Домой Заготовки на зиму История открытия иммунитета. История изучения иммунитета. Клеточный и гуморальный иммунитет

История открытия иммунитета. История изучения иммунитета. Клеточный и гуморальный иммунитет


Термин "иммунитет" возник от латинского слова "immunitas" - освобождение, избавление от чего-либо. В медицинскую практику он вошел в XIX веке, когда им стали обозначать "освобождение от болезни" (французский словарь Литте, 1869). Но еще задолго до появления термина у медиков существовало понятие об иммунитете в значении невосприимчивости человека к болезни, которое обозначалось как "самоисцеляющая сила организма" (Гиппократ), "жизненная сила" (Гален) или "залечивающая сила" (Парацельс). Врачам давно была известна присущая людям от рождения невосприимчивость (резистентность) к болезням животных (например, куриной холере, чуме собак). Сейчас это называют врожденным (естественным) иммунитетом. С древних времен медики знали, что человек не болеет некоторыми болезнями дважды. Так, еще в IV веке до н.э. Фукидид, описывая чуму в Афинах, отмечал факты, когда люди, которые чудом выживали, могли ухаживать за больными без риска заболеть вновь. Жизненный опыт показывал, что у людей может возникать стойкая невосприимчивость к повторному заражению после перенесённых тяжёлых инфекций, таких, например, как тиф, оспа, скарлатина. Такое явление называют приобретенным иммунитетом.

В конце XVIII века англичанин Эдвард Дженнер использовал коровью оспу для защиты человека от натуральной оспы. Будучи убежденным, что искусственное заражение человека - безвредный способ предотвращения тяжелой болезни, он в 1796 году провел первый успешный эксперимент на человеке.

В Китае и Индии прививку оспы практиковали еще за несколько столетий до ее введения в Европе. Болячками переболевшего оспой человека расцарапывали кожу здорового человека, который обычно после этого переносил инфекцию в слабой, не смертельной форме, после чего выздоравливал и оставался устойчивым к последующим заражениям оспой.

Спустя 100 лет открытый Э. Дженнером факт лег в основу экспериментов Л. Пастера на куриной холере, завершившихся формулировкой принципа профилактики инфекционных заболеваний - принцип иммунизации ослабленными или убитыми возбудителями (1881 г.).

В 1890 году Эмиль фон Беринг сообщил, что после введения в организм животного не целых дифтерийных бактерий, а всего лишь некого токсина, выделенного из них, в крови появляется нечто, способное нейтрализовать или разрушать токсин и предотвращать заболевание, вызываемое целой бактерией. Более того, оказалось, что приготовленные из крови таких животных препараты (сыворотки) исцеляли детей, уже больных дифтерией. Вещество, которое нейтрализовало токсин и появлялось в крови только в его присутствии, получило название антитоксина. В дальнейшем подобные ему вещества стали называть общим термином - антитела. А тот агент, который вызывает образование этих антител, стали называть антигеном. За эти работы Эмиль фон Беринг был удостоен в 1901 году Нобелевской премии по физиологии и медицине.

В дальнейшем П. Эрлих разработал на этой базе теорию гуморального иммунитета, т.е. иммунитета, обеспечиваемого антителами, которые, продвигаясь по жидким внутренним средам организма, таким, как кровь и лимфа (от лат. humor - жидкость), поражают чужеродные тела на любом расстоянии от лимфоцита, который их производит.

Арне Тизелиус (Нобелевская премия по химии за 1948 год) показал, что антитела - это всего лишь обычные белки, но с очень большим молекулярным весом. Химическую структуру антител расшифровали Джералд Морис Эдельман (США) и Родни Роберт Портер (Великобритания), за что получили Нобелевскую премию в 1972 году. Было установлено, что каждое антитело состоит из четырех белков - 2-х легких и 2-х тяжелых цепей. Такая структура в электронном микроскопе по своему виду напоминает "рогатку" ( рис. 2). Часть молекулы антитела, которая связывается с антигеном, очень изменчива, поэтому ее называют вариабельной. Эта область содержится на самом кончике антитела, поэтому защитную молекулу иногда сравнивают с пинцетом, ухватывающим с помощью острых концов мельчайшие детали самого замысловатого часового механизма. Активный центр распознает в молекуле антигена небольшие участки, состоящие обычно из 4- 8 аминокислот. Эти участки антигена подходят к структуре антитела "как ключ к замку". Если антитела не могут справиться с антигеном (микробом) самостоятельно, на помощь им придут другие компоненты и, в первую очередь, специальные "клетки-пожиратели".

Позднее японец Сусумо Тонегава, основываясь на достижении Эдельмана и Портера, показал то, что никто в принципе не мог даже ожидать: те гены в геноме, которые отвечают за синтез антител, в отличие от всех других генов человека, обладают потрясающей способностью - многократно изменять свою структуру в отдельных клетках человека в течение его жизни. При этом они, варьируя в своей структуре, перераспределяются так, что потенциально готовы обеспечить производство нескольких сотен миллионов различных белков-антител, т.е. намного больше теоретического количества, потенциально действующих на человеческий организм извне чужеродных веществ - антигенов. В 1987 году С. Тонегава была присуждена Нобелевская премия по физиологии и медицине "за открытие генетических принципов генерации антител".

Одновременно с создателем теории гуморального иммунитета Эрлихом наш соотечественник И.И. Мечников разработал теорию фагоцитоза и обосновал фагоцитарную теорию иммунитета. Он доказал, что у животных и человека существуют специальные клетки - фагоциты - способные поглощать и разрушать патогенные микроорганизмы и другой генетически чужеродный материал, оказавшийся в нашем организме. Фагоцитоз был известен ученым c 1862 г. по работам Э. Геккеля, но только Мечников первым связал фагоцитоз с защитной функцией иммунной системы. В последующей многолетней дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета. Фагоцитоз, открытый Мечниковым, получил в дальнейшем название клеточного иммунитета, а антителообразование, обнаруженное Эрлихом, - гуморального иммунитета. Все завершилось тем, что оба ученых были признаны мировой научной общественностью и разделили между собой Нобелевскую премию по физиологии и медицине за 1908 год.

Казахстанско-Российский Медицинский Университет


СРС

На тему: История развития иммунологии. Теория иммунитета.

Сделала:Сарсенова.А.Б.
Проверила: Доцент М.Г.Сабирова.
Кафедра: Микробиологии, иммунологии с курсами эпидемиологии.
Факультет:Мед.Проф.Дело.
Группа:202 А

Алматы 2011

Содержание

Введение
1. Зарождение иммунологии
2. Образование макрофагов и лимфоцитов
3. Развитие клеток иммунной системы
4. Барьеры против инфекций
4.1 Механизмы иммунологической защиты организма
5. Воспаление как механизм неспецифического иммунитета
6. Роль Т - лимфоцитов в иммунном ответе
7. Фагоцитоз
8. Гуморальный и клеточный иммунитет
9. Характерные черты специфического иммунитета
10. Клеточные механизмы иммунитета
11. Эффекторные механизмы иммунитета
12. Иммунодефицитные состояния (ИДС)
13. Как организм защищается от вирусов
14. Как организм защищается от бактерий
15. Апоптоз как средство профилактики
Выводы
Заключение
Список литературы
Приложение

Дженнер Э.

Мечников И.И.
Введение

Глава I. Органы и клетки иммунной системы
1. Зарождение иммунологии
Начало развития иммунологии относится к концу XVIII века и связано с именем Э. Дженнера, впервые применившего на основании лишь практических наблюдений впоследствии обоснованный теоретически метод вакцинации против натуральной оспы.
Открытый Э. Дженнером факт лег в основу дальнейших экспериментов Л. Пастера, завершившихся формулировкой принципа профилактики от инфекционных заболеваний - принцип иммунизации ослабленными или убитыми возбудителями.
Развитие иммунологии долгое время происходило в рамках микробиологической науки и касалось лишь изучения невосприимчивости организма к инфекционным агентам. На этом пути были достигнуты большие успехи в раскрытии этиологии ряда инфекционных заболеваний. Практическим достижением явилась разработка методов диагностики, профилактики и лечения инфекционных заболеваний в основном путем создания различного рода вакцин и сывороток. Многочисленные попытки выяснения механизмов, обусловливающих устойчивость организма против возбудителя, увенчались созданием двух теорий иммунитета - фагоцитарной, сформулированной в 1887 году И. И. Мечниковым, и гуморальной, выдвинутой в 1901 году П. Эрлихом.
Начало XX века - время возникновения другой ветви иммунологической науки - иммунологии неинфекционной. Как отправной точкой для развития инфекционной иммунологии явились наблюдения Э. Дженнера, так для неинфекционной - обнаружение Ж. Борде и Н. Чистовичем факта выработки антител в организме животного в ответ на введение не только микроорганизмов, а вообще чужеродных агентов. Свое утверждение и развитие неинфекционная иммунология получила в созданном И. И. Мечниковым в 1900 г. учении о цитотоксинах - антителах против определенных тканей организма, в открытии К. Ландштейнером в 1901 году антигенов человеческих эритроцитов.
Результаты работ П. Медавара (1946) расширили рамки и привлекли пристальное внимание к неинфекционной иммунологии, объяснив, что в основе процесса отторжения чужеродных тканей организмом лежат тоже иммунологические механизмы. И именно дальнейшее расширение исследований в области трансплантационного иммунитета привлекло к открытию в 1953 году явления иммунологической толерантности - неотвечаемости организма на введенную чужеродную ткань.
Во главу своей системы И. И. Мечников ставил фагоцит, или клетку. Против такой трактовки яростно выступали сторонники “гуморального” иммунитета Э. Беринг, Р. Кох, П. Эрлих (Нобелевские премии 1901, 1905 и 1908 гг.). Латинское “гумор” или “юмор” означает жидкость, в данном случае имелась в виду кровь и лимфа. Все трое считали, что организм защищается от микробов с помощью особых веществ, плавающих в гуморах. Их назвали “а н т и т о к с и н ы” и “а н т и т е л а”.
Нужно отметить прозорливость членов Нобелевского комитета, которые еще в 1908 г. попытались примирить две противоборствующие теории иммунитета, наградив И. И. Мечникова и немца Пауля Эрлиха. Потом премии иммунологам посыпались как из рога изобилия (см. Приложение).
Ученик Мечникова бельгиец Ж. Борде открыл в крови особое вещество.Оно оказалось белком, который помогает антителам распознать антиген.
А н т и г е н а м и называют вещества, которые при попадании в организм стимулируют выработку а н т и т е л. В свою очередь, антитела представляют собой высокоспецифические белки. Связываясь с антигенами (например бактериальными токсинами), они нейтрализуют их, не давая разрушать клетки. А н т и т е л а синтезируются в организме лимфоцитами или клетками лимфы. Л и м ф о й греки называли чистую и прозрачную воду подземных ключей и источников. Лимфа, в отличие от крови, прозрачная желтоватая жидкость. Лимфоциты находятся не только в лимфе, но и в крови. Однако попадания антигена в кровь еще не достаточно для того, чтобы начался синтез антител. Необходимо, чтобы антиген был поглощен и переработан фагоцитом, или макрофагом. Таким образом, мечниковский макрофаг стоит в самом начале иммунного ответа организма. Схема этого ответа может выглядеть следующим образом:
Антиген - Макрофаг - ? - Лимфоцит - Антитела - Инфекционный агент
Можно сказать, что вокруг этой простенькой схемки вот уже столетие кипят страсти. Иммунология стала теорией медицины и важной биологической проблемой. Здесь завязываются молекулярная и клеточная биология, генетика, эволюция и многие другие дисциплины. Неудивительно, что именно иммунологи получили львиную долю биомедицинских Нобелевских премий.

2. Образование макрофагов и лимфоцитов
В анатомическом отношении иммунная система кажется разобщенной. Ее органы и клетки рассеяны по всему телу, хотя на самом деле все они связаны в единую систему кровеносными и лимфатическими сосудами. Органы иммунной системы принято делить на ц е н т р а л ь н ы е и п е р и ф е р и ч е с к и е. К центральным органам относят костный мозг и тимус , к периферическим органам - лимфоузлы, селезенку, лимфоидные скопления (разных размеров), расположенные вдоль кишечника, легких и т.д. (рис. 3).
Костный мозг содержитстволовые (или зародышевые ) клетки - родоначальницы всех кроветворных клеток (эритроцитов, тромбоцитов, лейкоцитов, макрофагов и лимфоцитов ). Макрофаги и лимфоциты - основные клетки иммунной системы. Обобщенно и кратко их принято называть и м м у н н о ц и т а м и. Первые стадии развития иммуноциты проходят в костном мозге. Это их колыбель.
Макрофаги , они же фагоциты , - пожиратели инородных тел и самые древние клетки иммунной системы. Пройдя несколько стадий развития (рис. 4), они покидают костный мозг в виде моноцитов (округлых клеток) и определенное время циркулируют в крови. Из кровяного русла они проникают во все органы и ткани, где меняют свою круглую форму на отороченную. В таком виде они становятся более подвижными и способными прилипать к любым потенциальным “чужеродцам”.
Лимфоциты сегодня считаются главными фигурами в иммунологическом надзоре. Это система клеток с различным функциональным предназначением. Уже в костном мозге предшественники лимфоцитов разделяются на две крупные ветви. Одна из них - у млекопитающих - завершает свое развитие в костном мозге, а у птиц в специализированном лимфоидном органе - бурсе (сумке), от латинского слова bursa. Отсюда эти лимфоциты получили название bursa-зависимые, или В-лимфоциты . Другая крупная ветвь предшественников из костного мозга переселяется в другой центральный орган лимфоидной системы - тимус. Эта ветвь лимфоцитов получила название тимус-зависимые, или Т-лимфоциты (общая схема развития клеток иммунной системы представлена на рис. 4).

3. Развитие клеток иммунной системы
В - лимфоциты, как и моноциты, проходят созревание в костном мозге, откуда зрелые клетки выходят в кровяное русло. В-лимфоциты также могут покидать кровяное русло, оседая в селезенке и лимфоузлах, и превращаться в плазматические клетки.
Важнейшее событие в развитии В-лимфоцитов - перекомбинация и мутирование генов, имеющих отношение к синтезу а н т и т е л (белков из класса иммуноглобулинов, направленных против антигенов). В результате такой генной перекомбинации каждый В-лимфоцит становится носителем индивидуального гена, способного синтезировать отдельные антитела против одного антигена. И поскольку В-популяция состоит из множества отдельных клонов (потомства этих антителопродуцентов), то в совокупности они способны распознать и уничтожить весь набор возможных антигенов. После того как гены сформировались и молекулы антител появились на клеточной поверхности в виде рецепторов, В-лимфоциты покидают костный мозг. Короткое время они циркулируют в кровяном русле, а затем внедряются в периферические органы, как бы торопясь выполнить свое жизненное предназначение, поскольку срок жизни этих лимфоцитов невелик, всего 7-10 дней.
Т-лимфоциты в период развития в тимусе именуются тимоцитами . Тимус расположен в грудной полости непосредственно за грудиной и состоит из трех отделов. В них тимоциты проходят три стадии развития и обучения на и м м у н о к о м п е т е н т н о с т ь (рис. 5). В наружном слое (субкапсулярной зоне) пришельцы из костного мозга содержатся как предшественники , проходят здесь как бы адаптацию и еще лишены рецепторов для распознания антигенов. Во втором отделе (корковом слое) они под действием тимусных (ростовых и дифференцирующих) факторов приобретают необходимые Т-клеточной популяции рецепторы для антигенов. После перехода в третий отдел тимуса (мозговой слой) тимоциты дифференцируются по функциональному признаку и становятся зрелыми Т-клетками (рис. 6).
Приобретенные рецепторы, в зависимости от биохимической структуры белковых макромолекул, определяют их функциональный статус. Большая часть Т-лимфоцитов становится эффекторными клетками, которые называются Т-киллерами (от англ. killer - убийца). Меньшая часть выполняет регуляторную функцию: Т-хелперы (от англ. helper - помощники) усиливают иммунологическую реактивность, а Т-супрессоры , напротив, ослабляют ее. В отличие от В-лимфоцитов, Т-лимфоциты (преимущественно Т-хелперы) с помощью своих рецепторов способны распознавать не просто чужое, а измененное “свое”, т.е. чужеродный антиген должен быть представлен (обычно макрофагами) в комплексе с собственными белками организма. После завершения развития в тимусе часть зрелых Т-лимфоцитов остается в мозговом слое, а большая часть покидает его и расселяется в селезенку и лимфоузлы.
Долгое время оставалось непонятным, почему в тимусе гибнут более 90% поступающих из костного мозга ранних предшественников Т-клеток. Известный австралийский иммунолог Ф. Бернет предполагает, что в тимусе происходит гибель тех лимфоцитов, которые способны к аутоиммунной агрессии. Основная причина столь массовой гибели связана с отбором клеток, которые способны реагировать со своими собственными антигенами. Все лимфоциты, не прошедшие контроля на специфичность, погибают.

4.1. Механизмы иммунологической защиты организма
Таким образом, даже краткий экскурс в историю развития иммунологии позволяет оценить роль этой науки в решении ряда медицинских и биологических проблем. Инфекционная иммунология - прародительница общей иммунологии - стала в настоящее время только ее ветвью.
Стало очевидным, что организм очень точно различает ”свое” и “чужое”, а в основе реакций, возникающих в нем в ответ на введение чужеродных агентов (вне зависимости от их природы), лежат одни и те же механизмы. Изучение совокупности процессов и механизмов, направленных на сохранение постоянства внутренней среды организма от инфекций и других чужеродных агентов - иммунитета, лежит в основе иммунологической науки (В. Д. Тимаков, 1973 г.).
Вторая половина ХХ века ознаменовалась бурным развитием иммунологии. Именно в эти годы была создана селекционно-клональная теория иммунитета, вскрыты закономерности функционирования различных звеньев лимфоидной системы как единой и целостной системы иммунитета. Одним из важнейших достижений последних лет явилось открытие двух независимых эффекторных механизмов в специфическом иммунном ответе. Один из них связан с так называемыми В-лимфоцитами, осуществляющими гуморальный ответ (синтез иммуноглобулинов), другой - с системой Т-лимфоцитов (тимусзависимых клеток), следствием деятельности которых является клеточный ответ (накопление сенсибилизированных лимфоцитов). Особенно важным является получение доказательств существования взаимодействия этих двух видов лимфоцитов в иммунном ответе.
Результаты исследований позволяют утверждать, что иммунологическая система - важное звено в сложном механизме адаптации человеческого организма, а его действие в первую очередь направленно на сохранение антигенного гомеостаза, нарушение которого может быть обусловленно проникновение в организм чужеродных антигенов (инфекция, трансплантация) или спонтанной мутации.
Nezelof представил себе схему механизмов, осуществляющих иммунологическую защиту следующим образом:

Но, как показали исследования последних лет, деление иммунитета на гумморальный и клеточный весьма условно. Дейтсвительно, влияние антигена на лимфоцит и ретикулярную клетку осуществляется с помощью микро- и макрофагов, перерабатывающих иммунологическую информацию. В то же время реакция фагоцитоза, как правило, участвуют гуморальные факторы, а основу гуморального иммунитета составляют клетки, продуцирующие специфические иммуноглобулины. Механизмы, направленные на элиминацию чужеродного агента, чрезвычайно разнообразны. При этом можно выделить два понятия - “иммунологическая реактивность” и “неспецифические факторы защиты”. Под первым понимаются специфические реакции на антигены, обусловленные высокоспецифической способностью организма реагировать на чужеродные молекулы. Однако защищенность организма от инфекций зависит еще и от степени проницаемости для патогенных микроорганизмов кожных и слизистых покровов, и наличия в их секретах бактерицидных субстанций, кислотности желудочного содержимого, присутствия в биологических жидкостях организма таких ферментных систем, как лизоцим. Все эти механизмы относятся к неспецифическим факторам защиты, так как нет никакого специального реагирования и все они существуют вне зависимости от присутствия или отсутствия возбудителя. Некоторое особое положение занимают фагоциты и система комплемента. Это обусловлено тем, что, несмотря на неспецифичность фагоцитоза, макрофаги участвуют в переработке антигена и в кооперации Т- и В-лимфоцитов при иммуном ответе, то есть участвуют в специфических формах реагирования на чужеродные субстанции. Аналогично выработка комплемента не является специфической реакцией на антиген, но сама система комплемента участвует в специфических реакциях антиген-антител.

5. Воспаление как механизм неспецифического иммунитета
Воспаление - реакция организма на чужеродные микроорганизмы и продукты тканевого распада. Это основной механизм е с т е с т в е н н о г о (врожденного , или неспецифического ) иммунитета, равно как начальный и заключительный этапы иммунитета п р и о б р е т е н н о г о. Как и всякая защитная реакция, оно должно сочетать способность распознавать чужеродную для организма частицу с действенным способом ее обезвреживания и удаления из организма. Классический пример - воспаление, вызванное занозой, прошедшей под кожу и загрязненной бактериями.
В норме стенки кровеносных сосудов непроницаемы для компонентов крови - плазмы и форменных элементов (эритроцитов и лейкоцитов). Повышенная проницаемость для плазмы крови -следствие изменения стенки сосудов, образования "щелей" между плотно прилегающими друг к другу клетками эндотелия. В районе занозы наблюдается торможение движения эритроцитов и лейкоцитов (клеток белой крови), которые начинают как бы липнуть к стенкам капилляров, образуя “пробки”. Два типа лейкоцитов - моноциты и нейтрофилы - начинают активно “протискиваться” из крови в окружающую ткань между клетками эндотелия в районе формирующегося воспаления.
Моноциты и нейтрофилы предназначены для фагоцитоза - поглощения и разрушения посторонних частиц. Целенаправленное активное движение к очагу воспаления носит название х е м о т а к с и с а. Придя к месту воспаления, моноциты превращаются в макрофаги. Это клетки с тканевой локализацией, активно фагоцитирующие, с “липкой” поверхностью, подвижные, как бы ощупывающие все, что находится в ближайшем окружении. Нейтрофилы также приходят в очаг воспаления, и их фагоцитирующая активность возрастает. Фагоцитирующие клетки накапливаются, активно поглощают и разрушают (внутриклеточно) бактерии и обломки клеток.
Активизация трех главных систем, участвующих в воспалении, определяет состав и динамику “действующих лиц”. Они включают систему образования кининов, систему комплемента и систему активированных фагоцитирующих клеток.

6. Роль Т - лимфоцитов в иммунном ответе

7. Фагоцитоз
Громадная роль фагоцитоза не только во врожденном, но и в приобретенном иммунитете становится все более очевидной благодаря работам последнего десятилетия. Фагоцитоз начинается с накопления фагоцитов в очаге воспаления. Главную роль в этом процессе играют моноциты и нейтрофилы. Моноциты, придя в очаг воспаления, превращаются в макрофаги - тканевые фагоцитирующие клетки. Фагоциты, взаимодействуя с бактериями, активируются, их мембрана становится “липкой”, в цитоплазме накапливаются гранулы, наполненные мощными протеазами. Возрастают поглощение кислорода и генерация активных форм кислорода (кислородный взрыв), включая перекиси водорода и гипохлорита, а также
и т.д.................

Термин "иммунитет" возник от латинского слова "immunitas" - освобождение, избавление от чего-либо. В медицинскую практику он вошел в XIX веке, когда им стали обозначать "освобождение от болезни" (французский словарь Литте, 1869). Но еще задолго до появления термина у медиков существовало понятие об иммунитете в значении невосприимчивости человека к болезни, которое обозначалось как "самоисцеляющая сила организма" (Гиппократ), "жизненная сила" (Гален) или "залечивающая сила" (Парацельс). Врачам давно была известна присущая людям от рождения невосприимчивость (резистентность) к болезням животных (например, куриной холере, чуме собак). Сейчас это называют врожденным (естественным) иммунитетом. С древних времен медики знали, что человек не болеет некоторыми болезнями дважды. Так, еще в IV веке до н.э. Фукидид, описывая чуму в Афинах, отмечал факты, когда люди, которые чудом выживали, могли ухаживать за больными без риска заболеть вновь. Жизненный опыт показывал, что у людей может возникать стойкая невосприимчивость к повторному заражению после перенесённых тяжёлых инфекций, таких, например, как тиф, оспа, скарлатина. Такое явление называют приобретенным иммунитетом.

Имеются свидетельства тому, что первые прививки оспы проводили в Китае за тысячу лет до Рождества Христова. Болячками переболевшего оспой человека расцарапывали кожу здорового человека, который обычно после этого переносил инфекцию в слабой форме, после чего выздоравливал и оставался устойчивым к последующим заражениям оспой. Инокуляция содержимого оспенных пустул здоровым людям с целью их защиты от острой формы заболевания распространилась затем в Индию, Малую Азию, Европу, на Кавказ. Однако прием искусственного заражения натуральной (человеческой) оспой не во всех случаях давал положительные результаты. Иногда после инокуляции отмечалась острая форма заболевания, и даже смерть.

На смену инокуляции пришел метод вакцинации (от лат. vacca – корова), разработанный в конце XVIII в. английским врачом Э.Дженнером (E.Jenner). Он обратил внимание на тот факт, что молочницы, ухаживавшие за больными животными, иногда заболевали в крайне слабой форме оспой коров, но при этом никогда не болели натуральной оспой. Подобное наблюдение давало в руки исследователя реальную возможность борьбы с болезнью людей. В 1796 г., через 30 лет после начала своих изысканий, Э.Дженнер решился апробировать метод вакцинации на мальчике, которого привил коровьей оспой, а затем заразил его натуральной оспой. Эксперимент прошел успешно, и с тех пор способ вакцинации по Э.Дженнеру нашел широкое применение во всем мире.

Необходимо отметить, что задолго до Э. Дженнера выдающийся ученый-врач Средневекового Востока Рази, путем прививки детям коровьей оспы, предохранял их от заболевания оспой человека. Э. Дженнер не знал о методе Рази.

Спустя 100 лет открытый Э. Дженнером факт лег в основу экспериментов Л. Пастера на куриной холере, завершившихся формулировкой принципа профилактики инфекционных заболеваний – принцип иммунизации ослабленными или убитыми возбудителями (1881 г.).

Рождение инфекционной иммунологии связывают с именем выдающегося французского ученого Луи Пастера (Louis Paster). Первый шаг к целенаправленному поиску вакцинных препаратов, создающих устойчивый иммунитет к инфекции, был сделан после хорошо известного наблюдения Пастера над патогенностью возбудителя куриной холеры. Было показано, что заражение кур ослабленной (аттенуированной) культурой возбудителя создает невосприимчивость к патогенному микробу (1880г). В 1881г. Пастер продемонстрировал эффективный подход к иммунизации коров против сибирской язвы, а в 1885г. ему удалось показать возможность защиты людей от бешенства.

К 40-50-м годам нашего столетия принципы вакцинации, заложенные Пастером, нашли свое проявление в создании целого арсенала вакцин против самого широкого набора инфекционных заболеваний.

Хотя Пастер считается основателем инфекционной иммунологии, он ничего не знал о факторах, включенных в процесс защиты от инфекции. Первыми, кто пролил свет на один из механизмов невосприимчивости к инфекции, были Беринг (Behring) и Китазато (Kitasato). В 1890 году Эмиль фон Беринг сообщил, что после введения в организм животного не целых дифтерийных бактерий, а всего лишь некого токсина, выделенного из них, в крови появляется нечто, способное нейтрализовать или разрушать токсин и предотвращать заболевание, вызываемое целой бактерией. Более того, оказалось, что приготовленные из крови таких животных препараты (сыворотки) исцеляли детей, уже больных дифтерией. Вещество, которое нейтрализовало токсин и появлялось в крови только в его присутствии, получило название антитоксина. В дальнейшем подобные ему вещества стали называть общим термином - антитела. А тот агент, который вызывает образование этих антител, стали называть антигеном. За эти работы Эмиль фон Беринг был удостоен в 1901 году Нобелевской премии по физиологии и медицине.

В дальнейшем П. Эрлих разработал на этой базе теорию гуморального иммунитета, т.е. иммунитета, обеспечиваемого антителами, которые, продвигаясь по жидким внутренним средам организма, таким, как кровь и лимфа (от лат. humor - жидкость), поражают чужеродные тела на любом расстоянии от лимфоцита, который их производит.

Арне Тизелиус (Нобелевская премия по химии за 1948 год) показал, что антитела - это всего лишь обычные белки, но с очень большим молекулярным весом. Химическую структуру антител расшифровали Джералд Морис Эдельман (США) и Родни Роберт Портер (Великобритания), за что получили Нобелевскую премию в 1972 году. Было установлено, что каждое антитело состоит из четырех белков - 2-х легких и 2-х тяжелых цепей. Такая структура в электронном микроскопе по своему виду напоминает "рогатку". Часть молекулы антитела, которая связывается с антигеном, очень изменчива, поэтому ее называют вариабельной. Эта область содержится на самом кончике антитела, поэтому защитную молекулу иногда сравнивают с пинцетом, ухватывающим с помощью острых концов мельчайшие детали самого замысловатого часового механизма. Активный центр распознает в молекуле антигена небольшие участки, состоящие обычно из 4-8 аминокислот. Эти участки антигена подходят к структуре антитела "как ключ к замку". Если антитела не могут справиться с антигеном (микробом) самостоятельно, на помощь им придут другие компоненты и, в первую очередь, специальные "клетки-пожиратели".

Позднее японец Сусумо Тонегава, основываясь на достижении Эдельмана и Портера, показал то, что никто в принципе не мог даже ожидать: те гены в геноме, которые отвечают за синтез антител, в отличие от всех других генов человека, обладают потрясающей способностью - многократно изменять свою структуру в отдельных клетках человека в течение его жизни. При этом они, варьируя в своей структуре, перераспределяются так, что потенциально готовы обеспечить производство нескольких сотен миллионов различных белков-антител, т.е. намного больше теоретического количества, потенциально действующих на человеческий организм извне чужеродных веществ - антигенов. В 1987 году С. Тонегава была присуждена Нобелевская премия по физиологии и медицине "за открытие генетических принципов генерации антител".

Наш соотечественник И.И. Мечников разработал теорию фагоцитоза и обосновал фагоцитарную теорию иммунитета. Он доказал, что у животных и человека существуют специальные клетки – фагоциты – способные поглощать и разрушать патогенные микроорганизмы и другой генетически чужеродный материал, оказавшийся в нашем организме. Фагоцитоз был известен ученым c 1862 г. по работам Э. Геккеля, но только Мечников первым связал фагоцитоз с защитной функцией иммунной системы. В последующей многолетней дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета.

Параллельно с Мечниковым разрабатывал свою теорию иммунной защиты от инфекции немецкий фармаколог Пауль Эрлих. Он знал о том факте, что в сыворотке крови животных, зараженных бактериями, появляются белковые вещества, способные убивать патогенные микроорганизмы. Эти вещества впоследствии были названы им " антителами ". Самое характерное свойство антител - это их ярко выраженная специфичность. Образовавшись как защитное средство против одного микроорганизма, они нейтрализуют и разрушают только его, оставаясь безразличными к другим. Пытаясь понять это явление специфичности, Эрлих выдвинул теорию "боковых цепей", по которой антитела в виде рецепторов предсуществуют на поверхности клеток. При этом антиген микроорганизмов выступает в качестве селективного фактора. Вступив в контакт со специфическим рецептором, он обеспечивает усиленную продукцию и выход в циркуляцию только этого конкретного рецептора (антитела).

Прозорливость Эрлиха поражает, поскольку с некоторыми изменениями эта в целом умозрительная теория подтвердилась в настоящее время.

Фагоцитоз, открытый Мечниковым, получил в дальнейшем название клеточного иммунитета, а антителообразование, обнаруженное Эрлихом, – гуморального иммунитета. Две теории – клеточная (фагоцитарная) и гуморальная – в период своего возникновения стояли на антагонистических позициях. Школы Мечникова и Эрлиха боролись за научную истину, не подозревая, что каждый удар и каждое его парирование сближало противников. В 1908г. обоим ученым одновременно была присуждена Нобелевская премия.

Новый этап развития иммунологии связан в первую очередь с именем выдающегося австралийского ученого М.Бернета (Macfarlane Burnet; 1899- 1985). Именно он в значительной степени определил лицо современной иммунологии. Рассматривая иммунитет как реакцию, направленную на дифференциацию всего "своего" от всего "чужого", он поднял вопрос о значении иммунных механизмов в поддержании генетической целостности организма в период индивидуального (онтогенетического) развития. Именно Бернет обратил внимание на лимфоцит, как на основного участника специфического иммунного реагирования, дав ему название " иммуноцит ". Именно Бернет предсказал, а англичанин Питер Медавар и чех Милан Гашек экспериментально подтвердили состояние, противоположное иммунной реактивности – толерантности. Именно Бернет указал на особую роль тимуса в формировании иммунного ответа. И наконец, Бернет остался в истории иммунологии как создатель клонально-селекционной теории иммунитета. Формула такой теории проста: один клон лимфоцитов способен реагировать только на одну конкретную антигенную специфическую детерминанту.

Особого внимания заслуживают взгляды Бернета на иммунитет как на такую реакцию организма, которая отличает все "свое" от всего "чужого". После доказательств Питером Медаваром иммунной природы отторжения чужеродного трансплантата и накопления фактов по иммунологии злокачественных новообразований стало очевидным, что иммунная реакция развивается не только на микробные антигены, но и тогда, когда имеются любые, пусть незначительные антигенные различия между организмом и тем биологическим материалом (трансплантатом, злокачественной опухолью), с которым встречается организм.

Строго говоря, ученые прошлого, включая Мечникова, понимали, что предназначение иммунитета – не только борьба с инфекционными агентами. Однако интересы иммунологов первой половины нашего столетия концентрировались в основном на разработке проблем инфекционной патологии. Необходимо было время, чтобы естественный ход научного познания позволил выдвинуть концепцию роли иммунитета в индивидуальном развитии. И автором нового обобщения был Бернет.

Большой вклад в становление современной иммунологии внесли также Роберт Кох (Robert Koch; 1843-1910), открывший возбудитель туберкулеза и описавший кожную туберкулиновую реакцию; Жюль Борде (Jules Bordet; 1870-1961), сделавший важный вклад в понимание комплемент -зависимого лизиса бактерий; Карл Ландштейнер (Karl Landsteiner; 1868-1943), получивший Нобелевскую премию за открытие групп крови и разработавший подходы к изучению тонкой специфичности антител с помощью гаптенов; Родни Портер (Rodney Porter; 1917-1985) и Джеральд Эдельман (Gerald Edelman; 1929), изучившие структуру антител; Джордж Снелл (George Snell), Барух Венацерраф (Baruj Benacerraf) и Жан Доссе (Jean Dausset), описавшие главный комплекс гистосовместимости у животных и человека и открывшие гены иммунного ответа. Среди отечественных иммунологов особенно значительны исследования Н.Ф.Гамалея, Г.Н.Габричевского, Л.А.Тарасевича, Л.А.Зильбера, Г.И.Абелева.

Член-корреспондент РАН Сергей Недоспасов, Борис Руденко, обозреватель журнала «Наука и жизнь».

Революционные прорывы в любой области науки происходят нечасто, раз-два в столетие. Да и для того, чтобы осознать, что революция в познании окружающего мира действительно произошла, оценить её результаты, научному сообществу и обществу в целом порой требуется не один год и даже не одно десятилетие. В иммунологии такая революция случилась в конце прошедшего века. Готовили её десятки выдающихся учёных, выдвигавших гипотезы, совершавших открытия и формулирующих теории, причём некоторые из этих теорий и открытий были сделаны сто лет назад.

Пауль Эрлих (1854-1915).

Илья Мечников (1845-1916).

Чарльз Джэнуэй (1943-2003).

Жюль Хоффманн.

Руслан Меджитов.

Дрозофила, мутантная по гену Toll, заросла грибками и погибла, так как у неё нет иммунных рецепторов, распознающих грибковые инфекции.

Две школы, две теории

Весь ХХ век, вплоть до начала 1990-х, в исследованиях иммунитета учёные исходили из убеждения, что самой совершенной иммунной системой обладают высшие позвоночные, и в частности человек. Вот её-то и следует изучать в первую очередь. И если что-то пока ещё «недооткрыли» в иммунологии птиц, рыб и насекомых, то для продвижения на пути познания механизмов защиты от людских болезней особой роли это, скорее всего, не играет.

Иммунология как наука возникла полтора столетия назад. Хотя первую вакцинацию связывают с именем Дженнера, отцом-основателем иммунологии по праву считается великий Луи Пастер, начавший искать разгадку выживания рода человеческого, несмотря на регулярные опустошительные эпидемии чумы, чёрной оспы, холеры, обрушивающиеся на страны и континенты словно карающий меч судьбы. Миллионы, десятки миллионов погибших. Но в городах и селениях, где похоронные команды не успевали убирать с улиц трупы, находились такие, кто самостоятельно, без помощи знахарей и колдунов справлялся со смертельной напастью. А также те, кого болезнь не коснулась совершенно. Значит, существует в организме человека механизм, защищающий его хотя бы от некоторых вторжений извне. Он и называется иммунитетом.

Пастер развивал представления об искусственном иммунитете, разрабатывая методики его создания посредством вакцинации, однако постепенно стало ясно, что иммунитет существует в двух ипостасях: естественный (врождённый) и адаптивный (приобретённый). Который же из них важнее? Какой из них играет роль при успешной вакцинации? В начале ХХ столетия в ответе на этот принципиальный вопрос столкнулись в острой научной полемике две теории, две школы - Пауля Эрлиха и Ильи Мечникова.

Пауль Эрлих ни в Харькове, ни в Одессе не бывал. Свои университеты проходил в Бреславле (Бреслау, ныне Вроцлав) и Страсбурге, трудился в Берлине, в институте Коха, где создал первую в мире серологическую контрольную станцию, а потом возглавил институт экспериментальной терапии во Франкфурте-на-Майне, носящий сегодня его имя. И тут следует признать, что в концептуальном плане Эрлих сделал для иммунологии за всю историю существования этой науки более, чем кто-либо ещё.

Мечников открыл явление фагоцитоза - захвата и уничтожения специальными клетками - макрофагами и нейтрофилами - микробов и других чужеродных организму биологических частиц. Именно этот механизм, полагал он, и является основным в иммунной системе, выстраивая линии защиты от вторжения патогенов. Именно фагоциты бросаются в атаку, вызывая реакцию воспаления, к примеру при уколе, занозе и т.д.

Эрлих доказывал противоположное. Главная роль в защите от инфекций принадлежит не клеткам, а открытым им антителам - специфическим молекулам, которые образуются в сыворотке крови в ответ на внедрение агрессора. Теория Эрлиха получила название теории гуморального иммунитета.

Интересно, что непримиримые научные соперники - Мечников и Эрлих - разделили в 1908 году Нобелевскую премию по физиологии и медицине за работы в области иммунологии, хотя к этому времени теоретические и практические успехи Эрлиха и его последователей, казалось бы, полностью опровергали воззрения Мечникова. Даже поговаривали, что премия последнему была присуждена, скорее, по совокупности заслуг (что вовсе не исключено и не зазорно: иммунология - лишь одна из областей, в которых работал русский учёный, вклад его в мировую науку огромен). Впрочем, даже если и так, члены Нобелевского комитета, как оказалось, были намного более правы, чем полагали сами, хотя подтверждение тому пришло только через столетие.

Эрлих умер в 1915 году, Мечников пережил своего оппонента всего на год, так что принципиальнейший научный спор вплоть до конца столетия развивался уже без участия его инициаторов. А пока всё, что происходило в иммунологии в течение следующих десятилетий, подтверждало правоту Пауля Эрлиха. Было установлено, что белые кровяные тельца, лимфоциты, делятся на два вида: В и Т (тут надо подчеркнуть, что открытие Т-лимфоцитов в середине ХХ века перенесло науку о приобретённом иммунитете на совершенно другой уровень - основоположники этого не могли предвидеть). Именно они организуют защиту от вирусов, микробов, грибков и вообще от враждебных организму субстанций. В-лимфоциты продуцируют антитела, которые связывают чужеродный белок, нейтрализуя его активность. А Т-лимфоциты уничтожают заражённые клетки и способствуют удалению возбудителя из организма другими путями, причём в обоих случаях образуется «память» о патогене, так что с повторной инфекцией организму бороться уже намного проще. Эти защитные линии способны точно так же расправиться и с собственным, но перерождённым белком, который становится опасен для организма. К сожалению, такая способность в случае сбоя в настройке сложнейшего механизма адаптивного иммунитета может стать причиной аутоиммунных заболеваний, когда лимфоциты, потеряв способность отличать свои белки от чужих, начинают «стрелять по своим»…

Таким образом, до 80-х годов ХХ столетия иммунология в основном развивалась по пути, указанному Эрлихом, а не Мечниковым. Невероятно сложный, фантастически изощрённый миллионами лет эволюции адаптивный иммунитет постепенно раскрывал свои загадки. Учёные создавали вакцины и сыворотки, которые должны были помочь организму как можно быстрее и эффективнее организовать иммунный ответ на заражение, и получали антибиотики, способные подавить биологическую активность агрессора, облегчив тем самым работу лимфоцитов. Правда, поскольку многие микроорганизмы находятся в симбиозе с хозяином, антибиотики с неменьшим энтузиазмом обрушиваются и на своих союзников, ослабляя и даже сводя на нет их полезные функции, но медицина заметила это и забила тревогу много, много позднее…

Однако рубежи полной победы над болезнями, поначалу казавшиеся такими достижимыми, отодвигались всё дальше к горизонту, потому что с течением времени появлялись и накапливались вопросы, на которые господствующая теория отвечать затруднялась или не могла ответить вовсе. Да и создание вакцин шло вовсе не так гладко, как предполагалось.

Известно, что 98% живущих на Земле существ вообще лишено адаптивного иммунитета (в эволюции он появляется лишь с уровня челюстных рыб). А ведь у всех у них тоже есть свои враги в биологическом микромире, свои болезни и даже эпидемии, с которыми, однако, популяции справляются вполне успешно. Известно также, что в составе микрофлоры человека есть масса организмов, которые, казалось бы, просто обязаны вызывать заболевания и инициировать иммунный ответ. Тем не менее этого не происходит.

Подобных вопросов десятки. Десятилетиями они оставались открытыми.

Как начинаются революции

В 1989 году американский иммунолог профессор Чарльз Джэнуэй (Charles Janeway) опубликовал работу, которая очень скоро была признана провидческой, хотя, как и у теории Мечникова, у неё были и остаются серьёзные, эрудированные противники. Джэнуэй предположил, что на клетках человека, отвечающих за иммунитет, существуют специальные рецепторы, распознающие какие-то структурные компоненты патогенов (бактерий, вирусов, грибков) и запускающие механизм ответной реакции. Поскольку потенциальных возбудителей заболеваний в подлунном мире насчитывается неисчислимое множество, Джэнуэй предположил, что и рецепторы будут распознавать какие-то «инвариантные» химические структуры, характерные для целого класса патогенов. Иначе просто не хватит генов!

Спустя несколько лет профессор Жюль Хоффманн (впоследствии ставший президентом Французской академии наук) обнаружил, что мушка-дрозофила - почти непременный участник важнейших открытий в генетике - обладает защитной системой, до того момента недопонятой и неоценённой. Оказалось, что у этой плодовой мушки есть специальный ген, который не только важен для развития личинки, но и связан с врождённым иммунитетом. Если в мушке этот ген испортить, то при заражении грибками она погибает. Причём от других болезней, например бактериального характера, не погибнет, а от грибковой - неизбежно. Открытие позволяло сделать три важнейших вывода. Во-первых, примитивная мушка-дрозофила наделена мощным и эффективным врождённым иммунитетом. Во-вторых, её клетки обладают рецепторами, распознающими инфекции. В-третьих, рецептор специфичен к определённому классу инфекций, то есть способен распознавать не любую чужеродную «структуру», а только вполне определённую. А от другой «структуры» данный рецептор не защищает.

Вот эти два события - почти умозрительную теорию и первый неожиданный экспериментальный результат - и следует считать началом великой иммунологической революции. Дальше, как и бывает в науке, события развивались по нарастающей. Руслан Меджитов, который окончил Ташкентский университет, потом аспирантуру в МГУ, а впоследствии стал профессором Йельского университета (США) и восходящей звездой мировой иммунологии, первым обнаружил эти рецепторы на клетках человека.

Так, спустя почти сто лет, окончательно решился давний теоретический спор великих научных соперников. Решился тем, что оба были правы - их теории дополняли друг друга, причём теория И. И. Мечникова получила новое экспериментальное подтверждение.

А фактически произошла концептуальная революция. Оказалось, что для всех сущих на Земле врождённый иммунитет - главный. И только у наиболее «продвинутых» по лестнице эволюции организмов - высших позвоночных в дополнение возникает иммунитет приобретённый. Однако именно врождённый руководит его запуском и последующей работой, хотя многие детали того, как всё это регулируется, ещё предстоит установить.

«Адъювант его превосходительства»

Новые взгляды на взаимодействие врождённой и приобретённой ветвей иммунитета помогли разобраться в том, что до сей поры было непонятно.

Как действуют вакцины в тех случаях, когда они работают? В общем (и весьма упрощённом) виде это происходит примерно так. Ослабленный возбудитель болезни (как правило, вирус или бактерия) вводится в кровь животного-донора, например лошади, коровы, кролика и т.д. Иммунная система животного продуцирует защитный ответ. Если защитный ответ связан с гуморальными факторами - антителами, то его материальные носители можно очистить и перенести в кровь человека, одновременно перенося и защитный механизм. В других случаях ослабленным (или убитым) патогеном заражают или иммунизуют самого человека, надеясь вызвать иммунную реакцию, которая сможет защитить от реального возбудителя болезни и даже закрепиться в клеточной памяти на долгие годы. Именно так Эдвард Дженнер в конце XVIII века впервые в истории медицины провёл вакцинацию против оспы.

Однако такая методика срабатывает далеко не всегда. Не случайно до сих пор нет вакцин против СПИДа, туберкулёза и малярии - трёх наиболее опасных заболеваний в мировом масштабе. Более того, на многие простые химические соединения или белки, которые являются чужеродными для организма и просто обязаны были бы инициировать ответ иммунной системы, - ответ не возникает! И часто происходит это по той причине, что механизм основного защитника - врождённого иммунитета - остаётся неразбуженным.

Один из способов преодолеть это препятствие экспериментально продемонстрировал американский патолог Дж. Фрейнд (J. Freund). Иммунная система заработает в полную силу, если враждебный антиген смешать с адъювантом. Адъювант - своего рода посредник, помощник при иммунизации, в опытах Фрейнда он состоял из двух компонентов. Первый - водо-масляная суспензия - выполнял чисто механическую задачу медленного высвобождения антигена. А второй компонент - на первый взгляд достаточно парадоксальный: высушенные и хорошо растолчённые бактерии туберкулёза (палочки Коха). Бактерии мертвы, они не способны вызвать заражение, но рецепторы врождённого иммунитета их всё равно немедленно распознáют и включат защитные механизмы на полную мощность. Вот тогда и запускается процесс активации адаптивного иммунного ответа на антиген, который был подмешан к адъюванту.

Открытие Фрейнда было чисто экспериментальным и поэтому может показаться частным. Но Джэнуэй уловил в нём момент общей значимости. Более того, он даже называл неспособность индуцировать полноценный иммунный ответ на чужеродный белок у экспериментальных животных или у человека «маленьким грязным секретом иммунологов» (намекая на то, что это удаётся сделать только в присутствии адъюванта, а как работает адъювант, никто не понимает).

Джэнуэй и предположил, что система врождённого иммунитета распознаёт бактерии (как живые, так и убитые) по компонентам клеточных стенок. Бактериям, которые живут «сами по себе», нужны для внешней защиты прочные многослойные клеточные оболочки. Нашим же клеткам, под мощным чехлом внешних защитных тканей, такие оболочки не нужны. И синтезируются бактериальные оболочки с помощью ферментов, каких у нас нет, и поэтому компоненты бактериальных стенок - это как раз те химические структуры, идеальные сигнализаторы угрозы инфекции, на которые организм в процессе эволюции изготовил рецепторы-опознаватели.

Небольшое отступление в контексте основной темы.

Жил датский учёный-бактериолог Христиан Иоахим Грам (1853-1938), занимавшийся систематизацией бактериальных инфекций. Он нашёл вещество, которое бактерии одного класса окрашивало, а другого - нет. Те, что окрашивались в розовый цвет, теперь в честь учёного называются грамположительными, а те, что оставались бесцветными, - грамотрицательными. В каждом из классов миллионы различных бактерий. Для человека - вредоносных, нейтральных и даже полезных, они живут в почве, воде, слюне, кишечнике - где угодно. Наши защитные рецепторы умеют избирательно опознавать и те и другие, включая соответствующую защиту против опасных для своего носителя. И краситель Грама мог их различать за счёт связывания (или несвязывания) с теми же самыми «инвариантными» компонентами бактериальных стенок.

Оказалось, что стенки микобактерий - а именно к ним относятся туберкулёзные палочки - устроены особенно сложно и распознаются сразу несколькими рецепторами. Наверное, поэтому у них превосходные адъювантные свойства. Итак, смысл применения адъюванта - обмануть иммунную систему, послать ей ложный сигнал о том, что организм заражён опасным патогеном. Заставить реагировать. А на самом деле в вакцине такого патогена нет вообще или он не такой опасный.

Нет сомнений, что можно будет найти и другие, в том числе неприродные, адъюванты для иммунизаций и вакцинаций. Это новое направление биологической науки имеет колоссальное значение для медицины.

Включаем-выключаем нужный ген

Современные технологии позволяют выключать («нокаутировать») единственный ген у подопытной мыши, который кодирует один из рецепторов врождённого иммунитета. Например, отвечающий за распознавание тех же самых грамотрицательных бактерий. Тогда мышь теряет способность обеспечить свою защиту и, будучи инфицированной, погибает, хотя все остальные компоненты иммунитета у неё не нарушены. Именно так сегодня экспериментально и изучается работа систем иммунитета на молекулярном уровне (пример плодовой мушки мы уже обсуждали). Параллельно клиницисты учатся связывать отсутствие у людей иммунитета к определённым инфекционным заболеваниям с мутациями в конкретных генах. Сотни лет известны примеры, когда в некоторых семьях, родах и даже племенах была чрезвычайно высока смертность детей в раннем возрасте от совершенно определённых болезней. Теперь становится понятно, что в некоторых случаях причина - мутация какого-то компонента врождённого иммунитета. Ген выключен - частично или полностью. Поскольку большинство генов у нас - в двух копиях, то надо специально постараться, чтобы обе копии были испорчены. «Достичь» этого можно в результате близкородственных браков или кровосмешения. Хотя было бы ошибкой думать, что это объясняет все случаи наследственных заболеваний иммунной системы.

В любом случае, если причина известна, есть шанс найти способ избежать непоправимого, хотя бы в будущем. Если ребёнка с диагностированным врождённым дефектом иммунитета целенаправленно защищать от опасной инфекции до 2-3-летнего возраста, то с завершением формирования иммунной системы смертельная опасность для него может миновать. Даже без одного уровня защиты он будет в состоянии справляться с угрозой и, возможно, проживёт полноценную жизнь. Опасность останется, но её уровень снизится в разы. Ещё есть надежда на то, что когда-нибудь генотерапия войдёт в повседневную практику. Тогда больному надо будет просто перенести «здоровый» ген, без мутации. У мыши учёные умеют не только выключать ген, но и включать. У человека это намного сложнее.

О пользе простокваши

Стоит вспомнить ещё об одном предвидении И. И. Мечникова. Сто лет назад он связывал активность открытых им фагоцитов с питанием человека. Хорошо известно, что в последние годы жизни он активно употреблял и пропагандировал простоквашу и прочие кисломолочные продукты, утверждая, что поддержание необходимой бактериальной среды в желудке и кишечнике чрезвычайно важно и для иммунитета, и для продолжительности жизни. И тут он опять оказался прав.

Действительно, исследования последних лет показали, что симбиоз кишечных бактерий и человеческого организма намного глубже и сложнее, чем полагали до сих пор. Бактерии не только помогают процессу пищеварения. Поскольку в них присутствуют все характерные химические структуры микробов, то даже самые что ни на есть полезные бактерии обязаны распознаваться системой врождённого иммунитета на клетках кишечника. Оказалось, что через рецепторы врождённого иммунитета бактерии посылают организму некие «тонизирующие» сигналы, смысл которых ещё не полностью установлен. Но уже известно, что уровень этих сигналов очень важен и если он снижен (например, бактерий в кишечнике недостаточно, в частности от злоупотребления антибиотиками), то это один из факторов возможного развития онкологических заболеваний кишечного тракта.

Двадцать лет, прошедшие с момента последней (последней ли?) революции в иммунологии, - слишком малый срок для широкого практического применения новых идей и теорий. Хотя вряд ли в мире осталась хоть одна серьёзная фармацевтическая компания, которая ведёт разработки без учёта новых знаний о механизмах врождённого иммунитета. И некоторые практические успехи уже достигнуты, в частности в разработке новых адъювантов для вакцин.

А более глубокое понимание молекулярных механизмов иммунитета - как врождённого, так и приобретённого (не надо забывать, что они должны действовать вместе - победила дружба) - неизбежно приведёт к значительному прогрессу в медицине. Сомневаться в этом не стоит. Следует лишь немного подождать.

Но вот в чём промедление крайне нежелательно, так это в просвещении населения, а также в смене стереотипов в преподавании иммунологии. Иначе наши аптеки будут по-прежнему ломиться от доморощенных лекарств, якобы универсально усиливающих иммунитет.

Сергей Артурович Недоспасов - заведующий кафедрой иммунологии биологического факультета МГУ им. М. В. Ломоносова, заведующий лабораторией Института молекулярной биологии им. В. А. Энгельгардта РАН, заведующий отделом Института физико-химической биологии им. А. Н. Белозерского.

«Наука и жизнь» об иммунитете:

Петров Р. Точно по цели. - 1990, № 8.

Мате Ж. Человек с точки зрения иммунолога. - 1990, № 8.

Чайковский Ю. Юбилей Ламарка-Дарвина и революция в иммунологии. - 2009, №№ , .

В течение второй половины XIX века врачами и биологами того времени активно исследовалась роль патогенных микроорганизмов в процессе развития инфекционных болезней, а также возможность формировать искусственную невосприимчивость к ним. Эти исследования привели к изучению фактов о естественной защите организма от инфекций. Пастер предложил научному сообществу идею так называемой "исчерпанной силы". Согласно этой теории, вирусная невосприимчивость является таким состоянием, при котором человеческий организм не является благотворной питательной средой для инфекционных агентов. Однако эта идея не могла объяснить целый ряд практических наблюдений.

Мечников: клеточная теория иммунитета

Эта теория появилась в 1883 году. Создатель клеточной теории иммунитета опирался на учение Чарльза Дарвина и основывался на изучении процессов пищеварения у животных, которые располагаются на различных ступенях эволюционного развития. Автор новоявленной теории обнаружил некое сходство во внутриклеточном переваривании веществ у клеток энтодермы, амеб, тканевых макрофагов и моноцитов. Собственно, иммунитета создал известнейший русский биолог Илья Мечников. Его работы в этой области продолжались достаточно долго. Начало им было положено еще в итальянском городе Мессина, в котором микробиолог наблюдал за поведением и личинок

Патолог обнаружил, что блуждающие клетки наблюдаемых созданий чужеродные тела окружают, а затем поглощают их. Кроме того, они рассасывают и следом уничтожают те ткани, которые не нужны организму более. Он приложил немало усилий для разработки своей концепции. Создатель клеточной теории иммунитета ввел, собственно, понятие «фагоциты», выведенное от греческих слов «фагес» - поедать и «китос» - клетка. То есть новый термин буквально означал процесс поедания клеток. К идее таких фагоцитов ученый пришел несколько ранее, когда изучал внутриклеточное пищеварение в различных клетках соединительной ткани у беспозвоночных: губок, амеб и прочих.

У представителей высшего животного мира самыми типичными фагоцитами могут быть названы белые кровяные тельца, то есть лейкоциты. Позднее создатель клеточной теории иммунитета предложил разделять такие клетки на макрофаги и микрофаги. Правильность такого разделения подтверждали достижения ученого П. Эрлиха, который дифференцировал разные типы лейкоцитов посредством окраски. В своих классических работах, посвященных патологии воспаления, создатель клеточной теории иммунитета сумел доказать роль фагоцитирующих клеток в процессе элиминации патогенов. Уже в 1901 году вышел в мир его фундаментальный труд о невосприимчивости к инфекционным болезням. Кроме самого Ильи Мечникова, значительный вклад в развитие и распространение теории фагоцитарного иммунитета внесли И.Г. Савченко, Ф.Я. Чистович, Л.А. Тарасевич, А.М. Березка, В.И. Исаев и ряд других исследователей.

Новое на сайте

>

Самое популярное