Домой Овощи Эффект эжекции. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление) в машиностроении. Секреты успеха – как повысить эффективность самодельной конструкц

Эффект эжекции. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление) в машиностроении. Секреты успеха – как повысить эффективность самодельной конструкц

Эжектор - устройство, в котором происходит передача кинетической энергии от одной среды, движущейся с большей скоростью, к другой.
Насос – это исполнительный механизм, преобразующий механическую энергию двигателя (привода) в гидравлическую энергию потока жидкости. Насос, приводимый в действие двигателем, сообщается с емкостями двумя трубопроводами: всасывающим (приемным) и нагнетательным (отливным).
По принципу действия судовые насосы делятся на три группы: объемные (вытеснения), лопастные и струйные. Струйные насосы не имеют движущихся деталей и создают разность давлений с помощью рабочей среды: жидкости, пара или газа, подаваемых к насосу под давлением. К этим насосам относятся эжекторы и инжекторы.
Струйные насосы, соединенные с обслуживаемым объектом всасывающим патрубком, называют эжекторами. У эжекторов рабочий напор выше полезного, то есть. Эжекторы делятся на водяные – для осушения, паровые – для отсоса воздуха и создания вакуума в конденсаторах, испарителях и т.д.
Струйные насосы, соединенные с обслуживаемым объектом нагнетательным патрубком, называются инжекторами. У инжекторов соотношение напоров обратное, то есть полезный напор выше рабочего. К инжекторам относятся паровые струйные насосы для подачи питательной воды в парогенераторы.
На рисунке 1 изображен водоструйный водоотливной эжектор типа ВЭЖ.
Корпус 3 эжектора, сварной из листовой меди, имеет форму диффузора с угловым всасывающим патрубком 7, отверстие которого закрывается колпачком 6 с цепочкой. Слева в корпус вставлено латунное сопло 2, имеющее форму сходящейся насадки с полугайкой «шторца» 1 для присоединения гибкого шланга, по которому к эжектору подводится рабочая вода. Для присоединения к эжектору отводящего шланга служит полугайка шторца 4, расположенная на выходном конце нагнетательного патрубка 5. Такое соединение обеспечивает работу переносных эжекторов, которые устанавливают на резьбе палубных втулок, сообщающихся с помощью трубок с отсеками или трюмами, требующими осушения.

Рис. 1 Водоструйный эжектор типа ВЭЖ

Эжектор работает следующим образом: рабочая вода обычно из пожарной магистрали подается под давлением к соплу. Из выходного узкого сечения сопла вода поступает с большой скоростью в так называемую камеру смешения, при этом давление понижается. Проходя по узкому сечению диффузора («горлу»), вода увлекает за собой воздух и создает разрежение в камере смешения, которое обеспечивает поступление жидкости из всасывающего патрубка 7. Благодаря трению и в результате обмена импульсами всасываемая вода смешивается, захватывается и перемещается вместе с рабочей. Смесь поступает в расширяющуюся часть диффузора, где кинетическая энергия (скорость) снижается и за счет этого возрастает статический напор, способствующий нагнетанию жидкостной смеси через патрубок 5 в нагнетательный трубопровод и за борт. Подачу эжектора можно регулировать путем ввертывания или вывертывания сопла.
На рисунке 2 изображен пароструйный инжектор, используемый для питания паровых котлов.
К патрубку 1 инжектора подводится рабочий пар из котла. Клапан 2 открывается поворотом рукоятки 10. Пар, проходя через паровое сопло 9, приобретает большую скорость за счет снижения давления. При этом он увлекает с собой частицы воздуха и создает разрежение, обеспечивающее поступление в насос питательной воды через патрубок 3. Поступившая вода, смешиваясь с паром, конденсирует его. Уменьшение объема повышает вакуум в камере смешения 4, обеспечивающий непрерывное всасывание питательной воды в инжектор. Смесь конденсата и воды поступает через диффузор 6 к невозвратному клапану 5, прикрывающему вход в питательный трубопровод котла. В результате перехода части кинетической энергии смеси в давление клапан открывается и горячая вода поступает в паровой котел.

Рис. 2 Пароструйный инжектор

Если давление нагнетания перед клапаном 5 будет меньше давления в котле, то клапан не откроется. В этом случае водяная смесь в камере 7 отожмет вестовой клапан и через отверстие 8 будет выливаться наружу.
Когда давление станет достаточным для открытия клапана 5, давление в камере 7 понизится и вестовой клапан под действием пружины закроется, предотвращая поступление воды наружу. Паровые инжекторы имеют простое устройство и обеспечивают подачу в паровой котел горячей питательной воды, но малопроизводительны и неэкономичны.
Отсутствие в струйном насосе движущихся деталей обеспечивает перекачивание жидкости с различными механическими включениями, что используется на судах рыбной промышленности для перекачивания пульпы, то есть смеси рыбы с водой насосами-эрлифтами или гидроэлеваторами. В отличие от центробежных рыбонасосов эрлифты при перекачивании пульпы не повреждают рыбу.В качестве рабочей среды в эрлифтах используется сжатый воздух, который, перемешиваясь с водой, создает ей пониженную плотность.
Основной недостаток струйных насосов – низкий КПД, обычно не превышающий, у эрлифтов.

Рабочий процесс эжектора сводится к следующему. Высоко­напорный (эжектирующий) газ, имеющий полное давление ,вытекает из сопла в смесительную камеру. При стационарном режиме работы эжектора во входном сечении смесительной камеры устанавливается статическое давление которое всегда ниже полного давления низконапорного (эжектируемого) газа .

Под действием разности давлений низконапорный газ устремляется в камеру. Относительный расход этого газа, на­зываемый коэффициентом эжекции
, зависит от пло­щадей сопел, от плотности газов и их начальных давлений, от режима работы эжектора. Несмотря на то, что скорость эжек­тируемого газа во входном сечении обычно меньше скоростиэжектирующего газа , надлежащим выбором площадей сопел иможно получить сколь угодно большое значение коэф­фициента эжекции n.

В камеру смешения эжектирующий и эжектируемый газы входят в виде двух раздельных потоков: в общем случае они мо­гут различаться по химическому составу, скорости, температуре и давлению. Смешение потоков означает, в конечном счете, выравнивание параметров газов по всему сечению камеры.

Весь процесс смешения можно условно разделить на два этапа - начальный и основной. Соответственно выделяются два участка смесительной камеры (рис. 5). Течение в начальном участке камеры смешения с известным приближением можноуподобить турбулентной струе, движущейся в спутном потоке. Ввиду наличия поперечных пульсационных компонентов скорости, свойственных турбулентному движению, потоки внедряются друг в друга, образуя постепенно уширяющуюся зону смеше­ния - пограничный слой струи. В пределах пограничного слоя происходит плавное изменение параметров газовой смеси от значений их в эжектирующем газе до значений в эжектируемом газе. Вне пограничного слоя в начальном участке камеры сме­шения имеются невозмущенные потоки эжектируемого и эжектирующего газов.

В начальном участке камеры частицы эжектируемого газа непрерывно захватываются высоконапорной струей и увлекаютсяею в зону смешения. Благодаря этому и поддерживается разрежение на входе в смесительную камеру, которое обеспечивает втекание низконапорного газа в эжектор.

В зависимости относительных размеров эжектора с удалением от сопла последовательно исчезают обе зоны невозмущенного течения газов; так, на рис. 5 первым ликвидируется ядро эжектирующей струи.

На некотором расстоянии от сопла, в сечении Г - Г, называемом граничным сечением, пограничный слой струи заполняет все сечение смесительной камеры. В этом сечении уже нет областей невозмущенных течений, однако параметры газа существенно различны по радиусу камеры. Поэтому и после гранич­ного сечения в основном участке смесительной камеры продол­жается выравнивание параметров потока по сечению. В конеч­ном сечении камеры, отстоящем в среднем на расстоянии 8 - 12 диаметров камеры от начального сечения, получается доста­точно однородная смесь газов, полное давление которойбольше превышает полное давление эжектируемого газа , чем меньше коэффициент эжекции п. Рациональное проектирование эжектора сводится к выбору таких его геометрических размеров, чтобы при заданных начальных параметрах и соотношении рас­ходов газов получить наивысшее значение полного давления смеси, либо при заданных начальных и конечном давлениях по­лучить наибольший коэффициент эжекции.

Рис. 5. Изменение поля скоростей по длине камеры смешения.

Описанная выше схема процесса смешения газов в эжекторе при дозвуковых скоростях принципиально ничем не отличается от процесса смешения несжимаемых жидкостей в жидкостном эжекторе. Как будет показано ниже, даже при больших докритических отношениях давлений не только качественные законо­мерности, но и многие количественные зависимости между пара­метрами газового эжектора практически не отличаются от со­ответствующих данных жидкостного эжектора.

Качественно новая картина течения наблюдается при сверх­критических отношениях давлений в сопле. При дозвуковом ис­течении давление газа на выходе из сопла равно давлению в ок­ружающей среде, другими словами, статические давления газов на входе в камеру смешения р 1 и р 2 одинаковы. При звуковом или сверхзвуковом истечении эжектирующего га­за давление на срезе соп­ла может существенно от­личаться от давления эжектируемого газа.

Если сопло эжекти­рующего газа выполненонерасширяющимся, то при сверхкритическом отношении давлений стати­ческое давление на срезесопла превышает давление в окружающей среде - эжектируемом газе.

Рис. 6. Схема течения в начальном участке камеры смешения при сверхкритическом отношении давлений в сопле

Поэтому после выхода изсопла А струя эжектитирующего газа В (рис. 6),движущаяся со скоростью звука
, продолжает расширяться, скорость ее становится сверхзвуковой, а площадь сечения - большей, чем площадь вы­ходного сечения сопла.

Точно так же ведет себя сверхзвуковая эжектирующая струя, вытекающая из сопла Лаваля, если в эжекторе применено сверхзвуковое сопло с неполным расширением. В этом случае ско­рость газа на срезе сопла соответствует
, где
-расчетная величина скорости для данного сопла Лаваля, опре­деляющаяся отношением площадей выходного и критическогосечений.

Таким образом, при отношениях давлений, больших расчетного для данного сопла, эжектирующий газ в начальном уча­стке смесительной камеры представляет собой расширяющуюся сверхзвуковую струю. Поток эжектируемого газа на этом участке движется между границей струи и стенками камеры. Так как скорость эжектируемого потока в начальном участке дозвуковая, то при течении по суживающемуся «каналу» поток ускоряется, и статическое давление в нем падает.

При дозвуковом истечении эжектирующей струи наибольшее разрежение, и максимальные скорости потоков достигались во входном сечении камеры. В данном случае минимальная вели­чина статического давления, и максимальная скорость эжектируемого потока достигаются в сечении 1", находящемся на некоторомрасстоянии от сопла, там, где площадь расширяющейсясверхзвуковой струи становится наибольшей. Это сечение принято называть сечением запирания.

Особенностью сверхзвуковой струи является то, что смеше­ние ее с окружающим потоком на этом участке проходит зна­чительно менее интенсивно, чем смешение дозвуковых потоков. Это связано с тем, что сверхзвуковая струя обладает повышен­ной устойчивостью по сравнению с дозвуковой струей, и размы­вание границ такой струи происходит слабее. Физические основы этого явления легко уяснить на следующем примере (рис. 7).

Рис. 7. Схема силового воздействия газа на тело, искривляющее границу дозвукового (а) и сверхзвукового (б) потоков.

Если граница дозвукового потока в силу какой-либо причины (например, воздействия частиц газа спутного потока) искривлена, то в этом месте из-за уменьшения площади сечения уменьшается статическое давление и возникает сила внешнего давления, увеличивающая начальную деформацию границы: при взаимодействии с окружающей средой дозвуковая струя «втягивает»частицы внешнего потока и граница ее быстро размывается. В сверхзвуковом (относительно внешней среды) потоке аналогичное искривление границы и уменьшение сечения приводит к росту давления; возникающая сила направлена не внутрь, а наружу потока и стремится восстановить исходное положениеграницы струи, выталкивая частицы внешней среды.

Интересно отметить, что это различие в свойствах дозвуковой и сверхзвуковой струй можно наблюдать буквально на ощупь. Дозвуковая струя втягивает внутрь поднесенный к границе легкий предмет, сверхзвуковая струя на расстоянии нескольких калибров от сопла имеет «жесткую» границу; при попытке ввести в струю извне какой-либо предмет ощущается заметное сопротивление резко выраженной границы струи.

Рис. 8. Шлирен - фотография потока в камере смеше­ния плоского эжектора при дозвуковом режиме истече­ния газа из сопла;
,
, р 1 =р 2 .

Рис. 9. Шлирен - фотография потока в камере смеше­ния плоского эжектора при сверхкритическом отно­шении давлений в сопле П 0 =3,4.

На рис. 8 и 9 приведены фотографии течения в начальном участке смесительной камеры при дозвуковом и сверхзвуковом истечении эжектирующей струи. Фотографии получены на пло­ской модели эжектора, режим изменялся путем увеличения пол­ного давления эжектирующего газа перед соплом при по­стоянном давлении эжектируемого газа и постоянном давлениина выходе из камеры.

На фотографиях видно различие между двумя рассмотрен­ными режимами течения в начальном участке камеры.

При анализе процессов и расчете параметров эжектора на сверхкритических отношениях давлений в сопле будем пола­гать, что до сечения запирания (рис. 6) эжектирующий и эжектируемый потоки текут раздельно, не смешиваясь, а интенсивное смешение происходит за этим сечением. Это весьма близко к действительной картине явления. Сечение запирания является характерным сечением начальногоучастка смешения, а параметры потоков в нем, как будет показано ниже, существенно влияют на рабочий процесс и параметры эжектора.

С удалением от сопла граница между потоками размывается, сверхзвуковое ядро эжектирующей струи уменьшается, происходит постепенное выравнивание параметров газа по сечениюкамеры.

Характер смешения газов в основном участке смесительной камеры практически такой же, как и при докритических отношениях давлений в сопле, скорость смеси газов в широком диапазоне начальных параметров газов остается меньшей скоростизвука. Однако при увеличении отношения начальных давлений газов сверх некоторой определенной для каждого эжектора величины поток смеси в основном участке камеры стано­вится сверхзвуковым и может остаться сверхзвуковым до конца смесительной камеры. Условия перехода от дозвукового к сверх­звуковому режиму течения смеси газов, как будет показано ниже, тесно связаны с режимом течения газов в сечении запи­рания.

Таковы особенности протекания процесса смешения газов при сверхкритических отношениях давлений газов в эжектирующем сопле. Заметим, что под отношением давлений в сопле мыподразумеваем отношение полного давления эжектирующего газа к статическому давлению эжектируемого потока вовходном сечении смесительной камеры , которое зависит отполного давления и приведенной скорости .

Чем больше , тем больше (при постоянном отношении полных давлений газов) отношение давлений в сопле:

Здесь
- известная газодинамическая функция.

Таким образом, сверхкритический режим истечения эжекти­рующего газа из сопла может существовать и тогда, когда отношение начальных полных давлений газов
ниже критического значения.

Независимо от особенностей течения газов при смешении происходит выравнивание скорости газов по сечению камеры путемобмена импульсами между частицами, движущимися с большей и меньшей скоростью. Этот процесс сопровождается потерями. Помимо обычных гидравлических потерь на трение о стенки сопел и камеры смешения, для рабочего процесса эжекторахарактерны потери, связанные с самим существом процессасмешения.

Определим изменение кинетической энергии, происходящее при смешении двух газовых потоков, секундный массовый расход и начальная скорость которых равны соответственно G 1 , G 2 , и . Если предположить, что смешение потоков происходит припостоянном давлении (это возможно либо при специальной про­филировке камеры, либо при смешении свободных струй), токоличество движения смеси должно быть равно сумме начальных количеств движения потоков:

Кинетическая энергия смеси газов равна

Легко убедиться, что эта величина меньше суммы кинетических энергий потоков до смешения, равной

на величину

. (2)

Величина
представляет собой потери кинетической энергии, связанные с процессом смешения потоков. Эти потери аналогичны потерям энергии при ударе неупругих тел. Независимо от температуры, плотности и других параметров потоков потери, как показывает формула (2), тем больше, чем больше разностьскоростей смешивающихся потоков. Отсюда можно сделать вы­вод, что при заданной скорости эжектирующего газа и задан­ном относительном расходе эжектируемого газа
(коэффициенте эжекции) для получения наименьших потерь, т. е. наибольшей величины полного давления смеси газов, желательноувеличивать так, чтобы возможно более приблизить скоростьэжектируемого газа к скорости эжектирующего газа при входе в камеру смешения. Как увидим ниже, это действительно приводит к наивыгоднейшему протеканию процесса смешения.

Рис. 10. Изменение статического давления по длине камеры смешения при дозвуковом течении газов.

При смешении газов в цилиндрической смесительной камере эжектора статическое давление газов не остается постоянным. Для того чтобы определить характер изменения статического давления в цилиндрической смесительной камере, сравним параметры потока в двух произвольных сечениях камеры 1 и 2, находящихся на различном расстоянии от начала камеры (рис. 10). Очевидно, что в сечении 2, находящемся на больше расстоянии от входного сечения камеры, поле скоростей более равномерно, чем в сечении 1. Если принять, что для обоих сечений
(для основного участка камеры, где статическое давление изменяется незначительно, это приближенносоответствует действительности), то из условия равенства секундных расходов газа

следует, что в сечениях 1 и 2 сохраняет постоянное значение средняя по площади величина скорости потока

.(3)

. (4)

Легко убедиться, что при
, т.е. в случае равномерногополя скорости в сечении F, величина равна единице. Во всехдругих случаях числитель в (4) больше знаменателя и
.

Значение величины может служить характеристикой степени неравномерности поля скоростей в данном сечении: чем более неравномерно поле , тем больше. Будем называть величинукоэффициентом поля.

Возвращаясь к рис. 10, теперь нетрудно заключить, что величина коэффициента поля в сечении 1 больше, чем в сечении 2. Количества движения в сечениях 1 и 2 определяются интегралами

Так как
, то отсюда следует

(5)

Итак, количество движения в потоке при выравнивании поля скоростей в процессе смешения уменьшается, несмотря на то, что суммарный расход и средняя по площади скорость
остаются постоянными.

Запишем теперь уравнение импульсов для потока между сечениями 1 и 2:

.

На основании неравенства (5) левая часть данного уравнения всегда положительна. Отсюда следует, что
т. е. выравнивание поля скоростей в цилиндрической смесительной камере сопровождается возрастанием статического давления; во входном сечении камеры существует пониженное давление по сравнению с давлением на выходе из камеры. Это свойство процессанепосредственно используется в простейших эжекторах, состоящих из сопла и одной цилиндрической камеры смешения, как, например, показано на рис. 10. Благодаря наличию разреженияна входе в камеру, этот эжектор подсасывает из атмосферывоздух, а затем смесь выбрасывается вновь в атмосферу. На рис. 10 также показано изменение статического давления по длине камеры эжектора.

Полученный качественный вывод справедлив в тех случаях, когда изменение плотности газа в рассматриваемом участке процесса смешения незначительно, вследствие чего можно приближенно считать
. Однако в некоторых случаях присмешении газов существенно различной температуры, когда имеется большая неравномерность плотности по сечению, а также при сверхзвуковых скоростях в основном участке смешения,когда плотность заметно изменяется по длине камеры, возможны режимы работы эжектора, при которых статическое давление газа в процессе смешения не возрастает, а снижается.

Если смесительная камера не цилиндрическая, как предполагалось выше, а имеет переменную по длине площадь сечения, то можно получить произвольное изменение статического давления по длине.

Основным геометрическим параметром эжектора с цилиндрической смесительной камерой является отношение площадейвыходных сечений сопел для эжектирующего и эжектируемого газов

,

где F 3 - площадь сечения цилиндрической смесительной ка­меры.

Эжектор с большим значением , т. е. с относительно малойплощадью камеры, является высоконапорным, но не может работать с большими коэффициентами эжекции; эжектор с малым позволяет подсосать большое количество газа, но мало повышает его напор.

Вторым характерным геометрическим параметром эжектора является степень расширения диффузора
- отношениеплощади сечения на выходе из диффузора к площади на входе в него. Если эжектор работает при заданном статическом давлении на выходе из диффузора, например при выхлопе в атмосферу или в резервуар с постоянным давлением газа, то степень расширения диффузора f существенно влияет на все пара­метры эжектора. С увеличениемfв этом случае снижается статическое давление в камере смешения, растет скорость эжектирования и коэффициент эжекции при не очень значительном изменении полного давления смеси. Разумеется, это справедливо лишь до того момента, когда в каком-либо сечении эжектора будет достигнута скорость звука.

Третий геометрический параметр эжектора - относительная длина камеры смешения
- в обычные методы расчета эжектора не входит, хотя и существенно влияет на параметры эжектора, определяя полноту выравнивания параметров смеси по сечению. Ниже будем полагать, что длина камеры достаточно велика
и коэффициент поля в ее выходном сечении близок к единице.

Эффект эжекции-1.процесс смешения двух каких-либо сред, в котором одна среда, находясь под давлением, оказывает воздействие на другую и увлекает ее в требуемом направлении. 2.искусственное восстановление напора воды в период половодья и длительных паводков для нормальной работы турбин Особенность физического процесса - смешение потоков происходит при больших скоростях эжектирующего (активного) потока.

Применение эффекта. Повышение давления эжектируемого потока без непосредственной механической энергии применяется в струйных аппаратах , которые используются в различных отраслях техники:

· на электростанциях - в устройствах топливосжигания (газовые инжекционные горелки);

· в системе питания паровых котлов (противокавитационные водоструйные насосы );

· для повышения давления из отборов турбин (пароструйные компрессоры );

· для отсоса воздуха из конденсатора (пароструйные и водоструйные эжекторы );

· в системах воздушного охлаждения генераторов;

· в теплофикационных установках;

· в качестве смесителей на отопительных водах;

· в промышленной теплотехнике - в системах топливоподачи, горения и воздухоснабжения печей, стендовых установках для испытания двигателей;

· в вентиляционных установках - для создания непрерывного потока воздуха через каналы и помещения;

· в водопроводных установках - для подъема воды из глубоких скважин;

· для транспортирования твердых сыпучих материалов и жидкостей.

Гироскопом (или волчком) называют массивное симметричное тело, вращающееся с большой скоростью вокруг оси симметрии.
Гироскопический эффект -
сохранение , как правило, направления оси вращения свободно и быстро вращающихся тел, сопровождаемое при определенных условиях, как прецессией (движением оси по круговой конической поверхности), так и нутацией (колебательными движениями (дрожанием) оси вращения;

Центробежная сила -та сила, которая при движении тела по кривой линии заставляет тело сойти с кривой и продолжать путь по касательной к ней. Центрб-ной силе противоположна центростремительная сила, заставляющая движущееся по кривой тело стремиться приблизиться к центру; от взаимодействия этих двух сил тело получает криволинейное движение.

Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Применение: определение расстояния до объекта, скорости объекта, температуры объекта.

Диффузия - взаимное проникновение соприкасающихся веществ вследствие теплового движения частиц вещества. Диффузия имеет место в газах, жидкостях и твердых телах.

Применение: в химической кинетике и технологии для регулирования химических реакций, в процессах испарения и конденсации, для склеивания веществ.

Гидростатическое давление - давление в любой точке покоящейся жидкости. Равно сумме давления на свободной поверхности (атмосферного) и давления столба жидкости, расположенного выше рассматриваемой точки. Оно одинаково во всех направлениях (закон Паскаля). Обусловливает гидростатическую силу (силу плавучести, силу поддержания) судна.

Эжектор - это приспособление, которое предназначается для того, чтобы передавать кинетическую энергию от одной среды, движущейся с большей скоростью, к другой. В основе работы этого устройства лежит принцип Бернулли. Это значит, что агрегат способен создавать пониженное давление в сужающемся сечении одной среды, что, в свою очередь, будет вызывать подсос в поток другой среды. Таким образом, она переносится, а после и удаляется от места всасывания первой среды.

Общие сведения о приспособлении

Эжектор - это небольшое, но очень эффективное устройство, которое работает в паре с насосом. Если говорить о воде, то, естественно, что используется водяной насос, однако он также может работать в паре и с паровым, и с паромасляным, и с парортутным, и с жидкостно-ртутным.

Применение этого оборудования целесообразно в том случае, если водоносный слой залегает довольно глубоко. В таких ситуациях чаще всего случается так, что обычное насосное оборудование не справляется с обеспечением дома водой или же подает слишком слабый напор. Эжектор же поможет решить данную проблему.

Виды

Эжектор - это довольно распространенное оборудование, а потому существует несколько разнообразных видов этого устройства:

  • Первый - это паровой. Он предназначается для отсасывания газов и замкнутых пространств, а также для поддержания разрежения в этих пространствах. Применение этих агрегатов распространено в разнообразных технических отраслях.
  • Второй - это пароструйный. Этот аппарат использует энергию струи пара, при помощи которой он способен отсасывать жидкость, пар или газ из замкнутого пространства. Пар, который выходит из сопла с большой скоростью, влечет за собой перемещаемое вещество. Чаще всего использовался на различных судах и кораблях для быстрого отсоса воды.
  • Газовый эжектор - это приспособление, принцип работы которого построен на том, что избыточное давление высоконапорных газов применяется для сжатия газов низкого давления.

Эжектор для отсоса воды

Если говорить о добыче воды, то тут чаще всего используется эжектор для насоса водяного. Все дело в том, что если после вода оказывается ниже, чем семь метров, то обычный водяной насос будет справляться с большим трудом. Конечно, можно покупать сразу погружной насос, производительность которого значительно выше, однако это дорого. А вот при помощи эжектора можно повысить мощность уже имеющегося агрегата.

Стоит отметить, что конструкция данного устройства довольно проста. Производство самодельного приспособления также остается вполне реальной задачей. Но для этого придется потрудиться над чертежами для эжектора. Основной принцип работы этого простого аппарата заключается в том, что он придает потоку воды дополнительное ускорение, что приводит к увеличению поставок жидкости в единицу времени. Другими словами, задача агрегата - это усиление напора воды.

Составные элементы

Установка эжектора приведет к тому, что оптимальный уровень забора воды сильно увеличится. Показатели будут примерно равны от 20 до 40 метров в глубину. Еще один из плюсов именно этого устройства в том, что его работа требует гораздо меньших затрат электроэнергии, чем потребует, к примеру, более производительный насос.

Сам же насосный эжектор состоит из таких частей, как:

  • всасывающая камера;
  • диффузор;
  • зауженное сопло.

Принцип работы

Принцип работы эжектора полностью основан на принципе Бернулли. Это утверждение гласит о том, что, если увеличить скорость движения какого-либо потока, то вокруг него всегда будет образовываться область с низким давлением. Из-за этого и достигается такой эффект, как разряжение. Сама же жидкость будет проходить через сопло. Диаметр этой детали всегда меньше, чем габариты всей остальной конструкции.

Тут важно понимать, что даже небольшое сужение будет значительно ускорять поток поступающей воды. Далее вода будет попадать в камеру смесителя, где она создаст пониженное давление. Из-за возникновения этого процесса будет происходить так, что через всасывающую камеру в смеситель будет попадать жидкость, давление которой будет значительно выше. Это и есть принцип эжектора, если описывать его вкратце.

Здесь важно отметить, что вода в устройство должна попадать не от непосредственного источника, а от самого насоса. Другими словами, агрегат должен быть смонтирован таким образом, чтобы некоторая часть воды, которая поднимается при помощи насоса, оставалась в самом эжекторе, проходя через сопло. Это необходимо для того, чтобы была возможность подачи постоянной кинетической энергии той массе жидкости, которую нужно поднять.

Благодаря работе именно таким образом будет поддерживаться постоянное ускорение потока вещества. Из преимуществ можно выделить то, что использование эжектора для насоса позволит экономить большое количество электроэнергии, так как станция не будет работать на пределе.

Тип устройства для насоса

В зависимости от места может быть встроенный или выносной тип. Огромной конструктивной разницы между местами установки не имеется, однако некоторые небольшие отличия все же дадут о себе знать, так как немного изменится монтаж самой станции, а также ее работоспособность. Конечно, понятно из названия, что встроенные эжекторы устанавливаются внутрь самой станции или же в непосредственной близости от нее.

Такой тип агрегата хорош тем, что не придется выделять дополнительное место для его установки. Сам монтаж эжектора также не придется проводить, так как он уже встроен, нужно будет установить лишь саму станцию. Еще одно преимущество такого устройства в том, что оно будет очень хорошо защищено от различного рода загрязнений. Недостатком станет то, что такой тип аппарата будет создавать достаточно много шума.

Сравнение моделей

Выносное же оборудование установить будет несколько сложнее и придется выделить отдельное место для его расположения, однако количество шума, к примеру, значительно уменьшится. Но тут есть другие недостатки. Выносные модели способны обеспечить эффективную работу лишь на глубине до 10 метров. Встроенные модели изначально рассчитываются на не слишком глубокие источники, но преимущество в том, что они создают довольно мощный напор, что приводит к более эффективному использованию жидкости.

Создаваемой струи вполне хватит не только для бытовых нужд, но еще и для таких операций, как полив, к примеру. Повышенный уровень шума от встроенной модели - это одна из наиболее существенных проблем, о которой придется позаботиться. Чаще всего она решается тем, что вместе с эжектором устанавливается в отдельном здании или в кессоне скважины. Также придется озаботиться более мощным электродвигателем для таких станций.

Подключение

Если говорить о подключении выносного эжектора, то придется выполнить такие операции:

  • Прокладка дополнительной трубы. Данный объект необходим для того, чтобы обеспечить циркуляцию воды от линии напора до водозаборной установки.
  • Второй шаг - это подсоединение к всасывающему отверстию водозаборной станции специального патрубка.

А вот подключение встроенного агрегата ничем не будет отличаться от обычного процесса монтажа насосной станции. Все необходимые процедуры по подсоединению нужных труб или патрубков осуществляются еще на заводе.

Эжектор – что это такое и как это работает? Точный ответ на этот вопрос знает любой инженер гидравлик, понимающий суть превращения энергии подмешиваемой струи в давление в трубопроводе. Непосвященным в тонкости инженерного дела потребителям воды из скважины достаточно понимания того факта, что этот узел напорного оборудования позволяет насосу качать воду с глубин более 15-20 метров. Но если вы хотите собрать эжектор своими руками, усовершенствовав свой насос, то вам понадобится понимание сути этого прибора фактически на инженерном уровне. И эта статья поможем вам разобраться с тем, что представляет собой эжектор, как он работает и как собрать подобный узел своими силами.

Что такое эжектор и как он работает?

С точки зрения физики процесса эжектор – это типичный выбрасыватель, нагнетающий давление в канале трубопровода. Он работает в паре с отсасывающим насосом, отбирающим воду из скважины или колодца.

Суть работы данного узла заключается во вбрасывании в трубопровод или рабочую камеру насоса струи жидкости, разгоняемой до высокой скорости. Причем разгон осуществляется за счет прохождения по плавно сужающемуся участку. Благодаря разнице скоростей движения основного потока и подмешиваемой струи в камере узла создается область разрежения, повышающего силу всасывания в трубопроводе.

По этому принципу работает и эжектор воздушный, и выбрасыватель жидкостной среды, и газо-жидкостной узел. В физике механику работы подобных узлов описывает закон Бернулли, сформулированный в 18 веке. Однако первый рабочий эжектор удалось собрать только в 19 веке, а точнее в 1858 году.

Эжекторный насос – принцип действия и ожидаемая выгода

Современные выбрасыватели разгоняют давление в трубопроводе, потребляя около 12 процентов объема прокачиваемого потока. То есть, если по трубе пойдет 1000 литров в час, то для эффективной работы эжектора потребуется выброс на уровне 120 л/час.

В насосе поддерживается следующий принцип работы эжектора:

  • В трубу за насосом врезают отвод.
  • Воду с этого отвода подают на циркуляционный патрубок эжектора.
  • Всасывающий патрубок эжектора соединяют с трубой, опущенной в колодец, а напорный патрубок – с входом в рабочую камеру насоса.
  • На опущенную в колодец трубу обязательно монтируют обратный клапан, блокирующий движение воды вниз.
  • Подаваемый на циркуляционный патрубок поток движется с большой скоростью, создавая разрежение в зоне всасывания эжектора. Под действием этого разрежения увеличивается сила всасывания (подъема воды) и давление в трубопроводе, подключаемом к насосу.

Оснащаемый эжектором насос начинает отбирать воду из колодца глубиной более 7-8 метров. Без выбрасывателя этот процесс невозможен в принципе. Лишенный данного узла агрегат отсасывающего типа способен поднимать воду только в глубины 5-7 метров. А эжекторный насос качает воду даже с глубины 45 метров. При этом эффективность работы такого напорного оборудования зависит от разновидностей примененных выбрасывателей.

Разновидности эжекторов – классификация по месторасположению

Эжектор, принцип действия которого мы описали выше, монтируется только на поверхностные насосы. Причем существует две схемы монтажа:

  • Внутреннее размещение – это когда выбрасыватель встраивается в кожух насоса или где-то поблизости.
  • Внешнее размещение – в этом случае выбрасыватель монтируется в колодце, куда помимо основного трубопровода проводится еще и циркуляционная ветка.

Внутренний эжектор для насоса дает 100% гарантии безопасной эксплуатации выбрасывателя. В этом случае он защищен от заиливания и механических повреждений. Кроме того, внутренний монтаж сокращает длину циркуляционного трубопровода. Самый большой недостаток данной схемы – незначительный прирост глубины всасывания. Внутренний эжектор – что это такое, и какие дает выгоды, мы уже объяснили выше – позволяет поверхностному насосу качать воду только с глубины 9-10 метров. Ни о каких 15-40 метрах тут можно и не мечтать. А еще вас будет преследовать шум биения воды, распространяемый корпусом встроенного оборудования.

Внешний эжектор для обещает такие выгоды, как практически бесшумную работу (источник биения находится в скважине) и генерацию значительного разрежения, достаточного для подъема воды из скважины глубиной до 45 метров. К досадным недостаткам данной схемы относятся, во-первых, падение эффективности работы напорного оборудования примерно на треть, во-вторых, необходимость монтажа первичных фильтров, регулирующих частоту потока (такой узел боится заиливания).

Однако если вы собрались конструировать эжектор своими руками, то наиболее доступным вариантом будет именно внешний узел. Именно его мы и рассмотрим ниже по тексту.

Самостоятельное изготовление: пошаговая инструкция

Если вы решили сделать эжектор своими руками – чертежи вам не понадобятся, поскольку упрощенную модель внешнего узла можно собрать из стандартных тройников, штуцеров и фитингов и уголков для водопровода. Причем в качестве рабочих инструментов можно будет использовать только два разводных ключа, а из расходных материалов вам пригодится только ФУМ-лента.

Полный список деталей для самодельного выбрасывателя выглядит следующим образом:

  • Штуцер с наружной резьбой и ершиком для монтажа шлангов. Он сыграет роль сопла, из которого выбрасывается высокоскоростной поток воды.
  • Тройник с внутренней резьбой, диаметр которой должен совпадать с наружной нарезкой штуцера. Этот элемент будет использоваться как корпус.
  • Три уголка с резьбовыми и цанговыми торцами. С их помощью можно упорядочить прокладку циркуляционного, всасывающего и напорного трубопроводов.
  • Два или три цанговых или обжимных фитинга, с помощью которых обеспечивают подключение трубопроводов. Причем последний вариант требует использования дополнительного инструмента – обжимного ключа

Сам процесс сборки начинается с подготовки штуцера. С него стачивают шестигранник, выступающий над резьбовым торцом. Далее обработанный штуцер вкручивают в тройник со стороны сквозного канала, получая основу для циркуляционного патрубка. При этом торец с ершиком (штуцера) не должен выходить за границы тройника. Если это произошло, то его придется спилить.

Для завершения монтажа циркуляционного патрубка в тройник, вслед за штуцером, вкручивают сгон уголка с резьбовыми торцами, после чего на свободную часть данного элемента накручивают еще один уголок, получая U-образную петлю с окончанием-фитингом. Именно к этому фитингу будет крепиться циркуляционная труба от насоса.

Следующий шаг – подготовка напорного торца. Для этого в свободный сквозной торец тройника (он расположен над обустроенным циркуляционным отводом) вкручивают фитинг с наружным резьбовым окончанием и цангой. К этой цанге будет крепиться труба от эжектора в насос.

Последний этап – обустройство всасывающего торца. В этом случае мы просто вкручиваем в боковой отвод тройника фитинг-уголок с наружной резьбой и цанговым зажимом на другом торце. Причем цанга должна смотреть вниз, в сторону циркуляционного патрубка. И к этому фитингу будет крепиться всасывающая труба, уложенная до дна колодца.

Секреты успеха – как повысить эффективность самодельной конструкции

Во-первых, диаметр циркуляционной трубы должен быть в два раза меньше габаритов напорной и всасывающей линии. Благодаря этому поток получит высокую скорость еще на подходе к штуцеру, заменившему сопло.

Во-вторых, всасывающую трубу лучше не опускать к самому дну колодца – она должна располагаться на хотя бы метровом удалении. А еще лучше – на расстоянии 1, 5 метра от дна. Так можно избежать заиливания.

В-третьих, на торец всасывающей трубы нужно навернуть обратный клапан, отсекающий слив воды вниз, а за клапаном будет нелишним поставить грубый сетчатый фильтр. Благодаря этому повышается КПД эжекторов и уменьшается риск заиливания конструкции.

Новое на сайте

>

Самое популярное