Домой Полезные свойства плодов Межгалактические космические полеты. Вопрос ученому: что мешает межзвездным полетам? Системы торможения Межзвездных Кораблей

Межгалактические космические полеты. Вопрос ученому: что мешает межзвездным полетам? Системы торможения Межзвездных Кораблей

Сможем ли мы на самом деле добраться до неведомых планет за пределами Солнечной системы? Как это вообще возможно?

Фантасты и кинематографисты, конечно, молодцы, хорошо поработали. В красочные истории, где человек покоряет самые дальние уголки космоса, действительно хочется верить. К сожалению, прежде чем эта картинка станет явью, нам придется преодолеть немало ограничений. Например, законы физики, какими мы их видим сейчас.

Но! В последние годы появилось несколько волонтерских и финансируемых частными лицами организаций (Фонд Tau Zero , проект Icarus , проект Breakthrough Starshot), каждая из которых ставит целью создание транспорта для межзвездных полетов и приблизить человечество к покорению Вселенной. Их надежду и веру в успех укрепляют позитивные новости, например, на орбите звезды Проксима-Центавра планеты размером с Землю.

Создание межзвездного космического аппарата станет одной из тем для обсуждения на Всемирном саммите BBC Future «Идеи, которые меняют мир» в Сиднее в ноябре. Сможет ли человек отправиться в другие галактики? И если да, то какие виды космических кораблей нам для этого понадобятся?

Куда бы нам отправиться?


А куда лететь не стоит? Во Вселенной звезд больше , чем песчинок на Земле — около 70 секстиллионов (это 22 нуля после семерки) — и, по оценкам ученых, миллиарды из них имеют на орбитах от одной до трех планет в так называемой «зоне Златовласки»: на них не слишком холодно и не слишком жарко. В самый раз .

С самого начала и до сих пор лучшим претендентом для первого межзвездного полета является наш ближайший сосед — тройная звездная система Альфа Центавра. Она находится на расстоянии 4,37 световых лет от Земли. В этом году астрономы Европейской южной обсерватории обнаружили планету размером с Землю, вращающуюся вокруг красного карлика Проксима Центавра из этого созвездия. Масса планеты, названной Проксима b, как минимум в 1,3 раза больше земной, и она имеет очень короткий период обращения вокруг своей звезды - всего 11 земных дней. Но все равно эта новость чрезвычайно взволновала астрономов и охотников за экзопланетами, ведь температурный режим Проксимы b подходит для существования воды в жидком виде, а это - серьезный плюс к возможной обитаемости.

Но есть и недостатки: мы не знаем, имеет ли Проксима b атмосферу, и, учитывая ее близость к Проксима Центавра (ближе, чем Меркурий к Солнцу), она, вероятно, будет подвергаться воздействию выбросов звездной плазмы и радиации. И она так заперта приливными силами, что всегда обращена к звезде одной стороной. Это, конечно, может полностью изменить наши представления о дне и ночи.

И как мы туда попадем?


Это вопрос на 64 триллиона долларов. Даже на максимальной скорости, которую позволяют развить современные технологии, нам до Проксимы Б 18 тысяч лет. И высока вероятность, что добравшись до цели мы встретим там… наших потомков в Земли, которые уже колонизировали новую планету и забрали всю славу себе. Поэтому глубокие умы и бездонные карманы ставят себе амбициозную задачу: найти более быстрый способ пересекать огромные расстояния.

Breakthrough Starshot - это космический проект с бюджетом в размере 100 миллионов долларов, он финансируется российским миллиардером Юрием Мильнером. Breakthrough Starshot сосредоточился на создании крошечных беспилотных зондов со световыми парусами, подгоняемых мощным наземным лазером. Идея в том, что космический аппарат достаточно малого веса (едва ли 1 грамм) со световым парусом можно будет регулярно ускорять мощным световым лучом с Земли примерно до скорости в одну пятую от скорости света. Такими темпами нанозонды достигнут Альфа Центавра примерно за 20 лет.

Разработчики проекта Breakthrough Starshot рассчитывают на миниатюризацию всех технологий, ведь крошечный космический зонд должен нести с собой камеру, подруливающие устройства, источник питания, средства связи и навигационное оборудование. Все для того, чтобы по прибытии сообщить: «Смотрите, я здесь. А она совсем не вертится». Миллер надеется, что это сработает и заложит основу для следующего, более сложного этапа межзвездных передвижений: путешествия человека.

А что же варп-двигатели?

Да, в сериале Star Trek это все выглядит очень просто: включил варп-двигатель и полетел быстрее скорости света. Но все, что мы в настоящее время знаем о законах физики, говорит нам: путешествия со скоростью выше скорости света, или даже равной ей, невозможны . Но ученые не сдаются: NASA вдохновилось другим захватывающим двигателем из научной фантастики и запустило проект NASA Evolutionary Xenon Thruster (сокращено NEXT) — ионный двигатель, который сможет ускорять космические корабли до скорости 145 тысяч км/ч, используя лишь одну фракцию топлива для обычной ракеты.

Но даже на таких скоростях мы не сможем улететь далеко от Солнечной системы за одну человеческую жизнь. Пока мы не разберемся, как работать с пространством-временем, межзвездные путешествия будет протекать очень, очень медленно. Возможно, уже пора начать воспринимать то время, которое галактические странники проведут на борту межзвездного корабля, просто как жизнь, а не как поездку на «космическом автобусе» от пункта А к пункту Б.

Как мы выживем в межзвездном путешествии?


Варп-двигатели и ионные моторы - это, конечно, очень круто, но во всем этом будет мало проку, если наши межзвездные странники погибнут от голода, холода, обезвоживания или отсутствия кислорода еще до того, как покинут пределы Солнечной системы. Исследователь Рейчел Армстронг утверждает, что нам пора задумываться о создании настоящей экосистемы для межзвездного человечества.

«Мы переходим от индустриального взгляда к экологическому видению реальности», — заявляет Армстронг.

Армстронг — профессор экспериментальной архитектуры в Университете Ньюкасла в Великобритании — говорит о таком понятии как «worlding»: «Это о пространстве обитания, а не только о дизайне объекта». Сегодня внутри космического корабля или станции все стерильно и выглядит как промышленный объект. Армстронг считает, что вместо этого мы должны подумать об экологической составляющей космических судов: о растениях, которые мы сможем выращивать на борту, и даже о видах почв, которые возьмем с собой. В будущем, как она предполагает , космолеты будут выглядеть как гигантские биомы, полные органической жизни, а не сегодняшние холодные, металлические ящики.

А мы не можем просто проспать всю дорогу?


Криосон и гибернация - это, конечно хорошее решение довольно неприятной проблемы: как сохранить людей живыми во время путешествия, которое длится гораздо дольше, чем сама человеческая жизнь. По крайней мере, в кино так делают . И в мире полно крио-оптимистов: Фонд продления жизни Алькор хранит множество крио-консервированных тел и голов людей, которые надеются, что наши потомки научатся безопасно размораживать людей и избавляться от неизлечимых ныне заболеваний, но в настоящее время таких технологий не существует.

В фильмах типа «Интерстеллар» и в книгах наподобие «Seveneves» Нила Стивенсона озвучивается идея отправить в космос замороженные эмбрионы, которые могли бы пережить даже самый длительный полет, потому что ни есть, ни пить, ни дышать им не нужно. Но это поднимает проблему «курицы и яйца»: кто-то ведь должен ухаживать за этим зарождающимся человечеством в несознательном возрасте.

Так это все реально?

«С самого зарождения человечества мы смотрели на звезды и обращали к ним наши надежды и страхи, тревоги и мечты», — говорит Рэйчел Армстронг .

С запуском новых инженерных проектов, таких как Breakthrough Starshot, «мечта становится реальным экспериментом».

Ответ потребует большой статьи, хотя на него можно ответить и единственным символом: c .

Скорость света в вакууме, c , равна примерно тремстам тысячам километров в секунду и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли экипажу автономно жить в космосе столько времени - космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик катриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом прочитали целую лекцию для всех желающих . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении с скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенного в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Мы познакомились с возможными физическими различиями между нами и нашими космическими собратьями. Теперь приступим к тому, что может оказаться для нас более существенным, - к интеллектуальным различиям. Эту проблему можно сформулировать так.

Загадка 1. Обогнали нас в своем развитии другие цивилизации или они отстали от нас?

Допустим, что в нашей Галактике по меньшей мере миллион «двойников» Земли, на которых существует разумная жизнь. Они образовались в различные эпохи - на миллионы лет раньше или позже нашей, - и, следовательно, находятся на разных ступенях развития. Времена динозавров, доисторического человека, ранней Римской империи - все эти эпохи истории Земли в настоящее время, возможно, «копируются», причем одновременно на нескольких планетах. Не исключено, что в свою очередь мы на Земле переживаем сейчас эру, которую другие миры миновали тысячи или даже миллионы лет назад.

Много ли цивилизаций превзошло нас в своем развитии? И насколько? То, что говорит по этому поводу Позин, отнюдь не утешительно для нашей гордости. Земля не может войти в число цивилизаций высокой или даже средней степени развития. Скорее всего мы занимаем ступень, не слишком далекую от нижнего конца эволюционной шкалы. Это вытекает из простой и, как нам кажется, неоспоримой логики.

Астрономы считают, что энергии нашего Солнца хватит по крайней мере на 10 млрд. лет. Сложив это число с возрастом Земли, оцениваемым в 5 млрд. лет, получим полное время существования Земли - 15 млрд. лет. Прошло 2,5 млрд. лет до зарождения жизни на Земле, и еще столько же - до появления человека, что в сумме составляет 1 / 3 от «выделенных» на долю Земли 15 млрд. лет. Человек, следы нецивилизованного предшественника которого удается проследить лишь на миллион лет назад, вышел из пещер и начал приобщаться к цивилизации самое большее 12 000 лет назад. Следовательно, для дальнейшего развития человечества остается 10 млрд. лет.

Если «продолжительность жизни» миллиона других планет, подобных Земле, также составляет 15 млрд. лет, их средний возраст - 7,5 млрд. лет, а средний возраст цивилизаций - 2,5 млрд. лет. Но около половины этих «двойников» Земли, то есть примерно 500 000 планет, еще старше.

Поскольку мы находимся вблизи самой нижней ступеньки малоразвитой половины, мы, вероятно, превосходим в своем развитии приблизительно 50 000 цивилизаций, но уступаем 950 000 других. Те, возраст которых 10 млрд. лет (подумать только - миллионы веков!) и которые достигли невообразимых высот в умственном развитии, вне всяких сомнений, поставили бы нас, землян, не выше искусных муравьев, живущих колониями и обнаруживающих сомнительный интеллект.

Однако наши подсчеты обитаемых миров могут оказаться ошибочными. Не исключено, что на многих планетах условия препятствуют возникновению жизни. Вероятно, что некоторые цивилизации в процессе эволюции столкнулись с препятствиями и смогли нормально развиваться лишь после длительной задержки. Часть звезд преждевременно вспыхнули как новые, нанеся тем самым непоправимый ущерб обитаемым планетам, которые обращаются вокруг них. И кто знает, сколько цивилизаций погибло в огне атомных войн?

Но даже сотни и тысячи подобных ограничений ненамного уменьшат число цивилизаций, которые старше и, по-видимому, умнее нашей. Независимо от того, как мы к этому относимся, Земля находится, вероятно, на уровне примитивной космической культуры. Существуют многие тысячи цивилизаций, которые опережают нас на большее число лет, чем требуется свету для преодоления разделяющего нас расстояния.

Загадка 2. Посещалась ли Земля инопланетными существами, которые наблюдали за нами при помощи летающих тарелок?

Большинство ученых сразу же скептически улыбнутся, услышав о летающих тарелках.

По заявлениям авторитетных специалистов, в большинстве случаев летающие тарелки всего лишь игра воображения. Особенно это относится к так называемым контактным неотождествленным летающим объектам (НЛО), которые якобы запущены с Марса, Венеры или других планет и регулярно совершают посадку на свои базы. Некоторые из них объявляли межзвездными космическими кораблями, что вызвало оживленные дискуссии об экзотических переживаниях их экипажей.

Но нельзя совершенно не учитывать мнения тех, кто считает, что НЛО, даже если они и не садились на Землю, появлялись в нашем небе. После первого сообщения Арнольда в 1947 г. специальными поисковыми группами было зарегистрировано свыше 20 000 случаев появления летающих тарелок - странных образований необычной формы либо накаленных добела объектов, мчащихся в воздухе с огромными скоростями. Ряд заслуживающих доверия специалистов - летчики, операторы радаров и даже некоторые ученые - утверждали, что они не раз наблюдали такие явления.

Главное, что показала вся кампания по проверке реальности НЛО, - это то, что в течение более чем 15 лет не было представлено ни одного убедительного доказательства их существования. Приверженцы НЛО утверждают, что некоторые фотографии осколков «взорвавшихся тарелок», странного пепельного следа позади подозрительного объекта и другие косвенные свидетельства подтверждают существование инопланетных посланцев. Но ни одно из этих «доказательств» неприемлемо ни для автора книги, ни для научной общественности в целом.

Приверженцы «летающих тарелок» позволяют себе произвольное истолкование то одного, то другого факта - и всегда в свою пользу. Если бы кто-нибудь вдруг объявил, что Земля полая, сторонники летающих тарелок были бы среди тех, кто потребовал бы доказательств. Они отвергли бы интерпретацию сейсмических записей как исчезновение звуковых волн в гигантской полости на глубине, скажем, 800 км . Они спрашивали бы, почему сотни опытных сейсмологов не получили таких результатов, и были бы совершенно правы, не признавая этой дикой теории, основанной на шатких доказательствах, приводимых ничтожной группкой фанатиков, отстаивающих свою модель полой Земли. Однако сами сторонники «летающих тарелок», по-видимому, неспособны понять порочность своей позиции, самоуверенно выдвигая легковесные и необъективные доводы.

Если в один прекрасный день летающая тарелка приземлится и весь мир увидит своими глазами, что из нее вышел космонавт с другой планеты, то ученые - и вместе с ними автор - признают свою ошибку.

Поскольку развитие техники орбитальных полетов приведет к полетам на Луну и к появлению обитаемых космических станций, наши космонавты со временем смогут ответить на вопрос, одни ли они в космосе. Не в меру фанатичные сторонники «летающих тарелок», требующие уже сегодня опознания в подозрительных объектах космических гостей, должны набраться терпения, а пока их требования совершенно беспочвенны. Если бы пришельцы имели какую-то определенную цель, скажем завоевание Земли, то, располагая чрезвычайно развитой техникой, в том числе «летающими тарелками», они давно бы ее осуществили.

Другой аргумент: пилоты намеренно предпочитают наблюдать нас издалека, так как опасаются, что их приземление вызовет панику среди обитателей Земли и, возможно, угрозу космической войны. Это попытка объяснить немаловажный факт, что ни один из кораблей-тарелок ни разу не опустился на Землю и его экипаж не вступил с нами, обитателями Земли, в прямой контакт.

Конечно, можно предполагать, что пришельцы из других миров в прошлом посещали Землю. Достаточно вспомнить, что за 10 млрд. лет многие цивилизации могли достигнуть необычайно высокого уровня развития космической техники, чтобы согласиться с возможностью многократных посещений Земли, разделенных интервалами в миллион лет. Такие визиты отнюдь не кажутся фантастическими теперь, когда человек сам готов посетить Луну и другие планеты и уже мечтает о полетах к звездам.

Итак, логика почти неумолимо подсказывает нам, что в исследовании Галактики сейчас принимают участие тысячи цивилизаций и, быть может, светофоры, регулирующие это удивительное «космическое движение», управляются из единого центра.

Загадка 3. Существует ли Космическая организация объединенных цивилизаций?

Фантазия? Но почему же, если в Галактике по крайней мере миллион обитаемых планет? Если большинство цивилизаций перегнали нас в своем развитии и уже давно разослали по всем направлениям межзвездные корабли, они рано или поздно должны были встретиться друг с другом. Возможно, имели место настоящие «войны миров» и возникали империи, военными трофеями которых были отдельные планеты. И все остальные темные деяния, совершенные человеком на Земле, могут повториться в космическом масштабе.

Вероятно, была бы разработана система космического права и образована галактическая ассамблея, включающая как представителей передовых цивилизаций, так и малоразвитых новичков. Ее сессии могут принимать резолюции, направленные на сохранение мира и сокращение разрыва в уровне развития цивилизаций, разделенных многими световыми годами.

Начало Организации объединенных цивилизаций было бы положено миллионы лет назад. И, когда делегаты нашей солнечной системы прибудут на «многолюдную» ассамблею и с изумлением оглядят инопланетных дипломатов, Земля будет одним из последних членов, только что достигших галактического статута и вышедших из числа слаборазвитых планет.

Самые видные ученые Земли не видят в этой идее ничего антинаучного, и Хойл совершенно серьезно говорит о «межзвездном клубе», в который когда-нибудь будет приглашено и человечество.

Объединение усилий различных цивилизаций для решения общегалактических задач и развития техники (начавшееся, вероятно, еще до появления на Земле первого микроорганизма), несомненно, привело бы к планомерным поискам отсталых цивилизаций, которым еще недоступны межзвездные полеты. Если на обнаруженной планете пока нет разумных существ или их культура еще слишком примитивна для решения настоящих космических задач, такая планета не может быть сочтена кандидатом в члены сообщества. Земля оказалась бы такой планетой.

Но нет никакой уверенности в том, что высокоразвитые в области космической техники, но еще не достигшие социальной зрелости цивилизации не попытались бы завоевать другие планеты. Вполне возможно, что некоторые из наших древних и самых живучих легенд обязаны своим появлением вторжению космических пришельцев.

Например, гибель легендарной Атлантиды в океане была безжалостным актом, который космические конкистадоры совершили после ее ограбления (золото, бриллианты, уран или даже железо - редкий и потому бесценный металл на их планете), скрыв следы своего преступления от бдительных патрулей «гуманной» группы цивилизаций.

Загадка 4. Был ли Тунгусский метеорит космическим кораблем с экипажем?

В июне 1908 г. на территорию Восточной Сибири упал гигантский метеорит, шум падения которого был слышан в радиусе 300 км . В отличие от Аризонского и Чаббского метеоритов он не образовал кратера, однако мощная воздушная волна повалила деревья в радиусе 80 км , как будто метеорит взорвался в воздухе еще до падения на поверхность. Но несколько экспедиций в район падения, организованных Академией наук СССР, не нашли крупных осколков гигантского метеорита, которые должны были бы упасть на Землю.

Были выдвинуты две теории, каждая из которых считает взорвавшийся объект искусственным, а именно кораблем другого мира.

Согласно первой теории, это был космический корабль с термоядерным двигателем, взорвавшийся при попытке приземлиться. Это объяснило бы огромную мощность взрывной волны; но уровень радиоактивности в области падения слишком мал, что не согласуется с этой теорией. Энергии при взрыве ядерного двигателя космического корабля, эквивалентной по меньшей мере тысяче водородных бомб, было бы достаточно, чтобы район взрыва на сотни лет превратился в атомную пустыню. Но в настоящее время эта область тайги покрыта буйной растительностью.

Другое предположение сводится к тому, что корабль прилетел из антимира. За последнее десятилетие физики-ядерщики для каждой известной элементарной частицы теоретически предсказали античастицу и многие из них уже получили экспериментально. Отрицательно заряженному электрону соответствует положительно заряженный антиэлектрон, или позитрон, протону - антипротон, нейтрону - антинейтрон и так далее для более чем тридцати частиц.

При встрече любой частицы со своей античастицей происходит их исчезновение, аннигиляция, и вся масса превращается в излучение с выделением энергии, в тысячу раз большей, чем при реакциях расщепления или синтеза атомных ядер.

Античастицы необычны только в мире нормальных частиц, а в антимире те и другие меняются ролями. Но, так как впервые античастицы были открыты в составе космических лучей, которые сыплются дождем из межзвездного пространства, разумен вопрос: а почему бы не существовать целым звездам и даже галактикам, состоящим из антивещества?

Пока галактики и «антигалактики» разделены огромными расстояниями, они могут существовать, не вызывая гибель друг друга. Однако не исключено, что излучение сталкивающихся галактик (например, в созвездии Лебедя) обязано своей огромной мощностью катастрофическим процессам аннигиляции звезд и «антизвезд».

Теперь легко видеть, какая страшная драма могла разыграться над поверхностью Земли. Проведя в пути долгие годы, возможно всю жизнь, преодолев расстояние от одной звезды до другой, неизвестные астронавты, убедившись в том, что Земля обитаема, с нетерпением готовились к посадке. Но при погружении в плотные слои земной атмосферы (на высоте около 80 км ) антивещество их корабля вступило в реакцию с газами атмосферы - и звездное путешествие закончилось чудовищной вспышкой.

Этот сверхвзрыв не рассеял атомов «на ветер». Они аннигилировали, и при этом выделилась энергия, во много раз превосходящая энергию термоядерного взрыва. Могила космонавтов отмечена лишь сплошь поваленным лесом, и не осталось никаких следов самих пришельцев или их корабля.

Эта теория великолепно объясняет загадку Тунгусского метеорита и, если она соответствует действительности, предлагает нам пример одного из редких визитов из космоса.

И все-таки это только догадки; пока никто не может дать нам ответа на вопрос, посещалась ли Земля гостями из Космоса.

Загадка 5. Станет ли космический корабль с Земли загадочной «летающей тарелкой» для жителей другой планеты?

Ближайшая к нам планетная система звезды Проксимы Центавра по крайней мере в 7500 раз дальше Плутона, на расстоянии 42 триллиона км . (Конечно, у Проксимы Центавра может вообще не быть планет, а если и есть, то они могут оказаться необитаемыми.) Трудно представить себе те огромные расстояния, которые разделяют Солнце и ближайшие звезды.

В сфере радиусом 12 световых лет (113 триллионов км ) насчитывается 18 звезд, видимых невооруженным глазом, включая две всем хорошо известные - Сириус и Процион. Очевидно, для посещения любой из этих звезд межпланетные корабли непригодны. Даже если ракета разовьет скорость 1600 км/сек и пересечет орбиту Плутона через 40 часов с момента старта, для достижения Проксимы Центавра ей потребуется 3000 лет . Следовательно, необходимы значительно более быстрые межзвездные корабли. Но даже увеличение скорости в 10 раз сократит время путешествия лишь до 300 лет. Чтобы межзвездные полеты стали возможными, скорость ракеты должна приблизиться к скорости света. Космический корабль, летящий со скоростью света (300 000 км/сек ), достиг бы Плутона всего за пять часов, а звезды ближайшей соседки Проксима Центавра - за 38 000 часов или 4,3 года. Ракеты на химическом топливе не годятся, так как для развития скорости, хотя бы равной малой доле скорости света, необходимы резервуары для горючего размером с астероиды. Ракеты с ядерными и так называемыми электростатическими ионными двигателями могли бы развить большую, но опять-таки недостаточную скорость.

Только совершенно новые типы двигателей обеспечат нас настоящими межзвездными кораблями. Среди них, возможно, будет фотонная ракета.

Подобно тому как в электростатическом ракетном двигателе источником тяги служит поток ионов высокой скорости, фотонный двигатель излучает мощный пучок световых квантов, обеспечивающий реактивную силу. Правда, некоторые специалисты по ракетной технике считают, что эти проекты нереальны, ибо потребовался бы фотонный генератор невероятных размеров и мощности.

В последние годы бурно развиваются лазеры . Эти приборы генерируют необычайно мощные пучки излучения (видимого, ультрафиолетового или инфракрасного). Ежедневно мы слышим и читаем сообщения о новых подвигах лазеров: ими в доли секунды прожигают отверстия в алмазах, режут пластинки стали. Инженеры не сомневаются, что им удастся в конце концов сосредоточить в луче лазера мощность, измеряемую миллионами ватт.

Космический корабль, оснащенный лазерным фотонным двигателем, способен развивать скорость, равную 90 % скорости света. Тогда путешествие до Проксимы Центавра займет меньше пяти, а до Сириуса (расстояние 8,6 световых лет) - около девяти лет. Если бы космонавты добровольно согласились провести свою жизнь на борту космического корабля, то можно было бы посетить все звезды в радиусе 25 световых лет в надежде найти другую планетную систему и один из миллионов «двойников» Земли, населенный разумными существами.

Но поможет ли это?..

Загадка 6. Какова вероятность обнаружить жизнь в «ближайших» окрестностях Солнца, доступных фотонной ракете?

Из всего сказанного выше следует, что эта вероятность практически равна нулю. Если оценка Струве верна и число подобных Земле планет в нашей Галактике действительно составляет один миллион, то это означает, что в среднем из 200 000 звезд только одной посчастливилось быть обладательницей семейства планет. К сожалению, как следует из расчетов Хорнера (Гейдельбергская обсерватория), в сфере радиусом 160 световых лет содержится всего 10 звезд с планетными системами. Значит, только при фантастическом везении «поблизости» от нас существует звезда, - может быть даже, это Проксима Центавра - с обитаемой планетой.

Если увеличить оценку Струве в 100 раз, то нашим космонавтам придется обследовать 2000 звезд, прежде чем найдется одна с обитаемой планетой. Более того, их путешествие будет продолжаться по меньшей мере 100 лет - больше продолжительности их жизни. Итак, из-за значительной длительности полетов, казалось бы, невозможно успешно справиться с задачей поисков братских миров. Очевидно, космонавтам не хватит жизни, чтобы преодолеть даже десятую часть пути к столь далеким звездам, а тем более посетить их и возвратиться на Землю.

Однако одно обстоятельство отодвигает этот временнóй барьер.

Загадка 7. Смогут ли космонавты преодолеть расстояние в 1000 световых лет за один год?

Если бы космический корабль смог развить скорость, равную, скажем, 99 % скорости света или больше, знаменитый парадокс «замедления времени» теории относительности Эйнштейна устранил бы временной барьер. Теоретически для человека, движущегося вместе с ракетой с такой скоростью, время в буквальном смысле замедлит ход.

В то время как часы на Земле отсчитают 1000 лет, для команды корабля пройдет 10 лет, а то и меньше, в зависимости от того, насколько его скорость близка к скорости света. Поэтому, достигнув планеты, они станут старше лишь на несколько лет. Возвращаясь с той же скоростью, они прилетят на Землю мало постаревшими, но не найдут своих родных и друзей, давно уже умерших.

Загадка 8. Сможет ли человек посещать другие миры на сверхсветовых кораблях?

Из теории относительности следует, что, если скорость тела стремится к скорости света (которая предполагается постоянной), его масса стремится к бесконечности, так что физически невозможно продолжать ускорение объекта до более высокой скорости.

Но если бы скорость света перестала играть роль сдерживающего фактора для наших космических кораблей, то солнечная система стала бы прудом, Млечный Путь - озером, межгалактическое пространство - морем, а вся Вселенная - океаном. Достаточно большая скорость сократит продолжительность путешествий со столетий до нескольких месяцев и лет.

Однако преодоление космических расстояний - чудовищно трудная задача. Даже световой год - недостаточно большая единица, когда приходится иметь дело с удаленными объектами. Все звезды, видимые на ночном небе, находятся в нашей Галактике в пределах 100 000 световых лет. Но уже ближайшая галактика в созвездии Андромеды удалена от нас на 2 300 000 световых лет, а другие миллионы и миллионы галактик - на миллиарды световых лет. Астрономам неудобно пользоваться этой единицей, и они ввели новую - парсек .

Слово «парсек» образовано из начальных слогов двух слов - параллакс и секунда. Параллакс - это величина углового смещения изображения звезды относительно звездного фона при наблюдении из диаметрально противоположных точек земной орбиты, расстояние между которыми 300 млн. км . Если параллакс (видимое смещение) равен 1 секунде дуги, то расстояние до наблюдаемого объекта равно 1 парсеку. Один парсек соответствует 3,26 световых года, или 31 триллиону км . Как видно, парсек ненамного больше светового года, поэтому астрономы часто пользуются производными от парсека единицами - килопарсеком (1000 парсек) и мегапарсеком (1 000 000 парсек). Туманность Андромеды отстоит от нас на 700 килопарсек, а группа галактик в созвездии Волос Вероники - на 25 мегапарсек (почти 90 000 000 световых лет).

При помощи радиотелескопов и 5-метрового Паломарского рефлектора границы наблюдаемой Вселенной были раздвинуты до 7,5 млрд. световых лет, то есть до 2300 мегапарсек. Таким образом, мегапарсек как единица расстояния тоже становится непригодной, и некоторые астрономы делают еще один шаг вперед и определяют размеры видимой части Вселенной величиной 2,3 гигапарсек (приставка гига означает миллиард).

Скорость, которая потребовалась бы для полета к самым далеким из известных галактик, выражается фантастическим числом; расстояние получается умножением 7,5 млрд. световых лет на тот путь, который проходит свет за год (10 триллионов км ), и составляет 75 · 10 21 км . Двигаясь в миллион раз быстрее света, космический корабль достиг бы столь удаленных объектов лишь через 750 лет.

Очевидно, даже устранение всех релятивистских ограничений не сделает приятной прогулкой такие полеты в Большой Вселенной и даже сверхсветовые корабли позволят исследовать лишь нашу собственную сравнительно небольшую Галактику и вряд ли - объекты за ее пределами.

Это в какой-то степени ответ тем, кто созерцая мириады миров, возможно обитаемых, спросит, подобно Теллеру: «Где же вы?» Нас могли бы посетить на сверхскоростных ракетах только уроженцы нашей Галактики, и даже тогда им пришлось бы потрудиться, чтобы среди каждых 200 000 звезд найти одну, окруженную планетами. Отсюда логически следует вывод, что любая планета, в том числе и Земля, не будет посещаться слишком часто за все 10 млрд. лет существования жизни.

Допустим, Земле конец. Солнце готово вот-вот взорваться, к планете приближается астероид размером с Техас. Крупные города населены зомби, а в сельской местности фермеры усиленно сажают кукурузу, потому что другие посевы гибнут. Нужно срочно покидать планету, но вот беда - в районе Сатурна никаких червоточин не обнаружено, а сверхсветовых двигателей из далёкой-далёкой галактики не завезли. До ближайшей звезды - больше четырёх световых лет. Сможет ли человечество достичь её, располагая современными технологиями? Ответ не столь очевиден.

Вряд ли кто-то станет утверждать, что глобальная экологическая катастрофа, которая поставит под угрозу существование всей жизни на Земле, может случиться лишь в кино. На нашей планете не раз происходили массовые вымирания, во время которых гибло до 90% существующих видов. Земля переживала периоды глобального оледенения, сталкивалась с астероидами, проходила через всплески вулканической активности.

Конечно, даже во время самых страшных катастроф жизнь никогда не исчезала полностью. Но того же не скажешь о господствовавших на тот момент видах, которые вымирали, освобождая дорогу другим. А кто сейчас господствующий вид? Вот-вот.

Вполне вероятно, что возможность покинуть родной дом и отправиться к звёздам в поисках нового сможет когда-нибудь спасти человечество. Однако вряд ли стоит уповать, что какие-нибудь космические благодетели откроют нам дорогу к звёздам. Стоит прикинуть, каковы наши теоретические возможности добраться до звёзд своими силами.

Космический ковчег

В первую очередь на ум приходят традиционные двигатели на химической тяге. В настоящий момент четырём земным аппаратам (все они были запущены ещё в 1970-х) удалось развить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему.

Наиболее быстрый из них, «Вояджер-1», за прошедшие с момента запуска 37 лет удалился от Земли на расстояние в 130 а.е. (астрономических единиц, то есть 130 расстояний от Земли до Солнца). Каждый год аппарат преодолевает примерно 3,5 а.е. Расстояние до Альфы Центавра - 4,36 световых лет, или 275 725 а.е. С такой скоростью аппарату потребуется почти 79 тысяч лет, чтобы добраться до соседней звезды. Мягко говоря, ждать придётся долго.

Фото Земли (над стрелочкой) с расстояния 6 миллиардов километров, сделанное «Вояджером-1». Это расстояние космический аппарат прошёл за 13 лет.

Можно найти способ лететь быстрее, а можно просто смириться и лететь несколько тысяч лет. Тогда конечной точки достигнут лишь далёкие потомки тех, кто отправился в путешествие. Именно в этом заключается идея так называемого корабля поколений - космического ковчега, представляющего собой рассчитанную на длительное путешествие замкнутую экосистему.

В фантастике есть множество различных сюжетов о кораблях поколений. О них писали Гарри Гаррисон («Пленённая Вселенная»), Клиффорд Саймак («Поколение, достигшее цели»), Брайан Олдисс («Без остановки»), из более современных писателей - Бернард Вербер («Звёздная бабочка»). Довольно часто далёкие потомки первых обитателей вообще забывают о том, откуда они вылетели и в чём цель их путешествия. Или даже начинают считать, что весь существующий мир сводится к кораблю, как, например, рассказывается в романе Роберта Хайнлайна «Пасынки Вселенной». Другой интересный сюжет показан в восьмом эпизоде третьего сезона классического «Звёздного пути», где экипаж «Энтерпрайза» пытается предотвратить столкновение корабля поколений, чьи обитатели забыли о своей миссии, и обитаемой планеты, к которой он направлялся.

Плюс корабля поколений заключается в том, что этот вариант не потребует принципиально новых двигателей. Однако нужно будет разработать самодостаточную экосистему, которая сможет существовать без поставок извне в течение многих тысяч лет. И не стоит забывать о том, что люди могут попросту поубивать друг друга.

Проведённый в начале 1990-х под замкнутым куполом эксперимент «Биосфера-2» продемонстрировал ряд опасностей, которые могут подстерегать людей при таких путешествиях. Это и быстрое разделение коллектива на несколько группировок, враждебно настроенных друг к другу, и неконтролируемое размножение вредителей, которое вызвало недостаток кислорода в воздухе. Даже обычный ветер, как оказалось, играет важнейшую роль - без регулярного раскачивания деревья становятся хрупкими и ломаются.

Решить многие проблемы длительного полёта поможет технология, погружающая людей в длительный анабиоз. Тогда ни конфликты не страшны, ни скука, да и система жизнеобеспечения потребуется минимальная. Главное - обеспечить её энергией на длительный срок. Например, с помощью ядерного реактора.

С темой корабля поколений связан весьма интересный парадокс под названием Wait Calculation («Расчётное ожидание»), описанный учёным Эндрю Кеннеди. Согласно этому парадоксу, в течение некоторого времени после отправки первого корабля поколений на Земле могут быть открыты новые, более быстрые способы передвижения, что позволит стартующим позже кораблям обогнать первоначальных поселенцев. Так что не исключено, что к моменту прибытия пункт назначения уже будет перенаселён далёкими потомками колонизаторов, которые отправились позднее.

Установки для анабиоза в фильме «Чужой».

Верхом на ядерной бомбе

Предположим, нас не устраивает, что до звёзд долетят потомки наших потомков, и мы хотим сами подставить лицо лучам чужого солнца. В этом случае не обойтись без космического корабля, способного разогнаться до скоростей, которые доставят его к соседней звезде за время меньше одной человеческой жизни. И тут поможет старая добрая ядерная бомба.

Идея подобного корабля появилась ещё в конце 1950-х. Космический аппарат предназначался для полётов внутри Солнечной системы, однако его вполне можно было бы использовать и для межзвёздных путешествий. Принцип его работы таков: за кормой устанавливают мощную бронированную плиту. Из космического аппарата в направлении, противоположном полёту, равномерно выбрасываются маломощные ядерные заряды, которые подрываются на небольшом (до 100 метров) расстоянии.

Заряды сконструированы таким образом, чтобы большая часть продуктов взрыва направлена в хвост космического корабля. Отражающая плита принимает на себя импульс и передаёт его кораблю через систему амортизаторов (без неё перегрузки будут губительны для экипажа). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой отражающую плиту защищает покрытие из графитовой смазки, которое заново распыляется после каждого подрыва.

Проект NERVA - пример ядерного ракетного двигателя.

На первый взгляд подобная схема кажется безумной, но она вполне жизнеспособна. Во время одного из ядерных испытаний на атолле Эниветок в 9 метрах от центра взрыва были размещены покрытые графитом стальные сферы. После испытания они были найдены неповреждёнными, что доказывает эффективность графитовой защиты для корабля. Но подписанный в 1963 году «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой» поставил крест на этой идее.

Артур Кларк хотел оснастить космический корабль Discovery One из фильма «Космическая одиссея 2001 года» чем-то вроде ядерно-взрывного двигателя. Однако Стэнли Кубрик попросил его отказаться от идеи, испугавшись, что зрители сочтут это пародией на его фильм «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу».

Какую же скорость можно развить с помощью серии ядерных взрывов? Больше всего сведений существует о проекте взрыволёта «Орион», который разрабатывался в конце 1950-х в США при участии учёных Теодора Тейлора и Фримена Дайсона. 400 000-тонный корабль планировалось разогнать до 3,3% скорости света - тогда полёт до системы Альфы Центавра продлился бы 133 года. Однако, согласно нынешним оценкам, подобным способом можно разогнать корабль до 10% скорости света. В таком случае полёт продлится примерно 45 лет, что позволит экипажу дожить до прибытия в пункт назначения.

Конечно, постройка такого корабля - весьма недешёвое дело. По оценке Дайсона, на создание «Ориона» потребовалось бы примерно 3 триллиона долларов в современных ценах. Но если мы узнаем, что нашей планете будет грозить глобальная катастрофа, то, вероятно, именно корабль с ядерно-импульсным двигателем станет последним шансом человечества на выживание.

Газовый гигант

Дальнейшим развитием идей «Ориона» стал проект беспилотного корабля «Дедал», который разрабатывался в 1970-х годах группой учёных из Британского межпланетного общества. Исследователи задались целью спроектировать беспилотный космический аппарат, способный в течение человеческой жизни достичь одной из ближайших звёзд, провести научные исследования и передать на Землю полученную информацию. Главным условием исследования было использование в проекте либо существующих, либо предвидимых в ближайшее время технологий.

Целью полёта была выбрана находящаяся от нас на расстоянии 5,91 светового года звезда Барнарда - в 1970-е годы считалось, что вокруг этой звезды вращается несколько планет. Сейчас мы знаем, что в данной системе нет планет. Разработчики «Дедала» нацелились на создание двигателя, который мог бы доставить корабль до пункта назначения за время, не превышающее 50 лет. В итоге они пришли к идее двухступенчатого аппарата.

Необходимое ускорение обеспечивала серия маломощных ядерных взрывов, происходящих внутри специальной двигательной установки. В качестве топлива использовались микроскопические гранулы из смеси дейтерия с гелием-3, облучаемые потоком высокоэнергетических электронов. Согласно проекту, в двигателе должно было происходить до 250 взрывов в секунду. Соплом служило мощное магнитное поле, создаваемое силовыми установками корабля.

По плану первая ступень корабля работала в течение двух лет, разгоняя корабль до 7% скорости света. После этого «Дедал» сбрасывал отработанную двигательную установку, избавляясь от большей части своей массы, и запускал вторую ступень, которая позволяла ему разогнаться до окончательной скорости в 12,2% световой. Это позволило бы достичь звезды Барнарда через 49 лет после запуска. Ещё 6 лет ушло бы на передачу сигнала на Землю.

Полная масса «Дедала» составляла 54 тысячи тонн, из которых 50 тысяч приходилось на термоядерное горючее. Однако предполагаемый гелий-3 чрезвычайно редко встречается на Земле - зато его полно в атмосферах газовых гигантов. Поэтому авторы проекта предполагали добыть гелий-3 на Юпитере с помощью «плавающего» в его атмосфере автоматизированного завода; на весь процесс добычи ушло бы примерно 20 лет. На той же орбите Юпитера предполагалось осуществить окончательную сборку корабля, который бы затем стартовал к другой звёздной системе.

Самым сложным элементом во всей концепции «Дедала» была именно добыча гелия-3 из атмосферы Юпитера. Для этого нужно было долететь до Юпитера (что тоже не так-то легко и быстро), основать базу на одном из спутников, построить завод, где-то хранить топливо… И это уже не говоря о мощных радиационных поясах вокруг газового гиганта, которые дополнительно усложнили бы жизнь технике и инженерам.

Ещё одна проблема состояла в том, что «Дедал» не имел возможности погасить скорость и выйти на орбиту звезды Барнарда. Корабль и выпущенные им зонды просто бы прошли мимо звезды по пролётной траектории, преодолев всю систему за несколько дней.

Сейчас международная группа из двадцати учёных и инженеров, действующая под эгидой Британского межпланетного сообщества, работает над проектом корабля «Икар». «Икар» - своеобразный «римейк» Дедала, учитывающий накопленные за последние 30 лет знания и технологии. Одно из основных направлений работы - поиск других видов топлива, которое можно было бы добыть и на Земле.

Со скоростью света

Можно ли разогнать космический корабль до скорости света? Эту задачу можно решить несколькими способами. Наиболее перспективный из них - аннигиляционный двигатель на антиматерии. Принцип его действия заключается в следующем: антиматерия подаётся в рабочую камеру, где она входит в соприкосновение с обычным веществом, порождая управляемый взрыв. Ионы, возникшие в процессе взрыва, выбрасываются через сопло двигателя, создавая тягу. Из всех возможных двигателей аннигиляционный теоретически позволяет достичь наибольших скоростей. Взаимодействие материи и антиматерии высвобождает колоссальное количество энергии, а скорость истечения образующихся в ходе этого процесса частиц близка к световой.

Но тут встаёт вопрос добычи топлива. Само по себе антивещество уже давно перестало быть фантастикой - учёным впервые удалось синтезировать антиводород ещё в 1995 году. Но добыть его в достаточных количествах невозможно. В настоящее время антиматерию можно получить лишь с помощью ускорителей частиц. При этом количество создаваемого ими вещества измеряется мизерными долями граммов, а его стоимость составляет астрономические суммы. На одну миллиардную грамма антивещества учёным из Европейского центра ядерных исследований (того самого, где создали Большой адронный коллайдер) пришлось потратить несколько сотен миллионов швейцарских франков. С другой стороны, стоимость производства будет постепенно уменьшаться и в будущем может достичь куда более приемлемых значений.

Кроме того, придётся придумать способ, позволяющий хранить антивещество - ведь при соприкосновении с обычной материей оно мгновенно аннигилируется. Одно из решений - охлаждать антивещество до сверхнизких температур и использовать магнитные ловушки, не позволяющие ему соприкасаться со стенками бака. На данный момент рекордное время хранения антивещества составляет 1000 секунд. Не годы, конечно, но с учётом того, что в первый раз антивещество удалось удержать лишь на 172 миллисекунды, прогресс есть.

И даже быстрее

Многочисленные фантастические фильмы приучили нас к тому, что добраться до других звёздных систем можно куда быстрее, чем за несколько лет. Достаточно включить варп-двигатель или гиперпространственный привод, откинуться поудобнее в кресле - и уже через несколько минут оказаться на другом краю галактики. Теория относительности запрещает путешествия со скоростями, превышающими скорость света, но в то же время оставляет лазейки, позволяющие обойти эти ограничения. Если бы могли разорвать или растянуть пространство-время, то смогли бы путешествовать быстрее света, не нарушая никаких законов.

Разрыв пространства более известен как кротовая нора, или червоточина. Физически она представляет собой тоннель, связывающий две удалённые области пространства-времени. Почему бы не использовать такой тоннель для путешествия в дальний космос? Дело в том, что создание подобной кротовый норы требует наличия в разных точках вселенной двух сингулярностей (это то, что находится за горизонтом событий чёрных дыр, - фактически гравитация в чистом виде), которые смогут разорвать пространство-время, создав тоннель, позволяющий путешественникам «срезать» путь через гиперпространство.

Кроме того, для поддержания подобного тоннеля в устойчивом состоянии необходимо, чтобы он был заполнен экзотической материей с отрицательной энергией, - а существование подобной материи до сих пор не доказано. В любом случае, создать кротовую нору по силам лишь сверхцивилизации, которая на много тысяч лет будет опережать нынешнюю в развитии и чьи технологии с нашей точки зрения будут похожи на волшебство.

Второй, более доступный вариант - «растягивание» пространства. В 1994 году мексиканский физик-теоретик Мигель Алькубьерре предположил, что можно изменить его геометрию, создав волну, сжимающую пространство впереди корабля и расширяющую его сзади. Таким образом звездолёт окажется в «пузыре» искривлённого пространства, которое само будет двигаться быстрее света, благодаря чему корабль не нарушит фундаментальных физических принципов. По словам самого Алькубьерре, .

Правда, сам учёный счёл, что реализовать подобную технологию на практике будет невозможно, так как для этого потребуется колоссальное количестве массы-энергии. Первые вычисления давали значения, превышающие массу всей существующей Вселенной, последующие уточнения уменьшили её до «всего лишь» юпитерианской.

Но в 2011 году Гарольд Уайт, возглавляющий исследовательскую группу Eagleworks при NASA, провёл расчёты, которые показали, что если изменить некоторые параметры, то для создания пузыря Алькубьерре может потребоваться куда меньше энергии, чем считалось ранее, и перерабатывать целую планету уже не потребуется. Сейчас группа Уайта прорабатывает возможность «пузыря Алькубьерре» на практике.

Если у экспериментов будут результаты, то это станет первым маленьким шажком к тому, чтобы создать двигатель, позволяющий путешествовать в 10 раз быстрее скорости света. Разумеется, космический аппарат, использующий пузырь Алькубьерре, отправится в путешествие через много десятков, а то и сотен лет. Но сама перспектива того, что такое действительно возможно, уже захватывает дух.

Полёт «Валькирии»

Практически все предлагаемые проекты звездолётов имеют один существенный недостаток: они весят десятки тысяч тонн, и их создание требует огромного количество запусков и сборочных операций на орбите, что увеличивает стоимость постройки на порядок. Но если человечество всё же научится получать большое количество антиматерии, у него появится альтернатива этим громоздким конструкциям.

В 1990-х годах писатель Чарльз Пелегрино и физик Джим Пауэлл предложили проект звездолёта, известный как «Валькирия». Его можно описать как нечто вроде космического тягача. Корабль представляет собой связку из двух аннигиляционных двигателей, соединённых между собой сверхпрочным тросом длиной 20 километров. В центре связки находятся несколько отсеков для экипажа. Корабль использует первый двигатель, чтобы набрать скорость, близкую к световой, а второй - чтобы погасить её при выходе на орбиту вокруг звезды. Благодаря использованию троса вместо жёсткой конструкции масса корабля составляет всего 2100 тонн (для сравнения, масса МКС - 400 тонн), из которых 2000 тонн приходятся на двигатели. Теоретически такой корабль может разогнаться до скорости в 92% от скорости света.

Модифицированный вариант данного корабля, названный Venture Star, показан в фильме «Аватар» (2011), одним из научных консультантов которого был как раз Чарльз Пелегрино. Venture Star отправляется в путешествие, разгоняясь при помощи лазеров и 16-километрового солнечного паруса, после чего тормозит у Альфы Центавра с помощью двигателя на антиматерии. На обратном пути последовательность меняется. Корабль способен разогнаться до 70% скорость света и долететь до Альфа Центавра менее чем за 7 лет.

Без топлива

Как существующие, так и перспективные ракетные двигатели имеют одну проблему - топливо всегда составляет большую часть их массы на старте. Однако есть проекты звездолётов, которым вообще не нужно будет брать с собой топливо.

В 1960 году физик Роберт Бассард предложил концепцию двигателя, который использовал бы находящийся в межзвёздном пространстве водород в качестве горючего для термоядерного двигателя. К сожалению, несмотря на всю привлекательность идеи (водород - самый распространённый элемент во Вселенной), у неё есть ряд теоретических проблем, начиная от способа сбора водорода и заканчивая расчётной максимальной скоростью, которая вряд ли превысит 12% световой. А значит, до системы Альфа Центавра придётся лететь минимум полвека.

Другая интересная концепция - применение солнечного паруса. Если построить на земной орбите или на Луне огромный сверхмощный лазер, то его энергию можно было бы использовать, чтобы разогнать оснащённый гигантским солнечным парусом звездолёт до достаточно больших скоростей. Правда, по расчётам инженеров, чтобы придать пилотируемому кораблю массой 78 500 тонн скорость в половину световой, потребуется солнечный парус диаметром в 1000 километров.

Ещё одна очевидная проблема звездолёта с солнечным парусом заключается в том, что его нужно как-то затормозить. Одно из её решений - при подлёте к цели выпустить позади звездолёта второй, меньший по размерам парус. Основной же отсоединится от корабля и продолжит самостоятельное путешествие.

***

Межзвёздное путешествие - очень сложное и дорогостоящее предприятие. Создать корабль, способный за относительно небольшой срок покрыть космическое расстояние, - одна из самых грандиозных задач, стоящих перед человечеством в будущем. Конечно, это потребует усилий нескольких государств, если не всей планеты. Сейчас это кажется утопией - у правительств слишком много забот и слишком много способов потратить деньги. Полёт на Марс в миллионы раз проще полёта к Альфе Центавра - и тем не менее вряд ли сейчас кто-то рискнёт назвать год, когда он всё же состоится.

Оживить работы в этом направлении может или глобальная опасность, грозящая всей планете, или же создание единой планетарной цивилизации, которая сможет преодолеть внутренние склоки и захочет покинуть свою колыбель. Время для этого ещё не пришло - но это не значит, что оно не придёт никогда.

Все, что называют «варп-двигателем», отсылает нас скорее к «Звездному пути», чем к NASA. Идея варп-двигателя Алькубьерре в том, что он может быть возможным решением (или хотя бы началом его поиска) задачи преодоления ограничений вселенной, которые она накладывает на путешествия быстрее скорости света.

Основы этой идеи довольно просты, и NASA использует пример беговой дорожки для ее объяснения. Хотя человек может двигаться с конечной скоростью на беговой дорожке, совместная скорость человека и дорожки означает, что конец будет ближе, чем мог быть в случае движения по обычной дорожке. Беговая дорожка - это как раз , движущийся по пространству-времени в своего рода пузыре расширения. Перед варп-двигателем пространство-время сжимается. Позади него расширяется. В теории это позволяет двигателю перемещать пассажиров быстрее скорости света. Один из ключевых принципов, связанный с расширением пространства-времени, как полагают, позволил Вселенной быстро расшириться мгновения спустя после Большого Взрыва. В теории идея должна быть вполне осуществимой.

Ужасно, когда на Земле нет Интернета и вы не можете подгрузить Google Maps на своем смартфоне. Во время межзвездных перелетов без него будет еще хуже. Выйти в космос - это только первый шаг, ученые уже сейчас начинают задумываться, что делать, когда нашим пилотируемым и беспилотным зондам потребуется передавать сообщения обратно на Землю.

В 2008 году NASA провело первые успешные испытания межзвездной версии Интернета. Проект был запущен еще в 1998 году в рамках партнерства между Лабораторией реактивного движения NASA (JPL) и Google. Спустя десять лет у партнеров появилась система Disruption-Tolerant Networking (DTN), которая позволяет отправлять изображения на космический аппарат за 30 миллионов километров.

Технология должна быть в состоянии справляться с большими задержками и перебоями в передачах, поэтому может продолжать передачу, даже если сигнал прерывается на 20 минут. Он может проходить сквозь, между или через все, от солнечных вспышек и солнечных бурь до надоедливых планет, которые могут оказаться на пути передачи данных, без потери информации.

Как говорит Винт Серф, один из основателей нашего земного Интернета и пионер межзвездного, система DTN преодолевает все проблемы, которыми болеет традиционный протокол TCIP/IP, когда ему нужно работать с большими расстояниями, в космических масштабах. С TCIP/IP поиск в Google на Марсе займет так много времени, что результаты изменятся, пока запрос будет обрабатываться, а на выходе информация будет частично утрачена. С DTN инженеры добавили что-то совершенно новенькое - возможность назначать различные доменные имена различным планетам и выбирать, на какой планете вы хотите осуществить поиск в Интернете.

Что насчет путешествия к планетам, с которыми мы пока не знакомы? Scientific American предполагает, что может быть способ, хотя и очень дорогой и трудоемкий, провести интернет к Альфе Центавра. Запустив серию самовоспроизводящихся зондов фон Неймана, можно создать длинную серию ретрансляционных станций, которые могут отправлять информацию по межзвездной цепи. Сигнал, рожденный в нашей системе, пройдет по зондам и достигнет Альфы Центавра, и наоборот. Правда, потребуется много зондов, на строительство и запуск которых уйдут миллиарды. Да и вообще, учитывая то, что самому дальнему зонду придется преодолевать свой путь тысячи лет, можно предположить, что за это время изменятся не только технологии, но и общая стоимость мероприятия. Не будем спешить.

Эмбриональная колонизация космоса


Одна из крупнейших проблем межзвездных путешествий - и колонизации в целом - заключается в количестве времени, которое необходимо, чтобы куда-нибудь добраться, даже имея в рукаве какие-нибудь варп-двигатели. Сама задача доставить группу поселенцев в пункт назначения порождает массу проблем, поэтому рождаются предложения отправить не группу колонистов с полностью укомплектованным экипажем, а скорее корабль, набитый эмбрионами - семенами будущего человечества. Как только корабль достигает нужного расстояния до пункта назначения, замороженные эмбрионы начинают расти. Потом из них выходят дети, которые растут на корабле, и когда они наконец достигают пункта назначения, у них имеются все способности зачать новую цивилизацию.

Очевидно, все это, в свою очередь, поднимает огромный ворох вопросов, вроде того, кто и как будет осуществлять взращивание эмбрионов. Роботы могли бы воспитать людей, но какими будут люди, которых вырастили роботы? Смогут ли роботы понять, что нужно ребенку, чтобы расти и процветать? Смогут ли понять наказания и поощрения, человеческие эмоции? Да и вообще, еще предстоит выяснить, как сохранять замороженные эмбрионы в целости сотни лет и как выращивать их в искусственной среде.

Одним из предложенных решений, которое может решить проблемы робота-няньки, может стать создание комбинации из корабля с эмбрионами и корабля с анабиозом, в котором спять взрослые, готовые проснуться, когда им придется растить детей. Череда лет воспитания детей вместе с возвращением к состоянию спячки может, в теории, привести к стабильной популяции. Тщательно созданная партия эмбрионов может обеспечить генетическое разнообразие, которое позволит поддерживать популяцию в более-менее устойчивом состоянии после установления колонии. В корабль с эмбрионами можно включить также дополнительную партию, которая позволит в дальнейшем еще больше разнообразить генетический фонд.

Зонды фон Неймана


Все, что мы строим и отправляем в космос, неизбежно сталкивается с собственными проблемами, и сделать что-то, что проедет миллионы километров и не сгорит, не развалится и не угаснет, кажется совершенно невозможной задачей. Впрочем, решение этой задачи, возможно, было найдено десятки лет назад. В 1940-х годах физик Джон фон Нейман предложил механическую технологию, которая будет воспроизводиться, и хотя к межзвездным путешествиям его идея не имела никакого отношения, все неизбежно к этому пришло. В результате зонды фон Неймана можно было бы использовать, в теории, для исследования огромных межзвездных территорий. По мнению некоторых исследователей, идея о том, что все это пришло нам в голову первым, не только помпезна, но и маловероятна.

Ученые из Университета Эдинбурга опубликовали работу в International Journal of Astrobiology, в которой исследовали не только возможность создания такой технологии для собственных нужд, но и вероятность того, что кто-то уже это сделал. Основываясь на предыдущих расчетах, которые показывали, насколько далеко может забраться аппарат, используя разные способы передвижения, ученые изучили, как это уравнение изменится, если его применить к самовоспроизводящимся аппаратам и зондам.

Расчеты ученых строились вокруг самовоспроизводящихся зондов, которые могли бы использовать мусор и другие материалы космоса для строительства младших зондов. Родительские и дочерние зонды умножались бы так быстро, что покрыли бы всю галактику всего за 10 миллионов лет - и это при условии, если бы они двигались на 10% скорости света. Впрочем, это означало бы, что в определенный момент нас должны были посещать какие-нибудь подобные зонды. Поскольку мы их не видели, можно подобрать удобное объяснение: либо мы недостаточно технологически развиты, чтобы знать, где искать, либо .

Рогатка с черной дырой

Идея использования гравитации планеты или луны для выстрела, как из рогатки, бралась на вооружение в нашей Солнечной системе не раз и не два, прежде всего «Вояджером-2», который получил дополнительный толчок сначала от Сатурна, а потом от Урана на пути из системы. Идея предполагает маневрирование корабля, которое позволит ему увеличить (или уменьшить) скорость по мере движения через гравитационное поле планеты. Особенно эту идею любят писатели-фантасты.

Писатель Кип Торн выдвинул идею: такой маневр может помочь аппарату решить одну из крупнейших проблем межзвездных путешествий - потребление топлива. И предложил более рискованный маневр: разгон с помощью бинарных черных дыр. Минутное сжигание топлива понадобится, чтобы пройти критическую орбиту от одной черной дыры к другой. Проделав несколько оборотов вокруг черных дыр, аппарат наберет скорость, близкую к световой. Останется только хорошо прицелиться и активировать ракетную тягу, чтобы проложить себе курс к звездам.

Маловероятно? Да. Удивительно? Определенно. Торн подчеркивает, что есть множество проблем у такой идеи, например, точные расчеты траекторий и времени, которые не позволят отправить аппарат прямо в ближайшую планету, звезду или другое тело. Также возникают вопросы о возвращении домой, но если уж вы решитесь на такой маневр, возвращаться вы точно не планируете.

Прецедент для такой идеи уже образовался. В 2000 году астрономы обнаружили 13 сверхновых, летящих по галактике с невероятной скоростью в 9 миллионов километров в час. Ученые Университета Иллинойса в Урбана-Шампань выяснили, что эти своенравные звезды были выброшены из галактики парой черных дыр, которые оказались замкнуты в пару в процессе разрушения и слияния двух отдельных галактик.

Starseed Launcher


Когда дело доходит до запуска даже самовоспроизводящихся зондов, возникает проблема потребления топлива. Это не останавливает людей от поиска новых идей того, как запускать зонды на межзвездные расстояния. Этот процесс потребовал бы мегатонны энергии, используй мы технологии, которые у нас имеются сегодня.

Форрест Бишоп из Института атомной инженерии заявил, что создал метод запуска межзвездных зондов, который потребует количества энергии, примерно эквивалентной энергии автомобильной батареи. Теоретический Starseed Launcher будет примерно 1000 километров в длину и состоять в основном из проволоки и проводов. Несмотря на свою длину, вся эта штуковина могла бы уместиться в одном грузовом судне и зарядиться от 10-вольтовой батарейки.

Часть плана включает запуск зондов, которые немногим больше микрограмма по массе и содержат лишь основную информацию, необходимую для дальнейшего строительства зондов в космосе. За ряд запусков можно запустить миллиарды таких зондов. Основная суть плана в том, что самовоспроизводящиеся зонды смогут объединиться друг с другом после запуска. Сам пусковой механизм будет оборудован сверхпроводящими катушками магнитной левитации, создающими обратную силу, обеспечивающую тягу. Бишоп говорит, что некоторые детали плана требуют проработки, вроде противодействия зондами межзвездной радиации и мусора, но в целом можно начинать строить.

Особые растения для космической жизни


Как только мы куда-нибудь соберемся, нам понадобятся способы выращивания еды и регенерации кислорода. Физик Фримен Дайсон предложил несколько интересных идей на тему того, как это можно было бы осуществить.

В 1972 году Дайсон читал свою знаменитую лекцию в лондонском колледже Биркбек. Тогда же он предположил, что с помощью некоторых генетических манипуляций можно было бы создать деревья, которые смогут не только расти, но и процветать на неприветливой поверхности, кометы, к примеру. Перепрограммируйте дерево отражать ультрафиолетовый свет и эффективнее сохранять воду, и дерево не только пустит корни и будет расти, но и достигнет немыслимых по земным меркам размеров. В одном из интервью Дайсон предположил, что в будущем, возможно, появятся черные деревья, как в космосе, так и на Земле. Деревья на основе кремния были бы более эффективны, а эффективность - это ключ к продолжительному существованию. Дайсон подчеркивает, что этот процесс будет не минутным - возможно, лет через двести мы наконец выясним, как заставить деревья расти в космосе.

Идея Дайсона не так уж и нелепа. Институт передовых концепций NASA - это целый отдел, задача которого решать проблемы будущего, и среди них задача выращивать стабильные растения на поверхности Марса. Даже тепличные растения на Марсе будут расти в чрезвычайных условиях, и ученые перебирают разные варианты, пытаясь совместить растения с экстремофилами, крошечными микроскопическими организмами, которые выживают в самых жестоких условиях на Земле. От высокогорных томатов, которые обладают встроенным сопротивлением к ультрафиолетовому свету, к бактериям, которые выживают в самых холодных, горячих и глубоких уголках земного шара, мы, возможно, однажды соберем по частям марсианский сад. Осталось только выяснить, как собрать все эти кирпичики вместе.

Локальная утилизация ресурсов

Жизнь в отрыве от земли может быть новомодной тенденцией на Земле, но когда дело доходит до месячных миссий в космосе, это становится необходимым. В настоящее время NASA занимается, помимо остального, изучением вопроса локальной утилизации ресурсов (ISRU). На космическом судне не так много места, и создание систем для использования материалов, обнаруженных в космосе и на других планетах, будет необходимо для любой долгосрочной колонизации или поездок, особенно когда пунктом назначения станет место, куда будет весьма непросто доставить груз снабжения, топливо, еду и прочее. Первые попытки демонстрации возможностей использования локальных ресурсов были предприняты на склонах гавайских вулканов и в ходе полярных миссий. В список задач входят такие пункты, как добыча топливных компонентов из пепла и другой доступной в природе местности.

В августе 2014 года NASA сделало мощное заявление, показав новые игрушки, которые отправятся на Марс со следующим марсоходом, запуск которого состоится в 2020 году. Среди инструментов в арсенале нового марсохода есть MOXIE, эксперимент по локальной утилизации ресурсов в виде марсианского кислорода. MOXIE будет забирать непригодную для дыхания атмосферу Марса (на 96% состоящую из диоксида углерода) и разделять ее на кислород и моноксид углерода. Аппарат сможет производить 22 грамма кислорода за каждый час работы. NASA также надеется, что MOXIE будет в силах продемонстрировать кое-что еще - постоянную работу без снижения продуктивности или эффективности. MOXIE может не только стать важным шагом в направлении долгосрочных внеземных миссий, но и проложить путь множеству потенциальных преобразователей вредных газов в полезные.

2suit


Воспроизводство в космосе может стать проблемным на самых разных уровнях, особенно в условиях микрогравитации. В 2009 году японские эксперименты на эмбрионах мышей показали, что даже если оплодотворение происходит в условиях ненулевой гравитации, эмбрионы, которые развиваются за пределами привычного притяжения Земли (или его эквивалента), не развиваются нормально. Когда клетки должны делиться и выполнять специальные действия, возникают проблемы. Это не значит, что оплодотворение не происходит: эмбрионы мышей, зачатые в космосе и внедренные в земных самок мышей, успешно выросли и были рождены без проблем.

Это также поднимает другой вопрос: как именно производство детей работает в условиях микрогравитации? Законы физики, особенно тот факт, что у каждого действия есть равное противодействие, делают его механику немного нелепой. Ванна Бонта, писатель, актриса и изобретатель, решила серьезно заняться этим вопросом.

И создала 2suit: костюм, в котором два человека могут укрыться и заняться производством детишек. Его даже проверили. В 2008 году 2suit был опробовал на так называемой Vomit Comet (самолете, который совершает крутые виражи и создает минутные условия невесомости). Хотя Бонта предполагает, что медовые месяцы в космосе могут стать реальными благодаря ее изобретению, у костюма есть и более практичные применения, вроде сохранения тепла тела в чрезвычайной ситуации.

Проект Longshot


Проект Longshot был составлен группой Военно-морской академии США и NASA в рамках совместной работы в конце 1980-х. Конечная цель плана заключалась в запуске кое-чего на рубеже 21 века, а именно беспилотного зонда, который отправится к Альфе Центавра. Ему потребовалось бы 100 лет, чтобы достичь своей цели. Но прежде чем он будет запущен, ему потребуются некоторые ключевые компоненты, которые тоже предстоит разработать.

Помимо коммуникационных лазеров, долговечных реакторов ядерного деления и ракетного двигателя на инерционном лазерном синтезе, были и другие элементы. Зонд должен был получить независимое мышление и функции, поскольку было бы практически невозможно поддерживать связь на межзвездных расстояниях достаточно быстро, чтобы информация оставалась релевантной по достижении пункта приема. Также все должно было быть невероятно прочным, поскольку зонд достигнет пункта назначения через 100 лет.

Longshot собирались отправить к Альфе Центавра с разными задачами. В основном он должен был собрать астрономические данные, которые позволили бы точно рассчитать расстояния до миллиардов, если не триллионов, других звезд. Но если ядерный реактор, питающий аппарат, иссякнет, миссия тоже остановится. Longshot был весьма амбициозным планом, который так и не сдвинулся с мертвой точки.

Но это не значит, что идея умерла в зародыше. В 2013 году проект Longshot II буквально оторвался от земли в виде студенческого проекта Icarus Interstellar. С момента появления оригинальной программы Longshot прошли десятилетия технологических достижений, их можно применить к новой версии, и программа в целом получила капитальный ремонт. Были пересмотрены затраты на топливо, срок миссии был урезан вдвое и весь дизайн Longshot был пересмотрен от головы до пят.

Окончательный проект станет интересным показателем того, как нерешаемая проблема меняется с добавлением новых технологий и информации. Законы физики остаются прежними, но 25 лет спустя у Longshot появилась возможность обрести второе дыхание и показать нам, каким должно быть межзвездное путешествие будущего.

По материалам listverse.com

Новое на сайте

>

Самое популярное