением истории развития земной коры и Земли в целом, включает стратиграфию, палеонтологию, региональную геологию и носит название «Историческая геология.

Есть в геологии науки, имеющие большое практическое значение. Такие, как о месторождениях полезных ископаемых, гидрогеология, инженерная геология, геокриология.

В последние десятилетия появились и приобретают все большее значение науки связанные с исследованием космоса (космическая геология), дна морей и океанов (морская геология).

Наряду с этим есть геологические науки, находящиеся на стыке с другими естественными науками: геофизика, биогеохимия, кристаллохимия, палеоботаника. К таковым относятся также геохимия и палеогеография. Наиболее близкая и разносторонняя связь геологии с географией. Для географических наук, таких как ландшафтоведение, климатология, гидрология, океанография, более всего важны геологические науки, изучающие процессы, влияющие на формирование рельефа земной поверхности и историю образования земной коры всей Земли.

Абсолютный и относительный возраст земли, геохронологическая шкала.

Возраст Земли как планеты по последним данным оценивается ~ 4,6 млрд. лет. Изучение метеоритов и лунных пород также подтверждает эту цифру. Однако самые древние породы Земли, доступные непосредственному изучению, имеют возраст около 3,8 млрд. лет. Поэтому весь более древний этап истории Земли носит название до геологической стадии. Объектом же геологического изучения является история Земли за последние 3,8 млрд. лет, которая выделяется в ее геологическую стадию.

Для выяснения закономерностей и условий образования г.п. необходимо знать последовательность их образования и возраст, т.е. установить их геологическую хронологию.

Различают относительный возраст г.п. (относительная геохронология) иабсолютный возраст г.п. (абсолютная геохронология).

Установлением возраста г.п. занимается наука стратиграфия (лат. Stratum - слой).

Абсолютный возраст горных пород и методы его определения.

Абсолютная геохронология устанавливает возраст г.п. в единицах времени. Определение абсолютного возраста необходимо для корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лищенных палеонтологических остатков фанерозойских и долембрийских пород.

К методам определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и не радиологические методы

Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста г.п., в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала (соотв. И породы).

Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево-аргоновый, рубидиево-стронциевый, радиоуглеродный и др. (выше установленный возраст Земли 4,6 млрд. лет не установлен с применением свинцового метода).

Не радиологические методы уступают по точности ядерным.

Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (~ 97 млн. лет).

Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в з.к. в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.

Биологический метод базируется на представлении о сравнительно равномерном развитии орг. мира. Исходный параметр - продолжительность четвертичного периода 1,7 - 2 млн. лет.

Метод подсчета слоев ленточных глин, накапливающихся на периферии тающих ледников. Глинистые осадки откладываются зимой, а песчаные летом и весной, т.о. каждая пара таких слоев результат годичного накопления осадков (последний ледник на Балтийском море прекратил свое движение 12 тысяч лет назад).

Цвет минерала

Вопрос о природе цветовой окраски минералов очень сложен. Природа окрасок некоторых минералов еще не определена. В лучшем случае цвет минерала определяется спектральным составом отражаемого минералом светового излучения или обуславливается его внутренними свойствами, каким-либо химическим элементом, входящим в состав минерала, тонко рассеянными включениями других минералов, органического вещества и другими причинами. Красящий пигмент иногда бывает, распространен неравномерно, полосами, давая разноцветные рисунки (например, у агатов).

Цвет некоторых прозрачных минералов меняется в связи с отражением падающего на них света от внутренних поверхностей, трещин или включений. Это явления радужной окраски минералов халькопирита, пирита и иризации – голубые, синие переливы лабрадора.

Некоторые минералы многоцветны (полихромные) и имеют разную окраску по длине кристалла (турмалин, аметист, берилл, гипс, флюорит и др.).

Цвет минерала иногда может быть диагностическим признаком. Например, водные соли меди имеют зеленый или синий цвет. Характер цвета минералов определяется визуально обычно путем сравнения наблюдаемого цвета с общеизвестными понятиями: молочно-белый, светло-зеленый, вишнево-красный и т.п. этот признак не всегда характерен для минералов, так как цвета многих из них сильно варьируют.

Цвет черты

Более надежным диагностическим признаком, чем цвет минерала, является цвет его порошка, оставляемого при царапании испытуемым минералом матовой поверхности фарфоровой пластинки. В ряде случаев совпадает с цветом самого минерала, в других он совсем иной. Так, у киновари окраска минерала и порошка красные, а у латунно-желтого пирита черта зеленовато-черная. Черту дают мягкие и средней твердости минералы, а твердые лишь царапают пластинку и оставляют на ней борозды.

Прозрачность

По своей способности пропускать свет минералы делятся на несколько групп:

  • прозрачные (горный хрусталь, каменная соль) – пропускающие свет, через них ясно видны предметы;
  • полупрозрачные (халцедон, опал) – предметы, через них плохо видны предметы;
  • просвечивающие только в очень тонких пластинках;
  • непрозрачные – свет не пропускают даже в тонких пластинках (пирит, магнетит).

Блеск

Блеском называется способность минерала отражать свет. Строгого научного определения понятия блеск не существует. Различают минералы с металлическим блеском как у полированных минералов (пирит, галенит); с полуметаллическим (алмазным, стеклянным, матовым, жирным, восковым, перламутровым, с радужными переливами, шелковистым). Многие физические свойства являются важными диагностическими признаками при определении минералов.

Спайность

Явление спайности у минералов определяется сцеплением частиц внутри кристаллов и обусловлено свойствами их кристаллических решеток. Раскол минералов происходит легче всего параллельно наиболее плотным сеткам кристаллических решеток. Эти сетки наиболее часто и в наилучшем развитии проявляются и во внешнем ограничении кристалла.

Количество плоскостей спайности у разных минералов неодинаково, достигает шести, причем степень совершенства разных плоскостей может быть неодинаковой. Различают следующие виды спайности:

  • весьма совершенную , когда минерал без особого усилия расщепляется на отдельные листочки или пластинки, обладающие гладкими блестящими поверхностями – плоскостями спайности (гипс).
  • совершенную , обнаруживаемую при легком ударе по минералу, который рассыпается на кусочки, ограниченные только ровными блестящими плоскостями. Неровные поверхности не по плоскости спайности получаются очень редко (кальцит раскалывается на правильные ромбоэдры разной величины, каменная соль – на кубики, сфалерит – на ромбические додекаэдры).
  • среднюю , которая выражается в том, что при ударе по минералу образуются изломы как по плоскостям спайности, так и по неровным поверхностям (полевые шпаты – ортоклаз, микроклин, лабрадор)
  • несовершенную . Плоскости спайности в минерале обнаруживаются с трудом (апатит, оливин).
  • весьма несовершенную . Плоскости спайности в минерале отсутствуют (кварц, пирит, магнетит). В то же время иногда кварц (горный хрусталь) встречается в хорошо ограненных кристаллах. Поэтому следует отличать естественные грани кристалла от плоскостей спайности, выявляющихся при изломе минерала. Плоскости могут быть параллельны граням и отличаться более «свежим» видом и более сильным блеском.

Излом

Характер поверхности, образующейся при разломе (расколе) минерала различный:

1. Ровный излом , если раскол минерала происходит по плоскостям спайности, как, например, у кристаллов слюды, гипса, кальцита.

2. Ступенчатый излом получается при наличии в минерале пересекающихся плоскостей спайности; он может наблюдаться у полевых шпатов, кальцита.

3. Неровный излом характеризуется отсутствием блестящих участков раскола по спайности, как, например, у кварца.

4. Зернистый излом наблюдается у минералов с зернисто-кристаллическим строением (магнетит,хромит).

5. Землистый излом характерен для мягких и сильно пористых минералов (лимонит, боксит).

6. Раковистый – с выпуклыми и вогнутыми участками как у раковин (апатит, опал).

7. Занозистый (игольчатый) – неровная поверхность с ориентированными в одном направлении занозами (селенит, хризотил-асбест, роговая обманка).

8. Крючковатый – на поверхности раскола возникают крючковатые неровности (самородная медь, золото, серебро). Этот вид излома характерен для ковких металлов.

Твердость

Твердость минералов – это степень сопротивляемости их наружной поверхности проникновению другого, более твердого минерала и зависит от типа кристаллической решетки и прочности связей атомов (ионов). Определяют твердость царапанием поверхности минерала ногтем, ножом, стеклом или минералами с известной твердостью из шкалы Мооса, в которую входят 10 минералов с постепенно возрастающей твердостью (в относительных единицах).

Относительность положения минералов по степени возрастания их твердости видна при сравнении: точные определения твердости алмаза (твердость по шкале равна 10) показали, что она более чем в 4000 раз выше, чем у талька (твердость – 1).

Шкала Мооса

Главная масса минералов имеет твердость от 2 до 6. Более твердые минералы – это безводные окислы и некоторые силикаты. При определении минерала в породе необходимо убедиться, что испытывается именно минерал, а не порода.

Удельный вес

Удельный вес изменяется от 0,9 до 23 г/см 3 . У большей части минералов он составляет 2 – 3,4 г/см 3 , рудные минералы и самородные металлы имеют наивысший удельный вес 5,5 – 23 г/см 3 . Точный удельный вес определяется в лабораторных условиях, а в обычной практике – «взвешиванием» образца на руке:

Легкие (с удельным весом до 2,5 г/см3) – сера, каменная соль, гипс и другие минералы;

Средние (2,6 – 4 г/см3) – кальцит, кварц, флюорит, топаз, бурый железняк и другие минералы;

С большим удельным весом (больше 4). Это барит (тяжелый шпат) – с удельным весом 4,3 – 4,7, сернистые руды свинца и меди – удельный вес 4,1 – 7,6 г/см 3 , самородные элементы – золото, платина, медь, железо и т.д. с удельным весом от 7 до 23 г/см 3 (осмистый иридий – 22,7 г/см 3 , платиновый иридий – 23 г/см 3).

Магнитность

Свойство минералов притягиваться магнитом или отклонять магнитную стрелку компаса является одним из диагностических признаков. Сильно магнитными минералами являются магнетит и пирротин.

Ковкость и хрупкость

Ковкими являются минералы, изменяющие свою форму при ударе молотком, но не рассыпающиеся (медь, золото, платина, серебро). Хрупкие – рассыпаются при ударе на мелкие кусочки.

Электропроводность

Электропроводность минералов – это способность минералов проводить электрический ток под действием электрического поля. В противном случае минералы относятся к диэлектрикам, т.е. не проводящим ток.

Горючесть и запах

Некоторые минералы загораются от спички и создают характерные запахи (сера – сернистого газа, янтарь – ароматический запах, озокерит – удушливый запах угарного газа). Запах сероводорода появляется при ударе по марказиту, пириту, при растирании кварца, флюорита, кальцита. При трении кусочков фосфорита друг о друга появляется запах жженой кости. Каолинит при смачивании приобретает запах печки.

Вкус

Вкусовые ощущения вызывают только хорошо растворимые в воде минералы (галит – соленый вкус, сильвин – горько соленый).

Шероховатость и жирность

Жирными, слегка мажущими являются тальк, каолинит, шероховатыми – боксит, мел.

Гигроскопичность

Это свойство минералов увлажняться, притягивая молекулы воды из окружающей среды, в том числе из воздуха (карналлит).

Некоторые минералы реагируют с кислотами. Для опознавания минералов, которые по химическому составу являются солями угольной кислоты, удобно пользоваться реакцией вскипания их со слабой (5 – 10%) соляной кислотой.

Факторы метаморфизма.

Изменение магматических и осадочных пород в твердом состоянии под воздействием эндогенных факторов и называется метаморфизмом.

Решающее влияние на метаморфизм горных пород оказывают давление, температура и флюиды.

Температура. Источниками тепла в земной коре являются распад радиоактивных элементов; магматические расплавы, которые, остывая, отдают тепло окружающим горным породам; нагретые глубинные флюиды; тектонические процессы и ряд других факторов. Геотермический градиент, т.е. количество градусов на 1 км глубины, меняется от места к месту на земном шаре и разница может составлять почти 100o С. В пределах устойчивых, жестких блоков земной коры, например на щитах древних платформ, геотермический градиент не превышает 6-10o С, в то время как в молодых растущих горных сооружениях может достигать почти 100o С. Температура резко ускоряет протекание химических реакций, способствует перекристаллизации вещества, сильно влияет на процессы минералообразования. Возрастание температуры приводит к обезвоживанию (дегидратации) минералов, формированию более высокотемпературных минеральных ассоциаций, лишенных воды, декарбонатизации известняков и т. д. Обычно метаморфические преобразования начинаются при Т выше 300o С, а прекращаются, когда Т достигает точки плавления развитых в данном месте горных пород.

Давление подразделяется на всестороннее (литостатическое), обусловленное массой вышележащих горных пород, и стрессовое, или одностороннее, связанное с тектоническими направленными движениями. Всестороннее литостатическое давление связано не только с глубиной, но также и с плотностью пород, и на глубине 10 км может превышать 200 мПа, а на глубине 30 км - 600-700 мПа. При геотермическом градиенте в 25 град/км плавление горных пород может начаться на глубине около 20 км. При высоких давлениях породы переходят в пластичное состояние- Одностороннее стрессовое давление лучше всего проявляется в верхней части земной коры складчатых зон и выражается в образовании определенных структурно-текстурных особенностей породы и специфических стресс-минералов, таких, как глаукофан, дистен и др. Стрессовое давление вызывает механические деформации горных пород, их дробление, рассланцевание, увеличение растворимости минералов в направлении давления. В подобные милонитизированные зоны проникают флюиды, под воздействием которых породы испытывают перекристаллизацию.

Флюиды, к которым относятся H2O, CO2, CO, CH4, H2, H2S, SO2 и другие переносят тепло, растворяют минералы горных пород, переносят химические элементы, активно участвуют в химических реакциях и играют роль катализаторов. Значение флюидов иллюстрируется тем, что в <сухих системах>, т. с. лишенных флюидов, даже при наличии высоких давлений и температур метаморфические изменения почти не происходят.

Осадочные горные породы.

Осадочные горные породы образовались на поверхности литосферы в результате накопления минеральных масс, полученных в процессе разрушения магматических, метаморфических и осадочных горных пород. Процессы разрушения горных пород литосферы и накопления новых пород на поверхности земли идут повсеместно: в пустынях, где энергичную работу ведет ветер; вдоль морских и океанических берегов, где волны перемещают обломочный материал; на дне глубоких частей морей и океанов, где отмирающие организмы дают начало толщам осадочных пород. Условия образования накладывают существенный отпечаток на облик осадочных пород. В одних случаях они состоят из обломков ранее разрушенных горных пород, в других - из скопления органических остатков, в третьих - из кристаллических зерен, выпавших из раствора.

Осадочные породы в зависимости от происхождения резко отличаются друг от друга. Поэтому их принято подразделять на три группы:

Обломочное происхождение

Химическое происхождение

Органогенное происхождение

Осадочные породы представляют особый интерес для строителей, так как они служат основаниями и средой для различных сооружений и повсеместно доступны в качестве строительных материалов. Они имеют вторичное происхождение, поскольку исходным материалом для их формирования являются продукты разрушения ранее существовавших пород. Процесс образования осадочных пород протекает по схеме: физическое и химическое выветривание пород, механический и химический перенос, отложение и накопление продуктов их разрушения и, наконец, уплотнение и цементация рыхлого осадка с превращением его в породу. Общими свойствами осадочных пород являются одинаковые формы залегания в виде пластов, с которыми связаны их характерные текстурные признаки - слоистость и пористость. Последняя особенно важна, так как оказывает большое влияние на физико-механические свойства пород: прочность, плотность и среднюю плотность, водопоглощение, морозостойкость, механическую обработку и др.

Осадочные породы отличаются многообразием структур с широким варьированием формы, размеров частиц и их соотношения у различных представителей. Для них характерно значительное разнообразие минеральных компонентов, более простых по химическому составу и являющихся преимущественно осадочными новообразованиями, совпадающими по составу с некоторыми магматическими минералами. Среди породообразующих минералов встречаются осажденные из водных растворов карбонаты, сульфаты, водный кремнезем; вторичные (глинистые) продукты выветривания материнских пород - каолинит, монтмориллонит; слюдистые минералы, гидроксиды А1 и Fe; реликтовые минералы, сохранившиеся без изменения, - магматический кварц, полевые шпаты, а также обломки пород различного генезиса и остатки организмов. Некоторые представители осадочных пород растворяются в воде, например каменная соль, гипс, известняки.

Классификация грунтов.

Классификация грунтов включает следующие таксономические единицы, выделяемые по группам признаков:

Класс - по общему характеру структурных связей;

Группа - по характеру структурных связей (с учетом их прочности);

Подгруппа - по происхождению и условиям образования;

Тип - по вещественному составу;

Вид - по наименованию грунтов (с учетом размеров частиц и показателей свойств);

Разновидности - по количественным показателям вещественного состава, свойств и структуры грунтов.

Класс природных скальных грунтов - грунты с жесткими структурными связями (кристаллизационными и цементационными) подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 1.

Класс природных дисперсных грунтов - грунты с водноколлоидными и механическими структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности

Класс природных мерзлых грунтов* - грунты с криогенными структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности

Класс техногенных (скальных, дисперсных и мерзлых) грунтов - грунты с различными структурными связями, образованными в результате деятельности человека, подразделяют на группы, подгруппы, типы и виды

Частные классификации по вещественному составу, свойствам и структуре скальных, дисперсных и мерзлых грунтов (разновидности) представлены в приложении Б.

По своему происхождению горные породы они подразделяются на:

Магматические, изверженные, образовавшиеся в результате застывания магмы; они имеют кристаллическую структуру и классифицируются как скальные грунты;

Осадочные; они образовались в результате разрушения и выветривания горных пород с помощью воды и воздуха и образуют скальные и нескальные грунты;

Метаморфические, которые образовались в результате действия на метаморфические и осадочные породы высоких температур и больших давлений; они классифицируются как скальные грунты.

Верховода, характеристика.

Верховодкой называют временные скопления подземных вод в зоне аэрации. Эта зона располагается на небольшой глубине от поверхности, над горизонтом грунтовых вод, где часть пор пород занята связанной водой, другая часть – воздухом.

Верховодка образуется над случайными водоупорами (или полуводоупорами), в роли, которых могут быть линзы глин и суглинков в песке, прослойки более плотных пород. При инфильтрации вода временно задерживается и образует своеобразный водоносный горизонт. Чаще всего это бывает связанно с периодом обильного снеготаяния, периодом дождей. В остальное время вода верховодки испаряется и просачивается в нижележащие грунтовые воды.

Другой особенностью верховодки является вохможность ее образования даже при отсутствии в зоне аэрации каких-либо водоупорных пропластков. Например, в толщу суглинков обильно поступает вода, но вследствие низкой водопроницаемости просачивание происходит замедленно и в верхней части толщи образуется верховодка. Через некоторое время эта вода рассасывается.

В целом для верховодки характерно: временный, чаще сезонный характер, небольшая площадь распространения, малая мощность и безнапорность. В легко водопроницаемых породах, например в песках, верховодка возникает сравнительно редко. Для нее наиболее типичны различные суглинки и лессовые породы.

Верховодка представляет значительную опасность для строительства. Залегая в пределах подземных частей зданий и сооружений (подвалы котельные) она может вызвать их подтопление, если заранее не были предусмотрены меры дренирования или гидроизоляции. В последнее время в результате значительных утечек воды (водопровод, бассейны) отмечено появление горизонтов верховодок на территории промышленных объектов и новых жилых районов, расположенных в зоне расположения лессовых пород. Это представляет серьезную опасность, так как грунты оснований снижают свою устойчивость, затрудняется эксплуатация зданий и сооружений.

При инженерно-геологических изысканиях, проводимых в сухое время года, верховодка не всегда обнаруживается. Поэтому ее появление для строителей может быть неожиданным.

Воды зоны аэрации.

Как правило, зона аэрации имеет слои грунта различные по своей водопроницаемости. Поэтому, во время выпадения дождей, в зоне аэрации может образовываться временный водоносный горизонт, который называется верховодкой. Верховодка особенно характерна при зимней оттепели и весной, когда в грунте ещё сохраняется водонепроницаемый слой сезонной мерзлоты, а тающий на поверхности снег обеспечивает интенсивное насыщение почвы водой. Весенняя верховодка часто является причиной затопления подвалов зданий.

Наличие влаги в зоне аэрации объясняется тем, что все капиллярно-пористые системы, в частности которой и является зона аэрации сложенная песками обладает способностью всасывать влагу из воздуха, удерживать и накапливать ее в своих порах. После чего накопленная влага может "стекать" из зоны аэрации в водоносный горизонт, пополняя его запасы. Эта способность возрастает с уменьшением влажности грунта, понижением его температуры и увеличением содержания в нем солей. Благодаря процессам внутригрунтовой конденсации водяных паров даже в пустынях, где влажность воздуха минимальна, под барханами образуются линзы пресной воды.

Зона аэрации расположена между поверхностью земли и уровнем грунтовых вод. Зона насыщения горных пород расположена ниже уровня грунтовых вод. Подземные воды в зоне насыщения циркулируют в виде верховодк, грунтовых, артизеанских, трещинных и вод вечной мерзлоты. Верховодки- это временные скопления подземных вод в зоне аэрации. Верховодки образуются над случайными водоупорами- линзы глин и суглинков, при инфильтрации вода задерживается и образует водоносные горизонты. Это связанно с периодом обильного снеготаяния, периодом дождей. Также это появляется вследствие низкой водопронинцаемости грунта.

Для обеспечения зоны аэрации, для дыхания корней, правильного разложения органического вещества в почве должен происходить газообмен, при котором весь объем воздух в корнеобитаемом слое будет обновляться не больше, чем за 8 суток. Для нормального роста и развития растений в почве одновременно должны содержаться в определенном соотношении воздух и вода. При недостатке воды корни растений не могут подать требуемое количество ее к листьям (почвенная засуха). В сухой почве много воздуха, вследвие чего активизируется деятельность аэробных бактерий, а это приводит к быстрому разложение органического вещества. При малом содержании воды в почве повышается концентрация почвенного раствора и растения не могут использовать его. При избытке воды, содержание воздуха уменьшается и ухудшается дыхание корней, замедляются процессы разложения органического вещества.

Таким образом, от количества воды в почве зависит степень обеспечения ею растений, содержания в почве воздуха, тепловой и питательный режим в почве, т.е. ее плодородие. Оптимальная влажность почвы для разных растений различна (табл.). чем в почве больше питательных веществ, тем выше оптимум влажности.

Плывуны и псевдоплывуны.

ПЛЫВУН (а. drift sand, floating sand, running sand, quicksand; н. Schwimmsand; ф. terrain соulant, sable aquifere; и. arena movediza, roca pastosa, fluidez de suelo) - насыщенные водой рыхлые слаболитифицированные, главным образом песчаные породы, способные растекаться и оплывать.

Различают истинный и ложный плывун. Истинный плывун состоит из тонкозернистых и пылеватых песков, а также грунтов, содержащих гидрофильные коллоиды, выполняющие роль смазки. Характерная особенность этих плывунов - большая подвижность и способность быстро переходить в плывунное состояние при незначительном механическом воздействии, особенно при сотрясении или вибрации. При малой влажности и высокой плотности плывун обладает значительной прочностью. При влажности выше некоторой критической плывуны могут течь как единое целое под действием незначительных напряжений. Истинный плывун при промерзании подвергается сильному пучению, слабо фильтрует воду, высыхая, приобретает связность. В отличие от высокодисперсных пластичных грунтов пластические свойства истинных плывунов являются временными и после снятия нагрузки постепенно исчезают. Ложные плывуны не содержат коллоидных частиц, и их плывунные свойства проявляются при значительных напорных градиентах. По мере увеличения плотности ложные плывуны часто теряют плывунные свойства.

Плывуны осложняют ведение горных работ при проходке горных выработок, строительстве котлованов, сооружений, тоннелей и др. В качестве защитных мероприятий при проходке в плывунах применяют специальные щиты, кессоны, опускные колодцы, замораживание, опережающую проходку и закрепление плывунов.

Виды воды в горных породах.

В зависимости от физического состояния, подвижности и характера связи с грунтом выделяют несколько видов воды в грунтах: химически и физически связанная, капиллярная, свободная, вода в твердом и парообразном состоянии.

Химически связанная вода входит в состав некоторых минералов, например гипса, медного купороса. Вода из таких минералов может быть удалена в большинстве случаев лишь при нагревании до 300-400 С.

Физически связанная вода удерживается на поверхности минералов и частиц грунта молекулярными силами и может быть удалена из грунта только при температуре не менее 90-120 С. Этот вид воды подразделяют на гигроскопическую и пленочную.

Гигроскопическая вода образуется вследствие адсорбции частицами грунта молекул воды. На поверхности частиц гигроскопическая вода удерживается молекулярными и электрическими силами.

Пленочная вода образует пленку поверх гигроскопической воды, когда влажность грунта становится выше его максимальной гигроскопичности. Эта вода может передвигаться от одной частицы грунта к другой.

Капиллярная вода образуется в порах грунта после насыщения их пленочной водой, заполняет поры и тонкие трещины и перемещается в них под действием капиллярных сил Капиллярную воду в порах грунта подразделяют на капиллярно-подвешенную, образующуюся в верхней части почвенного слоя, питающуюся атмосферными осадками и не связанную с нижерасположенными грунтовыми водами; капиллярно-поднятую, располагающуюся в виде капиллярной зоны над уровнем грунтовых вод и тесно с ним связанную; капиллярно-разобщенную, находящуюся в остальной толще грунта. Капиллярная вода через поверхность почвы или листья растений испаряется, играет важную роль в насыщении почв водами, режиме грунтовых вод и питании растений.

Свободная вода – наиболее подвижный и важный компонент подземных вод. Эта вода в жидком виде находится в порах и трещинах грунта и перемещается под влиянием силы тяжести и градиентов гидростатического давления.

Вода в твердом состоянии находится в грунте в виде кристаллов, прослоек и линз льда.

Вода в парообразном состоянии заполняет вместе с воздухом не занятые водой пустоты в грунтах.

Полевые испытания грунтов.

Полевые методы исследования грунтов используются при выполнении инженерно-геологических изысканий, для оценки прочностных и деформационных свойств грунтов, для получения гидрогеологических параметров, в условиях естественного залегания пород. Исследования проводятся на площадке (трассе) проектируемых или реконструируемых инженерных сооружений. Проведение работ требует наличия специальной техники и оборудования. Полевые методы исследования грунтов имеют различное предназначение и решают разнообразные задачи:

исследование физических, прочностных и деформационных свойств грунтов в условиях их естественного залегания;

получения информации о условиях залегания подземных вод, слоев пород, их генезисе;

получение гидрогеологических параметров и характеристик массива грунтов.

методами полевых исследований грунтов:

статическое зондирование;

испытание штампом;

испытание прессиометром;

испытание на срез целика грунтов;

опытно-фильтрационные работы.

Статическое зондирование относится к специальным методам получения инженерно-геологической информации. Современные возможности существенно расширили спектр информации, которую можно получить при применении этого полевого метода исследования грунтов. Значительно увеличилась глубина проведения испытания до 45 м (в зависимости от литологического состава массива).

Статическое зондирование, как метод полевых исследований грунтов, обладает широкими технологическими возможностями для выполнения пробоотбора образцов пород и подземных вод, а также специальных исследований грунтов в условиях естественного залегания.

Материалы, полученные при статическом зондировании, могут использоваться для решения следующих основных задач:

расчленение геологического разреза на отдельные слои (инженерно-геологические элементы), идентификация их по площади и по глубине;

типизация и классифицирование грунтов по составу, состоянию и свойствам;

исследование пространственной изменчивости свойств грунтов для выбора наиболее обоснованных расчётных моделей оснований;

определение показателей физико-механических свойств грунтов на основе как эмпирических интерпретационных формул, так и аналитических решений;

решение задач проектирования и расчёта оснований (например, определение расчётной нагрузки на сваю, расчётного сопротивления грунта, осадок сваи и свайного основания).

Аннотация.

Назначение общего курса истории и методологии геологических наук - дать оканчивающему специалисту общее представление о ходе развития геологических наук, раскрыть принципиальные вопросы методологии научного поиска и логики построения научного исследования; отразить современные представления о некоторых философских проблемах геологии. Важной задачей курса является изучение истории отечественной геологии на общем фоне развития геологических знаний. Творческое освоение курса предполагает самостоятельное изучение геологической и методологической литературы и написание реферата в плане курса.

Введение.

История геологии как часть всеобщей истории естествознания и мировой культуры в целом. Процесс становления геологических знаний и развитие экономических, социальных, культурно-исторических особенностей состояния общества.

Методология - учение о принципах и логике построения научного исследования, формах и методах научно-познавательной деятельности. Место геологии в системе естественных наук. Классификация наук геологического цикла. Принципы периодизации истории геологии.

1. История геологических наук.

1.1. Донаучный этап развития геологических знаний (с древности до середины ХVIII века).

Период становления человеческой цивилизации (с древнейших времен до V в. до н.э.). Накопление эмпирических знаний о камнях, рудах, солях и подземных водах.

Античный период (V в. до н.э. - V в. н.э.). Зарождение представлений о минералах, горных породах и о геологических процессах в рамках натурфилософии. Зарождение плутонизма и нептунизма. Главнейшие представители школы греко-римской натурфилософии.

Схоластический период (V - ХV в. в Западной Европе, VII - ХVII в. в других странах). Застой в развитии науки, преобладание догматов церкви в Западной Европе. Развитие ремесел и горнорудного дела. Основание первых университетов. Арабская цивилизация и ее роль в развитии естествознания в VII - ХIII вв. Ремесла Древней Руси, учреждение в 1584 г. Приказа Каменных дел.

Период возрождения (ХV - ХVII до середины ХVIII в.). Великие географические открытия. Утверждение гелиоцентрической картины мира. Геологические представления Леонардо да Винчи, Бернара Палисси, Николауса Стенона, Георга Бауэра (Агриколы). Космогонические концепции Р.Декарта и Г.Лейбница. Плутонизм и делювианизм. Развитие геологических знаний в России в эпоху петровских реформ. Создание Приказа рудокопных дел (1700), Бергколлегии (1718), открытие Академии наук (1725).

1.2. Научный этап развития геологии (с начала ХIХ века). Переходный период (вторая половина ХVIII в.).

Космогонические гипотезы Э.Канта и П.Лапласа. Геологические идеи Ж.Бюффона, М.В.Ломоносова. Зарождение стратиграфии. А.Г.Вернер, его учение и школа. Дж.Хаттон (Геттон) и его "Теория Земли". Противоречия в вопросе о роли внешних и внутренних процессов в развитии Земли. Развитие кристаллографии. Открытие Московского университета (1755) и Высшего Горного Училища (будущего Горного института (1773)). Российские академические экспедиции. В.М.Севергин и его роль в развитии минералогии.

Героический период развития геологии (первая половина ХIХ в.). Рождение биостратиграфии и палеонтологии. Первая тектоническая гипотеза - гипотеза "кратеров поднятия". Катастрофисты и эволюционисты - исторический спор двух научных лагерей. Разработка стратиграфической шкалы фанерозоя. Начало геологического картирования. Успехи в изучении минералов. Начало химического этапа изучения минералов. Учение о сингониях, изоморфизме и полиморфизме и парагенезе минералов.

Ч.Ляйель и его книга "Основы геологии..."(1830-1833). Дискуссии по поводу происхождения экзотических валунов. Становление ледниковой теории. Создание первых геологических обществ и национальных геологических служб. Геология в России в первой половине ХIХ в.

Классический период развития геологии (вторая половина ХIХ в.). Геологические наблюдения Ч.Дарвина и влияние на развитие геологии его книги "Происхождение видов путем естественного отбора...". Торжество эволюционных идей в геологии. Гипотеза контракции Эли де Бомона и ее развитие в трудах Э.Зюсса. Зарождение учения о геосинклиналях и платформах. Становление палеогеографии, геоморфологии, гидрогеологии.

Развитие микроскопической петрографии. Возникновение понятия о магме, ее типах и дифференциации. Зарождение учения о метаморфизме, становление экспериментальной петрографии. Развитие теоретической и генетической минералогии. Успехи кристаллографии. Становление учения о рудных месторождениях. Зарождение геологии нефти. Первые шаги геофизики в изучении глубинного строения Земли. Начало международного сотрудничества геологов. Первые международные геологические конгрессы. Основание Геологического комитета России (1882).

"Критический" период развития геологических наук (10-е - 50-е годы ХХ в.). Научная революция в естествознании на рубеже ХIХ - ХХ вв. Кризис в геотектонике. Крушение контракционной гипотезы. Появление альтернативных тектонических гипотез. Зарождение идей мобилизма - гипотеза дрейфа континентов. Отказ от мобилизма и возрождение идей фиксизма. Дальнейшее развитие учения о геосинклиналях и платформах. Становление учения о глубинных разломах. Зарождение неотектоники, тектонофизики. Дальнейшее развитие геофизики. Создание модели оболочечного строения Земли Становление геофизических методов разведки и геологической интерпретации геофизических данных.

Развитие наук о веществе. Использование рентгеноструктурного анализа в изучении кристаллов, возникновение кристаллохимии и структурной минералогии. Зарождение геохимии. Учение о биосфере и ноосфере. Развитие петрологии и ее разделов (петрохимия, химия магм, космическая петрография). Развитие учения о метаморфизме. Развитие учения о рудных месторождениях; дальнейшая разработка гидротермальной теории. Минераграфия. Термобарометрия. Успехи металлогении.

Становление литологии и успехи палеогеографии. Зарождение учения о формациях. Развитие геологии горючих ископаемых. Учение о нефтегазоносных бассейнах. Геология угля. Дальнейшее развитие гидрогеологии, разработка проблемы вертикальной гидрохимической и гидродинамической зональности подземных вод. Гидрогеологическое картирование. Зарождение мерзлотоведения.

Новейший период развития геологии (60-е - 90-е годы ХХ века). Техническое перевооружение геологии: электронный микроскоп, микрозонд, масс-спектрометр, ЭВМ, глубоководное и сверхглубокое бурение, исследование Земли из космоса и др. Начало интенсивного геолого-геофизического изучения океанов и планет Солнечной системы. Возрождение мобилизма в геотектонике. Установление астеносферы. Палеомагнетизм. Гипотеза расширения (спрединга) ложа океанов. Новая глобальная тектоника или тектоника плит - новая парадигма геологии. Другие альтернативные мобилистские концепции.

"Цифровая революция" в геофизике, развитие методов разведочной геофизики и морской геофизики. Успехи в изучении земной коры и верхней мантии.

Успехи палеонтологии; новые группы ископаемых остатков, этапности развития органического мира и эволюция биосферы, вымирание крупных систематических групп и глобальные биоценотические кризисы. Развитие стратиграфии, введение новых методов: магнито- и сейсмостратиграфии, радиохронометрии; изучение стратиграфии докембрия.

Дальнейшее развитие наук о земном веществе. Космохимия и геохимия изотопов, экспериментальная минералогия и петрология; развитие учения о метаморфических фациях; геохимические методы поисков рудных месторождений.

Развитие теоретических основ геологии нефти и газа.

Сравнительная планетология и ее значение для расшифровки ранних стадий развития Земли. Дальнейшее развитие гидрогеологии, инженерной геологии и геокриологии. Зарождение нового направления в геологии - экологическая геология. Международное сотрудничество геологов. Современное состояние и ближайшие перспективы геологии. От тектоники литосферных плит к общей глобальной геодинамической модели Земли. Глобальные геодинамические модели и геоэкология. Социальные, мировоззренческие, экономические функции геологии. Краткий обзор современных проблем геологии.

История преподавания геологии и научные школы геологов Московского университета.

2. Методология геологических наук.

2.1. Объект и предмет геологии, их изменение в ходе развития науки. Геологическая форма развития материи. Методы геологических наук (общенаучные, специальные). Законы в геологии. Проблема времени в геологии.

2..2. Общие закономерности развития геологических наук. Процессы дифференциации и интеграции геологических наук. Научные революции в геологии.

2.3. Принципы построения научного исследования. Фиксация предмета поиска, постановка проблемы, определение задачи методов исследования. Гипотетическая модель, основы ее построения. Теоретическая модель, основы ее построения и развития. Факты, их место и значение в научном поиске.

2.4. Роль парадигмы в эмпирических и теоретических исследованиях. Понятие модельного подхода в геологических исследованиях. Системный анализ и его принципы. Особенности системной модели геологических объектов. Фрактальность геологических объектов. Процессы самоорганизации вещества и принципы построения геологических моделей. Законы неравновесной термодинамики и геодинамические процессы.

Литература

  • Белоусов В.В. Очерки истории геологии. У истоков науки о Земле (геология до конца ХVIII в.). - М., - 1993.
  • Вернадский В.И. Избранные труды по истории науки. - М.: Наука, - 1981.
  • Кун Т. Структура научных революций.- М.: Прогресс, - 1975.
  • Поваренных А.С., Оноприенко В.И. Минералогия: прошлое, настоящее, будущее. - Киев: Наукова Думка, - 1985.
  • Современные идеи теоретической геологии. - Л.: Недра, - 1984.
  • Хаин В.Е. Основные проблемы современной геологии (геология на пороге ХХI века).- М.: Научный мир, 2003..
  • Хаин В.Е., Рябухин А.Г. История и методология геологических наук. - М.: МГУ, - 1996.
  • Хэллем А. Великие геологические споры. М.:Мир,1985.

В 2014 году в центральном районе Ямальского полуострова был найден странный провал в земле: круглая воронка имела диаметр около 20 метров и глубину около 50 метров. Ее происхождение с тех пор оставалось загадкой. Группа ученых из МГУ, исследовав пробы многолетнемерзлых пород, установила, что эта воронка сформировалась благодаря явлению, ранее не наблюдавшемуся на Земле. Опубликованная на прошлой неделе в журнале Scientific Reports статья описывает ее формирование в терминах криовулканизма, тем самым не только предлагая новый механизм образования этих необычных кратеров, но и впервые описывая земной криовулкан.

Летом 2014 года в центральной части полуострова Ямал неподалеку от газового месторождения Бованенковское было найдено необычное геологическое образование: почти круглый кратер диаметром 20 метров и глубиной около 50 метров (рис. 1). Было выдвинуто множество гипотез о его происхождении, включая падение метеорита и миграцию биогенных газов из-за оттаивания вечной мерзлоты (см., например, M. Leibman et al., 2014. New permafrost feature-deep crater in central Yamal (West Siberia, Russia) as a response to local climate fluctuations , V. Olenchenko et al., 2015. Results of geophysical surveys of the area of «Yamal crater», the new geological structure), но все они имели свои недостатки. В принципе, образование кратероподобных структур в результате геокриологических процессов - явление редкое, но не экстраординарное (J. Mackay, 1979. Pingos of the Tuktoyaktuk Peninsula Area, Northwest Territories). К примеру, в 2017 году на Ямале было зарегистрировано формирование двух похожих кратеров, но значительно меньшего размера.

Ямальский кратер находится в зоне вечной мерзлоты со среднегодовыми температурами от −1°C до −5°C и объемной долей льда 30–65%, часто сконцентрированного в ледяных линзах . Благодаря современным технологиям даже удалось выяснить примерное время формирования структуры: до 2013 года, по данным космических снимков, на месте кратера находился крупный бугор пучения (см. картинку дня «Пинго или бугры пучения»), около 8 метров в высоту и 50–55 метров в диаметре.

По линии, пересекающей кратер, ученые пробурили несколько скважин и получили керны (цилиндрические столбики породы, вынимаемые из скважины) многолетнемерзлых пород (рис. 2). Одна из скважин, находившаяся в пяти метрах к северу от кратера, вскрыла крупную линзу льда на глубине 5,8 м. Несмотря на то, что глубина этой скважины была 17 м, до нижней границы линзы добраться не удалось. Из этой линзы и соседних скважин были отобраны пробы для дальнейшего изучения. Они состояли изо льда, гуминовых кислот и минеральных включений. Анализы показали, что ученые имеют дело с двумя разными типами вечной мерзлоты, содержащей древние морские отложения: первый тип почти не тронут термокарстом (процессом оттаивания и разрушения вечной мерзлоты), а второй, наоборот, интенсивно им переработан. Лед в пробах первого типа содержал малые количества металлов и органического углерода, а лед из проб второго типа содержал углеродные соединения органического происхождения до 3,5 г/литр и включения темно-коричневых растворов щелочного состава (pH 8–9,5). Другое различие наблюдалось между ледяной и осадочной составляющими проб: концентрация металлов была незначительной в древних осадках (за исключением SiO 2 , CaO, Na 2 O) и сравнительно высокой в ледяных пробах. Это может быть интерпретировано как результат длительного взаимодействия грунтовых и талых вод, что ведет к мысли, что на месте кратера когда-то существовало озеро с большой оттаявшей зоной под ним (таликом).

Главной особенностью изученных образцов является необычно высокая концентрация газов, достигающая в отдельных пробах 20 объемных процентов. В основном это CO 2 и N 2 . А вот метана - предполагаемого виновника образования кратера - оказалось мало (первые проценты). Это, а также результаты изотопного анализа, указывало, что источник газов не месторождение Бованенково, как считалось ранее. Преобладание среди углеводородов высших нормальных алканов (C 19 H 40 и соединения с бо льшим числом атомов углерода) показало, что они образовались в результате разложения растительных останков.

По результатам математического моделирования была установлена последовательность событий, предшествовавших формированию кратера. Сначала под долгоживущим термокарстовым озером (жидкая вода при положительной температуре) вечная мерзлота оттаивает (рис. 3, А), формируя талик размером примерно, как у современного сухого озера, в центре которого находится кратер. По оценкам геокриологов, формирование 60–70 метровой зоны протаивания занимает примерно 3000 лет. При высыхании озера оттаявшая зона начинает обратно замерзать от краев к центру (рис. 3, В). На финальных стадиях жизни озера его дно промерзает, формируя ледяную крышку над еще не до конца замерзшим таликом (рис. 3, С). Оставшаяся вода под давлением растущего льда начинает выжиматься наружу, формируя бугор пучения, существовавший последнюю сотню лет (рис. 3, D).

На основании содержания газов в изученных образцах предполагается, что растворенные газы составляли около 14 объемных процентов талика. При замерзании часть этих газов мигрировала в окружающие породы, избежав замерзания, а часть (в основном - хорошо растворимый в воде CO 2) осталась в талике, увеличивая давление и способствуя образованию бугра пучения. Из-за воды под промерзшей крышкой льда толщиной 6–8 метров давление в талике может достигать 5 бар, но для ее прорыва требуется около 10 бар. Это значение вполне достижимо, если учесть вклад газовой составляющей. В нижней же части талика давление доходит до 15 бар, что делает возможным образование клатратов CO 2 (сценарий, реализуемый если жидкость насыщена газом). Если бы газа было мало, то при разрушении пинго произошел бы только небольшой выброс воды, но никак не извержение и образование кратера.

Перед извержением в талике наблюдалась слоистая структура: талые почвы с большим количеством клатратов углекислого газа внизу, вода с растворенным газом в середине и преимущественно газ в верхней части (рис. 4, А). Извержение было спровоцировано формированием ледяных клиньев по трещинам в промерзшей шапке и состояло из трех стадий:
1) Пневматическая стадия (первые минуты): дегазация из верхней камеры талика, выброс струй углекислого газа (рис. 4, В). Разлет почвы на большие дистанции и повреждение растительности холодной газовой струей.
2) Гидравлическая стадия (несколько часов): излияние воды из кратера (рис. 4, С) - сброс давления вызвал вспенивание воды, насыщенной газом (эффект, сходный со струей шампанского после удаления пробки). Полное пробитие ледяной шапки и начало формирования вала вокруг кратера.
3) Фреатическая стадия (5–25 часов): разложение газовых гидратов в нижнем слое почвы и вынос её на поверхность с возникающей пеной (рис. 4, D). Так как разложение газовых гидратов - процесс достаточно медленный, то эта фаза является наиболее длительной частью извержения.

Такая реконструкция событий позволяет говорить о том, что образование ямальского кратера - полноценное явление, «Элементы», 07.02.2014 и Анализ гравитационного поля Энцелада тоже указывает на наличие на нем жидкой воды , «Элементы», 04.07.2014, а также статью J. S. Kargel, 1995. Cryovolcanism on the icy satellites). Следы прошлой криовулканической активности обильно встречаются во внешней области Солнечной системы. Серьезное изучение этих объектов началось в 1979–1989 годах, после пролетов зондов «Вояджеров» мимо ледяных лун газовых гигантов, однако их непосредственное исследование до настоящего момента было недоступно, так как ни одного криовулкана на Земле обнаружено не было. Теперь, похоже, ученые получают такую возможность.

Ранее предполагалось, что для криовулканизма обязателен источник тепла, расположенный под криовулканом. Отчасти, это верно, однако обсуждаемая работа показывает, что подобные процессы могут происходить не только за счет нагрева воды, но и за счет ее кристаллизации: кристаллизация льда в газонасыщенных системах приводит к скачкам давления и может, например, служить объяснением водяных джетов на Энцеладе (J. H. Waite Jr et al., 2009. Liquid water on Enceladus from observations of ammonia and 40 Ar in the plume). Полученные при исследовании ямальского кратера данные могут позволить по-новому взглянуть на извержения на ледяных телах.

Новое на сайте

>

Самое популярное