Домой Огород на подоконнике Все про шаровую молнию. Плазмоидная "жизнь". Шаровая молния. Испаряет ювелирные украшения

Все про шаровую молнию. Плазмоидная "жизнь". Шаровая молния. Испаряет ювелирные украшения

Первые письменные упоминания о загадочных и таинственных огненных шарах можно найти в летописях 106 г. до н. э.: «Над Римом появились огромные огненные птицы, несущие в клювах раскалённые угли, которые, падая вниз, сжигали дома. Город полыхал…» Также было обнаружено не одно описание о шаровых молниях в Португалии и во Франции в Средние века, явление которых побудило алхимиков проводить время в поисках возможности властвовать над духами огня.

Шаровая молния считается особым видом молнии, который представляет собой плывущий по воздуху светящийся огненный шар (иногда имеет вид гриба, капли или груши). Размер её обычно колеблется от 10 до 20 см, а сама она бывает голубого, оранжевого или белого тонов (хотя нередко можно увидеть и другие цвета, вплоть до чёрного), цвет при этом бывает неоднородным и нередко изменяется. Люди, которые видели, как выглядит шаровая молния, говорят о том, что внутри она состоит из небольших неподвижных деталей.

Что касается температуры плазменного шара, то она до сих пор не определена: хотя по подсчётам учёных она должна составлять от 100 до 1000 градусов Цельсия, очутившиеся поблизости огненного шара люди жара от него не почувствовали. Если он неожиданно взрывается (правда, это бывает далеко не всегда), вся находящаяся неподалёку жидкость испаряется, а стекло и металл плавятся.

Был зафиксирован случай, когда плазменный шар, оказавшись в доме, попал в бочонок, где находилось шестнадцать литров только что принесённой колодезной воды. При этом он не взорвался, а вскипятив воду, исчез. После того как вода закончила кипеть, она была горячей в течение двадцати минут.

Существовать огненный шар способен довольно длительное время, а при перемещении – неожиданно поменять направление, при этом он даже может на несколько минут повиснуть в воздухе, после чего резко, на скорости от 8 до 10 м/с уйти в сторону.

Возникает шаровая молния в основном во время грозы, но также были зафиксированы неоднократные случаи её появления и в солнечную погоду. Появляется она обычно в единственном экземпляре (по крайней мере, современная наука другого не зафиксировала), и нередко самым неожиданным образом: она может спуститься с туч, появиться в воздухе или выплыть из-за столба или дереве. Для неё не составляет труда проникнуть в закрытое пространство: известны случаи её появления из розеток, телевизора и даже в кабинах пилотов.

Было зафиксировано немало случаев постоянного возникновения шаровой молнии на одном и том же месте. Так, в небольшом городке под Псковом существует Чёртова поляна, на которой из-под земли периодически выскакивает шаровая молния черного цвета (появляться здесь она стала после падения Тунгусского метеорита). Её постоянное возникновение в одном и том же месте дало возможность учёным попытаться зафиксировать это появление при помощи датчиков, правда, безуспешно: все они были расплавлены во время передвижения шаровой молнии по поляне.


Тайны шаровых молний

Учёные долгое время не допускали даже существования такого явления, как шаровая молния: сведения о её появлении относили в основном или к оптическому обману, или к галлюцинациям, что поражают сетчатку глаза после вспышки обыкновенной молнии. Тем более что свидетельства о том, как выглядит шаровая молния, во многом не совпадали, а во время её воспроизведения в лабораторных условиях удавалось получить лишь кратковременные явления.

Всё изменилось после того, как вначале XIX ст. физик Франсуа Араго опубликовал отчёт, с собранными и систематизированными свидетельствами очевидцев о явлении шаровой молнии. Хотя эти данные и сумели убедить многих учёных в существовании этого удивительного явления, скептики всё же остались. Тем более загадки шаровой молнии со временем не уменьшаются, а лишь множатся.

Прежде всего, непонятна природа появления удивительного шара, поскольку появляется он не только в грозу, но и в ясный погожий день.

Непонятен и состав вещества, которое позволяет ему проникать не только через дверные и оконные проёмы, но и через малюсенькие щели, после чего вновь принимать без ущерба для себя изначальную форму (физики этого явления разгадать на данный момент не в состоянии).

Некоторые учёные, изучая явление, выдвигали предположение, что в действительности шаровая молния являет собой газ, но в таком случае плазмовый шар под воздействием внутреннего тепла должен был бы взлетать вверх наподобие воздушного шара.

Да и природа самого излучения непонятна: откуда оно исходит – лишь с поверхности молнии, или со всего её объёма. Также перед физиками не может не возникать вопрос о том, куда пропадает энергия, что находится внутри шаровой молнии: если бы она шла лишь на излучение, шар исчезал бы не через несколько минут, а светился бы пару часов.

Несмотря на огромное количество теорий, физики до сих пор не могут дать научно обоснованного объяснения этого явления. Но, существует две противоположные версии, получившие популярность в научных кругах.

Гипотеза №1

Доминик Араго не только систематизировал данные о плазменном шаре, но и попытался объяснить, в чём состоит загадка шаровой молнии. По его версии шаровая молния — это специфическое взаимодействие азота с кислорода, во время которого выделяется энергия, создающая молнию.

Другой физик Френкель дополнил эту версию теорией о том, что плазмовый шар является вихрем шарообразной формы, состоящий из пылевых частиц с активными газами, что стали таковыми из-за полученного электрического разряда. По этой причине вихрь-шар вполне может существовать довольно продолжительное время. В пользу его версии говорит тот факт, что плазмовый шар обычно возникает в запыленном воздухе после электрического разряда, а после себя оставляет небольшой дымок со специфическим запахом.

Таким образом, эта версия говорит о том, что вся энергия плазменного шара находится внутри него, из-за чего шаровую молнию можно считать накопителем энергии.

Гипотеза №2

Академик Петр Капица с этим мнением был не согласен, поскольку утверждал, что для беспрерывного свечения молнии нужна дополнительная энергия, которая подпитывала бы шар извне. Он выдвинул версию, что явление шаровой молнии подпитывают радиоволны длиной от 35 до 70 см, возникающие в результате электромагнитных колебаний, возникающих между грозовыми тучами и земной корой.

Взрыв шаровой молнии он объяснял неожиданной остановкой подачи энергии, например, изменение частоты электромагнитных колебаний, в результате чего разреженный воздух «схлопывается».

Хотя его версия многим пришлась по душе, природа шаровой молнии версии не соответствует. На данный момент современная аппаратура ни разу не зафиксировала радиоволны нужной волны, которые появлялись бы в результате атмосферных разрядов. Кроме того, вода является почти непреодолимым препятствием для радиоволн, а потому нагреть воду, как в случае с бочонком, а тем более вскипятить её, плазменный шар не смог бы.

Также ставит гипотезу под сомнение масштаб взрыва плазменного шара: он не только способен расплавить или разнести в куски прочные и крепкие предметы, но и переломать толстые брёвна, а его ударная волна – перевернуть трактор. В то же время обыкновенное «схлопывание» разреженного воздуха проделать все эти трюки не способно, а его эффект подобен лопнувшему воздушному шару.

Что делать, встретив шаровую молнию

Что бы ни было причиной возникновения удивительного плазменного шара, нужно учитывать, что столкновение с ней чрезвычайно опасно, поскольку если переполненный электричеством шар дотронется до живого существа, вполне может убить, а если взорвётся – разнести всё вокруг.

Увидев огненный шар дома или на улице, главное, не впадать в панику, не делать резких движений и не бежать: шаровая молния чрезвычайно чувствительна к любым завихрениям воздуха и вполне может последовать за ним.

Нужно неторопливо, спокойно свернуть с пути движения шара, пытаясь держаться как можно дальше от него, но ни в коем случае не поворачиваться спиной. Если шаровая молния оказалась в помещении, нужно подойти к окну и открыть форточку: вслед за движением воздуха молния, скорее всего, вылетит наружу.


Также категорически нельзя ничего бросать в плазменный шар: это вполне может привести ко взрыву, и тогда травмы, ожоги, а в некоторых случаях даже остановка сердца неотвратимы. Если так получилось, что человек не сумел уйти с траектории движения шара, и тот задел его, вызвав потерю сознания, потерпевшего нужно перенести в проветриваемую комнату, тепло закутать, сделать искусственное дыхание и, естественно, сразу же позвонить в скорую помощь.

Шаровая молния

Шаровая молния

Шарова́я мо́лния - светящийся плавающий в воздухе шар, уникально редкое природное явление, единой физической теории возникновения и протекания которого к настоящему времени не представлено. Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, но вопрос о единственной природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

Широко распространено мнение, что шаровая молния - явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию , существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

  • по самому факту наблюдения хоть какого-то явления;
  • факту наблюдения именно шаровой молнии, а не какого-то другого явления;
  • отдельных подробностей приводимых в свидетельстве очевидца явления.

Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

Шаровая молния обычно появляется в грозовую, штормовую погоду; зачастую, но не обязательно, наряду с обычными молниями. Но имеется множество свидетельств её наблюдения в солнечную погоду. Чаще всего она как бы «выходит» из проводника или порождается обычными молниями, иногда спускается с облаков, в редких случаях - неожиданно появляется в воздухе или, как сообщают очевидцы, может выйти из какого-либо предмета (дерево, столб).

В связи с тем, что появление шаровой молнии как природного явления происходит редко, а попытки искусственно воспроизвести его в масштабах природного явления не удаются, основным материалом для изучения шаровых молний являются свидетельства неподготовленных к проведению наблюдений случайных очевидцев, тем не менее некоторые свидетельства очень подробно описывают шаровую молнию и достоверность этих материалов не вызывает сомнений. В некоторых случаях современные очевидцы произвели фото и/или видеосъёмку явления.

История наблюдений

Рассказы о наблюдениях шаровой молнии известны уже две тысячи лет. В первой половине XIX века французский физик, астроном и естествоиспытатель Ф. Араго, возможно первым в истории цивилизации, произвёл сбор и систематизировал все известные на то время свидетельства появления шаровой молнии. В его книге было описано 30 случаев наблюдения шаровых молний. Статистика небольшая, и неудивительно, что многие физики XIX века, включая Кельвина и Фарадея , при своей жизни были склонны считать, что это либо оптическая иллюзия, либо явление совершенно иной, неэлектрической природы. Однако количество случаев, подробность описания явления и достоверность свидетельств возрастало, что привлекло внимание учёных, в том числе крупных физиков.

В конце 1940-х гг. над объяснением шаровой молнии работал П. Л. Капица .

Большой вклад в работу по наблюдению и описанию шаровой молнии внёс советский учёный И. П. Стаханов , который вместе с С. Л. Лопатниковым в журнале «Знание - сила» в 1970-х гг. опубликовал статью о шаровых молниях. В конце этой статьи он приложил анкету и попросил очевидцев прислать ему свои подробные воспоминания этого явления. В результате он накопил обширную статистику - более тысячи случаев, что позволило ему обобщить некоторые свойства шаровой молнии и предложить свою теоретическую модель шаровой молнии.

Исторические свидетельства

Гроза в Вайдкомб Мур
21 октября 1638 года молния появилась во время грозы в церкви деревушки Вайдкомб Мур графства Девон в Англии. Очевидцы рассказывали, что в церковь влетел огромный огненный шар порядка двух с половиной метров в поперечнике. Он выбил из стен церкви несколько больших камней и деревянных балок. Затем шар, якобы, сломал скамейки, разбил много окон и наполнил помещение густым тёмным дымом с запахом серы. Потом он разделился пополам; первый шар вылетел наружу, разбив ещё одно окно, второй исчез где-то внутри церкви. В результате 4 человека погибло, 60 получили ранения. Явление объясняли «пришествием дьявола», или «адским пламенем» и обвинили во всём двух людей, которые осмелились играть в карты во время проповеди.

Случай на борту «Кэтрин энд Мари»
В декабре 1726 года некоторые британские газеты напечатали отрывок из письма некоего Джона Хоуэлла, который находился на борту шлюпа «Кэтрин энд Мари». «29 августа мы шли по заливу у берегов Флориды, как вдруг из части корабля вылетел шар. Он разбил нашу мачту на 10000 частей, если бы это вообще было возможно, и разнёс бимс в щепки. Также шар вырвал три доски из боковой обшивки, из подводной и три с палубы; убил одного человека, поранил руку другому, и если бы не обильные дожди, то наши паруса были бы просто уничтожены огнём».

Случай на борту «Монтаг»
О внушительных размерах молнии сообщается со слов корабельного доктора Грегори в 1749 году . Адмирал Чемберс на борту «Монтаг» около полудня поднялся на палубу замерить координаты судна. Он заметил довольно большой голубой огненный шар на расстоянии около трёх миль. Незамедлительно был отдан приказ спустить топсели, но шар двигался очень быстро, и прежде чем удалось сменить курс, он взлетел практически вертикально и находясь не выше сорока-пятидесяти ярдов над оснасткой, исчез с мощным взрывом, который описывается, как одновременный залп тысячи орудий. Верхушка грот-мачты была уничтожена. Пятерых человек сбило с ног, один из них получил множество ушибов. Шар оставил после себя сильный запах серы; перед взрывом его величина достигала размеров мельничного жернова.

Смерть Георга Рихмана
В 1753 году Георг Рихман , действительный член Петербургской Академии Наук , погиб от удара шаровой молнией. Он изобрёл прибор для изучения атмосферного электричества, поэтому когда на очередном заседании услышал, что надвигается гроза, срочно отправился домой вместе с гравёром, чтобы запечатлеть явление. Во время эксперимента из прибора вылетел синевато-оранжевый шар и ударил учёного прямо в лоб. Раздался оглушительный грохот, схож с выстрелом ружья. Рихман упал замертво, а гравёр был оглушен и сбит с ног. Позже он описал то, что произошло. На лбу учёного осталось маленькое темно-малиновое пятнышко, его одежда была опалена, башмаки разорваны. Дверные косяки разлетелись в щепки, а саму дверь снесло с петель. Позже осмотр места происшествия совершил лично М. В. Ломоносов .

Случай с кораблём «Уоррен Хастингс»
Одно британское издание сообщало о том, что в 1809 году корабль «Уоррен Хастингс» во время шторма «атаковало три огненных шара». Команда видела, как один из них спустился и убил человека на палубе. Того, кто решил забрать тело, ударил второй шар; его сбило с ног, на теле остались лёгкие ожоги. Третий шар убил ещё одного человека. Команда отметила, что после происшествия над палубой стоял отвратительный запах серы.

Ремарка в литературе 1864 года
В издании «A Guide to the Scientific Knowledge of Things Familiar» 1864 года Эбенезер Кобэм Брюер рассуждает о «шарообразной молнии». В его описании молния предстаёт как медленно движущийся огненный шар из взрывоопасного газа, который иногда спускается к земле и движется вдоль её поверхности. Также отмечается, что шары могут делиться на шары меньшего размера и взрываться «подобно пушечному выстрелу».

Описание в книге «Молния и свечение» Вильфрида де Фонвьюэля
Книга французского автора сообщает о примерно 150 встречах с шарообразной молнией: «Судя по всему, шарообразные молнии сильно притягиваются металлическими предметами, поэтому они часто оказываются у балконных перил, водопроводных и газовых труб. Они не имеют определённой окраски, оттенок их может быть разный, например в Кётен в герцогстве Ангальт молния была зелёной. M. Колон, заместитель председателя Парижского Геологического Общества видел, как шар медленно спустился вдоль коры дерева. Коснувшись поверхности земли, он подпрыгнул и исчез без взрыва. 10 сентября 1845 года в долине Корреце молния влетела в кухню одного из домов деревни Саланьяк. Шар прокатился через всё помещение, не причиня никакого ущерба находящимся там людям. Добравшись до граничащего с кухней хлева, он неожиданно взорвался и убил случайно запертую там свинью. Животное не было знакомо с чудесами грома и молнии, поэтому осмелилось запахнуть самым непристойным и неподобающим образом. Двигаются молнии не очень быстро: некоторые даже видели, как они останавливаются, но от этого шары приносят не меньше разрушений. Молния, влетевшая в церковь города Штральзунд, при взрыве выбросила несколько маленьких шаров, которые тоже взрывались как артиллерийские снаряды.»

Случай из жизни Николая II
Последний российский император Николай II в присутствии своего деда Александра II наблюдал явление, которое он назвал «огненным шаром». Он вспоминал: «Когда мои родители были в отъезде, мы с дедушкой совершали обряд всенощного бдения в Александрийской церкви. Была сильная гроза; казалось, что молнии, следующие одна за другой, готовы сотрясти церковь и весь мир прямо до основания. Вдруг стало совсем темно, когда порыв ветра распахнул врата церкви и потушил свечи перед иконостасом. Раздался гром сильнее обычного, и я увидел, как в окно влетел огненный шар. Шар (это была молния) покружился на полу, пролетел мимо канделябра и вылетел через дверь в парк. Моё сердце замерло от страха и я взглянул на дедушку - но его лицо было совершенно спокойно. Он перекрестился с таким же спокойствием, как и когда молния пролетала мимо нас. Тогда я подумал, что испугаться, как я - это неподобающе и немужественно … После того, как шар вылетел, я снова взглянул на дедушку. Он слегка улыбнулся и кивнул мне. Страх мой исчез и я больше никогда не боялся грозы».

Случай из жизни Алистера Кроули
Известный британский оккультист Алистер Кроули говорил о явлении, которое он называл «электричеством в форме шара» и которое он наблюдал в 1916 году во время грозы на озере Паскони в Нью-Гэмпшире . Он укрылся в небольшом загородном доме, когда «в безмолвном изумлении заметил, что на расстоянии шести дюймов от моего правого колена остановился ослепительный шар электрического огня трёх-шести дюймов в диаметре. Я смотрел на него, а он вдруг взорвался с резким звуком, который невозможно было спутать с тем, что буйствовало снаружи: шумом грозы, стуком града или потоками воды и треском дерева. Моя рука была ближе всего к шару и она почувствовала лишь слабый удар».

Другие свидетельства

Во время Второй мировой войны подводники многократно и последовательно сообщали о маленьких шаровых молниях, возникающих в замкнутом пространстве подводной лодки. Они появлялись при включении, выключении, или неверном включении батареи аккумуляторов , либо в случае отключения, или неверного подключения высокоиндуктивных электромоторов. Попытки воспроизвести явление, используя запасную батарею подводной лодки, оканчивались неудачами и взрывом.

6 августа 1944 года в шведском городе Уппсала шаровая молния прошла сквозь закрытое окно, оставив за собой круглую дырку около 5 см в диаметре. Явление не только наблюдали местные жители, но и также сработала система слежения за разрядами молнии Уппсальского университета, которая находится на отделении изучения электричества и молнии.

В 1954 году физик Domokos Tar наблюдал молнию в сильную грозу. Он описал увиденное достаточно подробно. «Это произошло на острове Маргарет на Дунае. Было где-то 25-27 градусов по Цельсию, небо быстро затянуло облаками и началась сильная гроза. Поблизости не было ничего, где можно было бы укрыться, рядом только находился одинокий куст, который гнуло ветром к земле. Вдруг приблизительно в 50 метрах от меня в землю ударила молния. Это был очень яркий канал 25-30 см в диаметре, он был точно перпендикулярен поверхности земли. Где-то две секунды было темно, а затем на высоте 1,2 м появился красивый шар диаметром 30-40 см. Он появился на расстоянии в 2,5 м от места удара молнии, так что это место удара было прямо посередине между шаром и кустом. Шар сверкал подобно маленькому солнцу и вращался против часовой стрелки. Ось вращения была параллельна земле и перпендикулярна линии „куст-место удара-шар“. У шара было также один-два красных завитка, но не такие яркие, они исчезли спустя доли секунды(~0,3 с). Сам шар медленно двигался по горизонтали по той же линии от куста. Его цвета были чёткими, а сама яркость - постоянной на всей поверхности. Вращения больше не было, движение происходило на неизменной высоте и с постоянной скоростью. Изменения в размерах я больше не заметил. Прошло ещё примерно три секунды - шар резко исчез, причём совершенно беззвучно, хотя из-за шума грозы я мог и не расслышать». Сам автор предполагает, что разность температур внутри и вне канала обычной молнии с помощью порыва ветра сформировала некое вихревое кольцо, из которого потом образовалась наблюдаемая шаровая молния.

10 июля 2011 года в чешском городе Либерец шаровая молния появилась в диспетчерском здании городских аварийных служб. Шар с двухметровым хвостом подпрыгнул к потолку прямо из окна, упал на пол, снова подпрыгнул к потолку, пролетел 2-3 метра, а затем упал на пол и исчез. Это испугало сотрудников, которые почувствовали запах горелой проводки, и посчитали, что начался пожар. Все компьютеры зависли (но не сломались), коммуникационное оборудование выбыло из строя на ночь , пока его не отремонтировали. Кроме того, был уничтожен один монитор .

4 августа 2012 года шаровая молния напугала сельчанку в Пружанском районе Брестской области . Как рассказывает газета «Раённыя будні», шаровая молния влетела в дом во время грозы. Причем, как рассказала изданию хозяйка дома Надежда Владимировна Остапук, окна и двери в доме были закрыты и женщина так и не смогла понять, каким образом огненный шар проник в помещение. К счастью, женщина догадалась, что не стоит делать резких движений, и осталась просто сидеть на месте, наблюдая за молнией. Шаровая молния пролетела над её головой и разрядилась в электропроводку на стене. В результате необычного природного явления никто не пострадал, лишь была повреждена внутренняя отделка комнаты, сообщает издание.

Искусственное воспроизведение явления

Обзор подходов для искусственного воспроизведения шаровой молнии

Поскольку в появлении шаровых молний прослеживается явная связь с другими проявлениями атмосферного электричества (например, обычной молнией), то большинство опытов проводилось по следующей схеме: создавался газовый разряд (а свечение газового разряда - вещь известная), и затем искались условия, когда светящийся разряд мог бы существовать в виде сферического тела. Но у исследователей возникают только кратковременные газовые разряды сферической формы, живущие максимум несколько секунд, что не соответствует свидетельствам очевидцев природной шаровой молнии.

Список заявлений об искусственном воспроизведении шаровой молнии

Было сделано несколько заявлений о получении шаровой молнии в лабораториях, но в основном к этим заявлениям сложилось скептическое отношение в академической среде. Остаётся открытым вопрос: «Действительно ли наблюдаемые в лабораторных условиях явления тождественны природному явлению шаровой молнии»?

  • Первые детальные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом : ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением.
  • Капица смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения.

Теоретические объяснения явления

В наш век, когда физики знают, что происходило в первые секунды существования Вселенной, и что творится в еще не открытых чёрных дырах, все же приходится с удивлением признать, что основные стихии древности - воздух и вода - всё ещё остаются загадкой для нас.

И.П.Стаханов

Большинство теорий сходится на том, что причина образования любой шаровой молнии связана с прохождением газов через область с большой разностью электрических потенциалов, что вызывает ионизацию этих газов и их сжатие в виде шара.

Экспериментальная проверка существующих теорий затруднена. Даже если считать только предположения, опубликованные в серьёзных научных журналах, то количество теоретических моделей, которые с разной степенью успеха описывают явление и отвечают на эти вопросы, довольно велико.

Классификация теорий

  • По признаку места энергетического источника, поддерживающего существование шаровой молнии, теории можно разделить на два класса: предполагающие внешний источник, и теории, считающие, что источник находится внутри шаровой молнии.

Обзор существующих теорий

  • Следующая теория предполагает, что шаровая молния - это тяжёлые положительные и отрицательные ионы воздуха, образовавшиеся при ударе обычной молнии, рекомбинации которых мешает их гидролиз. Под действием электрических сил они собираются в шар и могут довольно долго сосуществовать до тех пор, пока не разрушится их водяная «шуба». Это объясняет ещё и тот факт, как различный цвет шаровой молнии и его прямая зависимость от времени существования самой шаровой молнии - скорости разрушения водяных «шуб» и начало процесса лавинной рекомбинации.

См. также

Литература

Книги и отчёты, посвящённые шаровой молнии

  • Стаханов И.П. О физической природе шаровой молнии. - Москва: (Атомиздат, Энергоатомиздат, Научный мир), (1979, 1985, 1996). - 240 с.
  • С. Сингер Природа шаровой молнии. Пер. с англ. М.:Мир, 1973, 239 с.
  • Имянитов И. М., Тихий Д. Я. За гранью законов науки. М.: Атомиздат, 1980
  • Григорьев А. И. Шаровая молния. Ярославль: ЯрГУ, 2006. 200 с.
  • Лисица М. П., Валах М. Я. Занимательная оптика. Атмосферная и космическая оптика. Киев: Логос, 2002, 256 с.
  • Brand W. Der Kugelblitz. Hamburg, Henri Grand, 1923
  • Стаханов И. П. О физической природе шаровой молнии М.: Энергоатомиздат, 1985, 208 с.
  • Кунин В. Н. Шаровая молния на экспериментальном полигоне. Владимир: Владимирский государственный университет, 2000, 84 с.

Статьи в журналах

  • Торчигин В. П., Торчигин А. В. Шаровая молния как концентрат света. Химия и жизнь, 2003, № 1, 47-49.
  • Барри Дж. Шаровая молния. Четочная молния. Пер. с англ. М.:Мир, 1983, 228 с.
  • Shabanov G.D., Sokolovsky B.Yu. // Plasma Physics Reports. 2005. V31. № 6. P512.
  • Shabanov G.D. // Technical Physics Letters. 2002. V28. № 2. P164.

Ссылки

  • Смирнов Б. М. «Наблюдательные свойства шаровой молнии»//УФН, 1992, т.162, вып.8.
  • А. Х. Амиров, В. Л. Бычков. Влияние грозовых атмосферных условий на свойства шаровых молний //ЖТФ, 1997, том 67, N4.
  • А. В. Шавлов. «Параметры шаровой молнии, вычисляемые с помощью двухтемпературной плазменной модели»// 2008 г.
  • Р. Ф. Авраменко, В. А. Гришин, В. И. Николаева, А. С. Пащина, Л. П. Поскачеева. Экспериментальные и теоретические исследования особенностей формирования плазмоидов//Прикладная физика, 2000, N3, с.167-177
  • М. И. Зеликин. «Сверхпроводимость плазмы и шаровая молния». СМФН, том 19, 2006, с.45-69

Шаровая молния в художественной литературе

  • Рассел, Эрик Фрэнк «Зловещий барьер» 1939

Примечания

  1. И. Стаханов «Физик, который знал о шаровой молнии больше всех»
  2. Такой русский вариант названия указан в списке телефонных кодов Великобритании . Также существуют варианты Вайдкомб-ин-Мур и прямое озвучание оригинального английского Widecomb-in-the-Moor - Вайдкомб-ин-зе-Мур
  3. Кондуктор из Казани спасла пассажиров от шаровой молнии
  4. Шаровая молния напугала сельчанку в Брестской области - Новости Происшествий. Новости@Mail.ru
  5. К. Л. Корум, Дж. Ф. Корум «Эксперименты по созданию шаровой молнии при помощи высокочастотного разряда и электрохимические фрактальные кластеры»//УФН, 1990, т.160, вып.4.
  6. А. И. Егорова, С. И. Степанова и Г. Д. Шабанова, Демонстрация шаровой молнии в лаборатории , УФН, т.174, вып.1, стр.107-109, (2004)
  7. П. Л. Капица О природе шаровой молнии ДАН СССР 1955. Том 101, № 2, стр. 245-248.
  8. B.M.Smirnov, Physics Reports, 224 (1993) 151 , Смирнов Б. М. Физика шаровой молнии // УФН, 1990, т.160. вып.4. стр.1-45
  9. D.J.Turner, Physics Reports 293 (1998) 1
  10. Э.А. Маныкин, М.И. Ожован, П.П. Полуэктов. Конденсированное ридберговское вещество. Природа, №1 (1025), 22-30 (2001). http://www.fidel-kastro.ru/nature/vivovoco.nns.ru/VV/JOURNAL/NATURE/01_01/RIDBERG.HTM
  11. А. И. Климов, Д. М. Мельниченко, Н. Н. Суковаткин «ДОЛГОЖИВУЩИЕ ЭНЕРГОЕМКИЕ ВОЗБУЖДЕННЫЕ ОБРАЗОВАНИЯ И ПЛАЗМОИДЫ В ЖИДКОМ АЗОТЕ»
  12. Segev M.G. Phys. Today , 51 (8) (1998), 42
  13. "В. П. Торчигин, 2003. О природе шаровой молнии. ДАН, т.389, № 3, с. 41-44.

Шаровая молния - уникальное природное явление: природа возникновения; физические свойства; характеристика


На сегодняшний день единственной и основной проблемой в исследовании данного феномена является отсутствие возможности воссоздать такую молнию в условиях научных лабораторий.

Поэтому большинство предположений по поводу физической природы шарообразного электрического сгустка в атмосфере так и остаются теоретическими.

Первым, кто предположил природу шаровой молнии был русский учёный-физик Пётр Леонидович Капица. Согласно его учениям, такой вид молний возникает во время разряда между грозовыми облаками и землёй на электромагнитной оси, по которой она дрейфует.

Помимо Капицы, рядом физиков были выдвинуты теории, о ядровом и каркасном строении разряда или об ионном происхождении шаровой молнии.

Многие скептики утверждали, что это всего лишь зрительный обман или же кратковременные галлюцинации, а самого такого явления природы не существует. В настоящее время современное оборудование и аппаратура пока ещё не зафиксировала радиоволны необходимой для создания молнии.

Как образуется шаровая молния

Она образуется, как правило, во время сильной грозы, однако, не раз её замечали и при солнечной погоде. Возникает шаровая молния внезапно и в единичном случае. Она может появиться из облаков, из-за деревьев или других предметов и строений. Шаровая молния с лёгкостью преодолевает преграды на своём пути, в том числе попадает в замкнутые пространства. Описаны случаи, когда такой вид молнии возникал из телевизора, кабины самолёта, розеток, в закрытых помещениях... При этом, она может миновать предметы на своём пути, проходя сквозь них.

Неоднократно возникновение электрического сгустка было зафиксировано в одних и тех же местах. Процесс движения или миграции молний происходит в основном горизонтально и на высоте около метра над землёй. Отмечается также и звуковое сопровождение в виде хруста, треска и писка, что приводит к помехам в радиоэфире.

По описаниям очевидцев этого феномена выделяют два вида молний:


Характеристики

До сих пор неизвестно происхождение такой молнии. Есть версии, что электрический разряд возникает или на поверхности молнии, или выходит из совокупного объёма.

Учёным пока не известен физико-химический состав, благодаря которому такое явление природы может без труда преодолевать дверные проёмы, окна, небольшие щели, и вновь приобретать исходные размеры и форму. В связи с этим были выдвинуты гипотетические предположения о строении из газа, но такой газ по законам физики должен был бы взлететь в воздух под воздействием внутреннего тепла.

  • Размер шаровой молнии обычно составляет 10 – 20 сантиметров.
  • Цвет свечения, как правило, может быть голубым, белым или оранжевым. Однако, свидетели этого явления сообщают, что постоянный цвет не наблюдался и он всегда менялся.
  • Форма шаровой молнии в большинстве случаев сферическая.
  • Длительность существования оценивалась не более 30 секунд.
  • Температура окончательно не исследована, но по оценке специалистов она составляет до 1000 градусов по Цельсию.

Не зная природы происхождения этого природного явления, трудно делать предположения о том, каким образом перемещается шаровая молния. Согласно одной из теорий, перемещение такой формы электрического разряда может происходить благодаря силе ветра, действии электромагнитных колебаний или же силы притяжения.

Чем опасна шаровая молния

Несмотря на множество самых разных гипотез о природе возникновения и характеристиках этого явления природы, необходимо принимать во внимание, что взаимодействие с шаровой молнией крайне опасно, так как шар, заполненный большим разрядом, может не только нанести увечья, но и убить. Взрыв может привести к трагическим последствиям.

  • Первое правило, которое нужно соблюдать при встрече с огненным шаром – это не паниковать, не бежать, не совершать быстрых и резких движений.
  • Необходимо медленно уйти с траектории движения шара, при этом держась на расстоянии от него и не поворачиваться спиной.
  • При появлении шаровой молнии в закрытом помещении, первое, что нужно сделать – это постараться аккуратно открыть окно в целях создания сквозняка.
  • Помимо вышеуказанных правил строго запрещается бросать какие-либо предметы в плазменный шар, так как это может привести к взрыву со смертельным исходом.

Так в районе Луганска молния размером с мяч для гольфа убила водителя, а в Пятигорске мужчина, пытаясь отмахнуться от светящегося шара, получил сильные ожоги рук. В Бурятии молния опустилась сквозь крышу и взорвалась в доме. Взрыв был такой силы, что окна и двери были выбиты, стены повреждены, а хозяева домовладения травмированы и получили контузию.

Видео: 10 Фактов о шаровой молнии

В данном видеосюжете представлены Вашему вниманию факты о самом загадочном и удивительном природном явлении

Одним из самых удивительных и опасных явлений природы является шаровая молния. Как себя вести и что следует делать при встрече с ней, вы узнаете из этой статьи.

Что такое шаровая молния

Удивительно, но современная наука затрудняется ответить на этот вопрос. К сожалению, еще никто не смог проанализировать это природное явление с помощью точных научных приборов. Все попытки ученых воссоздать его в лабораторных условиях также потерпели неудачу. Несмотря на множество исторических данных и рассказов очевидцев, некоторые исследователи и вовсе отрицают само существование этого феномена.

Те, кому посчастливилось остаться в живых после встречи с электрическим шаром, дают противоречивые показания. Они утверждают, что видели сферу от 10 до 20 см в диаметре, но описывают ее по-разному. По одной версии, шаровая молния почти прозрачна, сквозь нее даже угадываются контуры окружающих предметов. По другой, ее цвет варьируется от белого до красного. Кто-то рассказывает, что чувствовал исходящий от молнии жар. Другие не замечали от нее никакого тепла, даже находясь в непосредственной близости.

Китайским ученым повезло зафиксировать шаровую молнию с помощью спектрометров. Хотя это мгновение и длилось полторы секунды, исследователи смогли сделать вывод о ее отличиях от обычных молний.

Где появляется шаровая молния

Как себя вести при встрече с ней, ведь огненный шар может появиться где угодно. Обстоятельства его образования сильно отличаются и трудно найти определенную закономерность. Большинство думают, что встретить молнию можно только во время или после грозы. Однако существует масса свидетельств о том, что она появлялась и в сухую безоблачную погоду. Также невозможно предсказать место, где может образоваться электрический шар. Были случаи, когда он возникал из сети напряжения, ствола дерева и даже из стены жилого дома. Очевидцы видели, как молния появлялась сама по себе, встречали ее на открытой местности и внутри помещения. Также в литературе описаны случаи, когда после удара обычной возникала шаровая молния.

Как себя вести

Если вам «посчастливилось» встретиться с огненным шаром на открытой местности, вы должны придерживаться основных правил поведения в этой экстремальной ситуации.

  • Постарайтесь медленно удалиться от опасного места на значительное расстояние. Не поворачивайтесь к молнии спиной и не пытайтесь от нее убежать.
  • Если она близко и движется к вам, замрите, вытяните вперед руки и затаите дыхание. Через несколько секунд или минут шар обойдет вас и исчезнет.
  • Ни в коем случае не бросайте в него никакие предметы, так как при столкновении с чем-либо молния взрывается.

Шаровая молния: как спастись, если она появилась в доме?

Этот сюжет наиболее страшен, так как неподготовленный человек может запаниковать и совершить фатальную ошибку. Помните, что электрическая сфера реагирует на любое движение воздуха. Поэтому самый универсальный совет заключается в рекомендации сохранять неподвижность и спокойствие. Что еще можно сделать, если в квартиру залетела шаровая молния?

  • Что делать, если она оказалась около вашего лица? Подуйте на шар, и он отлетит в сторону.
  • Не прикасайтесь к железным предметам.
  • Замрите, не совершайте резких движений и не пытайтесь спастись бегством.
  • Если рядом находится вход в соседнее помещение, то попробуйте укрыться в нем. Но не поворачивайтесь к молнии спиной и постарайтесь двигаться как можно медленнее.
  • Не пытайтесь отогнать ее каким-либо предметом, иначе вы рискуете спровоцировать сильный взрыв. В этом случае вам грозят такие серьезные последствия как остановка сердца ожоги, травмы и потеря сознания.

Как помочь пострадавшему

Помните, что молния может нанести очень серьезную травму или вообще лишить жизни. Если вы увидели, что человек ранен ее ударом, то срочно примите меры - перенесите его в другое место и не бойтесь, так как заряда в его теле уже не останется. Положите его на пол, укутайте и вызывайте «скорую». В случае остановки сердца делайте ему искусственное дыхание до приезда врачей. Если человек пострадал не сильно, положите ему на голову мокрое полотенце, дайте две таблетки анальгина и успокаивающие капли.

Как уберечь себя

Как уберечься от шаровой молнии? Прежде всего необходимо предпринять действия, которые обезопасят вас во время обычной грозы. Помните, что в большинстве случаев люди страдают от электрического удара, находясь на природе или в сельской местности.

  • Как спастись от шаровой молнии в лесу? Не прячьтесь под одинокими деревьями. Постарайтесь найти невысокую рощу или подлесок. Помните, что молния редко бьет в хвойные деревья и березу.
  • Не держите над головой металлические предметы (вилы, лопаты, ружья, удочки и зонты).
  • Не прячьтесь в стог сена и не ложитесь на землю - лучше опуститесь на корточки.
  • Если гроза застала вас в машине, остановитесь и не трогайте металлические предметы. Не забудьте опустить антенну и отъехать от высоких деревьев. Остановитесь у обочины и не заезжайте на заправочную станцию.
  • Помните, что довольно часто гроза идет против ветра. Точно так же движется и шаровая молния.
  • Как себя вести в доме и стоит ли беспокоиться, если вы находитесь под крышей? К сожалению, громоотвод и другие приспособления не способны вам помочь.
  • Если вы находитесь в степи, то присядьте на корточки, постарайтесь не возвышаться над окружающими предметами. Можно укрыться в канаве, но покиньте ее сразу же, как только она начнет заполняться водой.
  • Если вы плывете в лодке, то ни в коем случае не вставайте. Постарайтесь как можно быстрее добраться до берега и отойдите от воды на безопасное расстояние.

  • Снимите с себя украшения и отложите подальше.
  • Отключите мобильник. Если он сработает, то к сигналу может притянуться шаровая молния.
  • Как спастись от грозы, если вы на даче? Закройте окна и дымоход. Пока не известно, является ли стекло преградой для молнии. Однако замечено, что она легко просачивается в любые щели, розетки или электроприборы.
  • Если вы дома, то закройте окна и выключите электроприборы, не касайтесь ничего металлического. Постарайтесь держаться подальше от розеток. Не звоните по телефону и отключите все внешние антенны.

Как это нередко бывает, систематическое изучение шаровых молний началось с отрицания их существования: в начале XIX века все известные к тому времени разрозненные наблюдения были признаны либо мистикой, либо в лучшем случае оптической иллюзией.

Но уже в 1838 году в «Ежегоднике» французского бюро географических долгот был опубликован обзор, составленный знаменитым астрономом и физиком Домиником Франсуа Араго.

Впоследствии он стал инициатором опытов Физо и Фуко по измерению скорости света, а также работ, приведших Леверье к открытию Нептуна.

Основываясь на известных тогда описаниях шаровых молний, Араго пришел к выводу, что многие из этих наблюдений нельзя считать иллюзией.

За 137 лет, прошедших с момента выхода в свет обзора Араго, появились новые свидетельства очевидцев, фотографии. Были созданы десятки теорий, экстравагантных и остроумных, которые объясняли некоторые известные свойства шаровой молнии, и таких, которые не выдерживали элементарной критики.

Фарадей, Кельвин, Аррениус, советские физики Я. И. Френкель и П. Л. Капица, многие известные химики, наконец, специалисты американской Национальной комиссии по астронавтике и аэронавтике NASA пытались исследовать и объяснить этот интересный и грозный феномен. А шаровая молния и поныне продолжает во многом оставаться загадкой.

Трудно, наверное, найти явление, сведения о котором так противоречили бы друг другу. Основных причин две: это явление очень редкое, и многие наблюдения проводятся крайне не квалифицированно.

Достаточно сказать, что за шаровую молнию принимались крупные метеоры и даже птицы, к крыльям которых прилипала труха гнилых, светящихся в темноте пней. И все-таки известно около тысячи достоверных наблюдений шаровой молнии, описанных в литературе.

Какие же факты должны связать ученые единой теорией, чтобы объяснить природу возникновения шаровой молнии? Какие ограничения накладывают наблюдения на нашу фантазию?

Первое, что нужно объяснить: почему шаровая молния возникает часто, если она возникает часто, или почему она возникает редко, если она возникает редко?

Пусть читателя не удивляет эта странная фраза — частота появления шаровой молнии все еще является спорным вопросом.

И еще нужно объяснить, почему шаровая молния (не зря же она так называется) действительно имеет форму, обычно близкую к шару.

И доказать, что она, вообще, имеет отношение к молниям, — надо сказать, не все теории связывают появление этого феномена с грозами — и не без оснований: иногда она возникает в безоблачную погоду как, впрочем, и другие грозовые явления, например, огни святого Эльма.

Здесь уместно вспомнить описание встречи с шаровой молнией, данное замечательным наблюдателем природы и ученым Владимиром Клавдиевичем Арсеньевым — известным исследователем дальневосточной тайги. Встреча эта произошла в горах Сихотэ-Алиня в ясную лунную ночь. Хотя многие параметры наблюдавшейся Арсеньевым молнии типичны, подобные случаи редки: обычно шаровые молнии возникают в грозу.

В 1966 году NASA распространила среди двух тысяч человек анкету, в первой части которой были заданы два вопроса: «Видели ли вы шаровую молнию?» и «Видели ли вы в непосредственной близости удар линейной молнии?»

Ответы дали возможность сравнить частоту наблюдения шаровой молнии с частотой наблюдения обычных молний. Результат оказался ошеломляющим: удар линейной молнии вблизи видели 409 человек из 2 тысяч, а шаровую молнию — два раза меньше. Нашелся даже счастливчик, встречавший шаровую молнию 8 раз,- еще одно косвенное доказательство того, что это совсем не такое редкое явление, как принято думать.

Анализ второй части анкеты подтвердил многие известные ранее факты: шаровая молния имеет в среднем диаметр около 20 см; светится не очень ярко; цвет чаще всего красный, оранжевый, белый.

Интересно, что даже наблюдатели, видевшие шаровую молнию близко, часто не ощущали ее теплового излучения, хотя при непосредственном прикосновении она обжигает.

Существует такая молния от нескольких секунд до минуты; может проникать в помещения через маленькие отверстия, восстанавливая затем свою форму. Многие наблюдатели сообщают, что она выбрасывает какие-то искры и вращается.

Обычно она парит на небольшом расстоянии от земли, хотя встречали ее и в облаках. Иногда шаровая молния спокойно исчезает, но иногда взрывается, вызывая заметные разрушения.

Уже перечисленных свойств достаточно, чтобы поставить исследователя в тупик.

Из какого вещества должна, например, состоять шаровая молния, если она не взлетает стремительно вверх, подобно воздушному шару братьев Монгольфье, наполненному дымом, хотя и нагрета, по крайней мере, до нескольких сотен градусов?

С температурой тоже не все ясно: судя по цвету свечения, температура молнии не меньше 8 000°К.

Один из наблюдателей, химик по специальности, знакомый с плазмой, оценил эту температуру в 13 000-16 000°К! Но фотометрование следа молнии, оставшегося на фотопленке, показало, что излучение выходит не только с ее поверхности, а и из всего объема.

Многие наблюдатели также сообщают, что молния полупрозрачна и через нее просвечивают контуры предметов. А это значит, что ее температура значительно ниже — не более 5 000 градусов, так как при большем нагреве слой газа толщиной в несколько сантиметров совершенно непрозрачен и излучает как абсолютно черное тело.

О том, что шаровая молния довольно «холодна», свидетельствует и сравнительно слабый тепловой эффект, производимый ею.

Шаровая молния несет большую энергию. В литературе, правда, часто встречаются заведомо завышенные оценки, но даже скромная реалистичная цифра — 105 джоулей — для молнии диаметром в 20 см весьма внушительна. Если бы такая энергия расходовалась только на световое излучение, она могла бы светиться много часов.

При взрыве шаровой молнии может развиться мощность в миллион киловатт, так как взрыв этот протекает очень быстро. Взрывы, правда, человек умеет устраивать и более мощные, но если сравнить со «спокойными» источниками энергии, то сравнение будет не в их пользу.

В частности, энергоемкость (энергия, отнесенная к единице массы) молнии значительно выше, чем у существующих химических аккумуляторов. Кстати, именно желание научиться аккумулировать сравнительно большую энергию в малом объеме и привлекло многих исследователей к изучению шаровой молнии. Насколько эти надежды могут оправдаться, говорить пока рано.

Сложность объяснения столь противоречивых и разнообразных свойств привела к тому, что существующие взгляды на природу этого явления исчерпали, кажется, все мыслимые возможности.

Некоторые ученые считают, что молния постоянно получает энергию извне. Например, П. Л. Капица предположил, что она возникает при поглощении мощного пучка дециметровых радиоволн, которые могут излучаться во время грозы.

Реально для образования ионизированного сгустка, каким является в этой гипотезе шаровая молния, необходимо существование стоячей волны электромагнитного излучения с очень большой напряженностью поля в пучностях.

Нужные условия могут осуществиться очень редко, так что, по мнению П. Л. Капицы, вероятность наблюдения шаровой молнии в заданном месте (то есть там, где расположился наблюдатель-специалист) практически равна нулю.

Иногда предполагают, что шаровая молния есть светящаяся часть канала, связывающего облако с землей, по которому течет большой ток. Образно говоря, ей отводится роль единственного видимого участка по каким-то причинам невидимой линейной молнии. Впервые эта гипотеза была высказана американцами М. Юманом и О. Финкельштейном, а в дальнейшем появилось несколько модификаций разработанной ими теории.

Общая трудность всех этих теорий в том, что они предполагают существование в течение длительного времени потоков энергии чрезвычайно высокой плотности и именно из-за этого обрекают шаровую молнию на «должность» чрезвычайно маловероятного явления.

Кроме того, в теории Юмана и Финкельштейна сложно объяснить форму молнии и ее наблюдаемые размеры — диаметр канала молнии обычно составляет около 3-5 см, а шаровые молнии встречаются и метрового диаметра.

Существует довольно много гипотез, предполагающих, что шаровая молния сама является источником энергии. Придуманы самые экзотические механизмы извлечения этой энергии.

В качестве примера такой экзотики можно привести идею Д. Эшби и К. Уайтхеда, согласно которой шаровая молния образуется при аннигиляции пылинок антивещества, попадающих в плотные слои атмосферы из космоса, а затем увлекаемых разрядом линейной молнии на землю.

Эту идею, может быть, можно было бы подкрепить теоретически, но, к сожалению, пока ни одной подходящей частицы антивещества обнаружено не было.

Чаще всего в качестве гипотетического источника энергии привлекаются различные химические и даже ядерные реакции. Но при этом трудно объяснить шаровую форму молнии — если реакции идут в газообразной среде, то диффузия и ветер приведут к выносу «грозового вещества» (термин Араго) из двадцатисантиметрового шара за считанные секунды и еще раньше деформируют его.

Наконец, нет ни одной реакции, о которой было бы известно, что она протекает в воздухе с нужным для объяснения шаровой молнии энерговыделением.

Многократно высказывалась такая точка зрения: шаровая молния аккумулирует энергию, выделяемую при ударе линейной молнии. Теорий, в основе которых лежит это предположение тоже немало, подробный обзор их можно найти в популярной книге С. Сингера «Природа шаровой молнии».

Эти теории, как, впрочем, и многие другие, содержат трудности и противоречия, которым уделено немалое внимание и в серьезной и в популярной литературе.

Кластерная гипотеза шаровой молнии

Расскажем теперь о сравнительно новой, так называемой кластерной гипотезе шаровой молнии, разрабатываемой в последние годы одним из авторов этой статьи.

Начнем с вопроса, почему же молния имеет форму шара? В общем виде ответить на этот вопрос несложно — должна существовать сила, способная удержать вместе частицы «грозового вещества».

Почему капля воды шарообразна? Такую форму придает ей поверхностное натяжение.

Поверхностное натяжение жидкости возникает из-за того, что ее частицы — атомы или молекулы — сильно взаимодействуют между собой, гораздо сильнее, чем с молекулами окружающего газа.

Поэтому, если частица оказывается вблизи границы раздела, то на нее начинает действовать сила, стремящаяся вернуть молекулу в глубину жидкости.

Средняя кинетическая энергия частиц жидкости примерно равна средней энергии их взаимодействия, поэтому молекулы жидкости и не разлетаются. В газах же кинетическая энергия частиц настолько превышает потенциальную энергию взаимодействия, что частицы оказываются практически свободными и о поверхностном натяжении говорить не приходится.

Но шаровая молния — газоподобное тело, а поверхностное натяжение у «грозового вещества», тем не менее, есть — отсюда и форма шара, которую чаще всего она имеет. Единственное вещество, которое могло бы иметь такие свойства — плазма, ионизированный газ.

Плазма состоит из положительных и отрицательных ионов и свободных электронов, то есть из частиц электрически заряженных. Энергия взаимодействия между ними гораздо больше, чем между атомами нейтрального газа, больше соответственно и поверхностное натяжение.

Однако при сравнительно низких температурах — скажем, при 1 000 градусов Кельвина — и при нормальном атмосферном давлении шаровая молния из плазмы могла бы существовать только тысячные доли секунды, так как ионы быстро рекомбинируют, то есть превращаются в нейтральные атомы и молекулы.

Это противоречит наблюдениям — шаровая молния живет дольше. При высоких температурах — 10-15 тысяч градусов — слишком большой становится кинетическая энергия частиц, и шаровая молния должна просто развалиться. Поэтому исследователям приходится использовать сильнодействующие средства, чтобы «продлить жизнь» шаровой молнии, сохранить ее хотя бы несколько десятков секунд.

В частности, П. Л. Капица ввел в свою модель мощную электромагнитную волну, способную постоянно порождать новую низкотемпературную плазму. Другим же исследователям, предполагающим, что молниевая плазма более горячая, пришлось придумывать, как бы удержать шар из этой плазмы, то есть решать задачу до сих пор не решенную, хотя и очень важную для многих областей физики и техники.

А что если пойти по другому пути — ввести в модель механизм, замедляющий рекомбинацию ионов? Попробуем использовать для этой цели воду. Вода — полярный растворитель. Ее молекулу можно грубо представить себе как палочку, один конец которой заряжен положительно, а другой — отрицательно.

К положительным ионам вода присоединяется отрицательным концом, а к отрицательным — положительным, образуя защитную прослойку — сольватную оболочку. Она может резко замедлить рекомбинацию. Ион вместе с сольватной оболочкой называется кластером.

Вот мы и подошли, наконец, к основным идеям кластерной теории: при разрядке линейной молнии происходит практически полная ионизация молекул, входящих в состав воздуха, в том числе и молекул воды.

Образовавшиеся ионы начинают быстро рекомбинировать, эта стадия занимает тысячные доли секунды. В какой-то момент нейтральных молекул воды становится больше, чем оставшихся ионов, и начинается процесс образования кластеров.

Он тоже длится, видимо, доли секунды и заканчивается образованием «грозового вещества» — похожего по своим свойствам на плазму и состоящего из ионизированных молекул воздуха и воды, окруженных сольватными оболочками.

Правда, пока все это только идея, и нужно посмотреть, может ли она объяснить многочисленные известные свойства шаровой молнии. Вспомним известную поговорку о том, что для рагу из зайца как минимум нужен заяц, и зададим себе вопрос: могут ли образовываться в воздухе кластеры? Ответ утешительный: да, могут.

Доказательство этого в буквальном смысле слова свалилось (было привезено) с неба. В конце 60-х годов с помощью геофизических ракет было проведено подробное исследование самого нижнего слоя ионосферы — слоя D , расположенного на высоте около 70 км. Оказалось, несмотря на то, что на такой высоте воды крайне мало, все ионы в слое D окружены сольватными оболочками, состоящими из нескольких молекул воды.

В кластерной теории предполагается, что температура шаровой молнии меньше 1000°К, поэтому от нее нет сильного теплового излучения. Электроны при такой температуре легко «прилипают» к атомам, образуя отрицательные ионы, и все свойства «молниевого вещества» определяются кластерами.

При этом плотность вещества молнии оказывается примерно равной плотности воздуха при нормальных атмосферных условиях, то есть молния может быть несколько тяжелее воздуха и опускаться вниз, может быть несколько легче воздуха и подниматься и, наконец, может находиться во взвешенном состоянии, если плотности «молниевого вещества» и воздуха равны.

Все эти случаи наблюдались в природе. Кстати, то, что молния опускается вниз, еще не значит, что она упадет на землю — прогрев под собой воздух, она может создать воздушную подушку, удерживающую ее на весу. Очевидно, поэтому парение — самый распространенный вид движения шаровой молнии.

Кластеры взаимодействуют между собой значительно сильнее, чем атомы нейтрального газа. Оценки показали, что возникающего поверхностного натяжения вполне достаточно, чтобы придать молнии шаровую форму.

Допустимое отклонение плотности быстро убывает с увеличением радиуса молнии. Так как вероятность точного совпадения плотности воздуха и вещества молнии мала, крупные молнии — больше метра в диаметре — встречаются крайне редко, маленькие же должны появляться чаще.

Но молнии размером меньше трех сантиметров тоже практически не наблюдаются. Почему? Для ответа на этот вопрос необходимо рассмотреть энергетический баланс шаровой молнии, выяснить, где в ней хранится энергия, сколько ее и на что она расходуется. Энергия шаровой молнии заключена, естественно, в кластерах. При рекомбинации отрицательного и положительного кластеров выделяется энергия от 2 до 10 электрон-вольт.

Обычно плазма теряет довольно много энергии в виде электромагнитного излучения — его появление связано с тем, что легкие электроны, двигаясь в поле ионов, приобретают очень большие ускорения.

Вещество молнии состоит из тяжелых частиц, ускорить их не так-то просто, поэтому электромагнитное поле излучается слабо и большая часть энергии выводится из молнии тепловым потоком с ее поверхности.

Тепловой поток пропорционален площади поверхности шаровой молнии, а запас энергии пропорционален объему. Поэтому маленькие молнии быстро теряют свои сравнительно небольшие запасы энергии, и, хотя они появляются гораздо чаще крупных, заметить их труднее: они слишком мало живут.

Так, молния диаметром в 1 см остывает за 0,25 секунд, а диаметром 20 см за 100 секунд. Эта последняя цифра примерно совпадает с максимальным наблюдаемым временем жизни шаровой молнии, но существенно превосходит среднее время ее жизни, равное нескольким секундам.

Наиболее реальный механизм «умирания» крупной молнии связан с потерей устойчивости ее границы. При рекомбинации пары кластеров образуется десяток легких частиц, что приводит при той же температуре к уменьшению плотности «грозового вещества» и нарушению условий существования молнии задолго до того, как исчерпается ее энергия.

Начинает развиваться поверхностная неустойчивость, молния выбрасывает куски своего вещества и как бы прыгает из стороны в сторону. Выброшенные куски почти мгновенно остывают, подобно маленьким молниям, и раздробленная большая молния заканчивает свое существование.

Но возможен и другой механизм ее распада. Если в силу каких-либо причин ухудшается отвод тепла, то молния начнет разогреваться. При этом увеличится число кластеров с малым количеством молекул воды в оболочке, они будут быстрее рекомбинировать, произойдет дальнейшее повышение температуры. В итоге — взрыв.

Почему светится шаровая молния

Какие же факты должны связать ученые единой теорией, чтобы объяснить природу шаровой молнии?

" data-medium-file="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?fit=300%2C212&ssl=1" data-large-file="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?fit=500%2C354&ssl=1" class="alignright size-medium wp-image-603" style="margin: 10px;" title="Природа шаровой молнии" src="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?resize=300%2C212&ssl=1" alt="Природа шаровой молнии" width="300" height="212" srcset="https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?resize=300%2C212&ssl=1 300w, https://i1.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/dld.jpg?w=500&ssl=1 500w" sizes="(max-width: 300px) 100vw, 300px" data-recalc-dims="1">Существует шаровая молния от нескольких секунд до минуты; может проникать в помещения через маленькие отверстия, восстанавливая затем свою форму

" data-medium-file="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?fit=300%2C224&ssl=1" data-large-file="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?fit=350%2C262&ssl=1" class="alignright size-medium wp-image-605 jetpack-lazy-image" style="margin: 10px;" title="Шаровая молния фото" src="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&ssl=1" alt="Шаровая молния фото" width="300" height="224" data-recalc-dims="1" data-lazy-srcset="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&ssl=1 300w, https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?w=350&ssl=1 350w" data-lazy-sizes="(max-width: 300px) 100vw, 300px" data-lazy-src="https://i2.wp.com/xroniki-nauki.ru/wp-content/uploads/2011/08/rygjjrxugkmg.jpg?resize=300%2C224&is-pending-load=1#038;ssl=1" srcset=""> Остановимся еще на одной загадке шаровой молнии: если ее температура невелика (в кластерной теории считается, что температура шаровой молнии около 1000°К), то почему же тогда она светится? Оказывается, и это можно объяснить.

При рекомбинации кластеров выделившееся тепло быстро распределяется между более холодными молекулами.

Но на какой-то момент температура «объемчика» вблизи рекомбинировавших частиц может превышать среднюю температуру вещества молнии более чем в 10 раз.

Вот этот «объемчик» и светится как газ, нагретый до 10 000-15 000 градусов. Таких «горячих точек» сравнительно мало, поэтому вещество шаровой молнии остается полупрозрачным.

Ясно, что с точки зрения кластерной теории шаровые молнии могут появляться часто. Для образования молнии диаметром в 20 см нужно всего несколько граммов воды, а ее во время грозы обычно предостаточно. Вода чаще всего распылена в воздухе, ну а в крайнем случае шаровая молния может «найти» ее для себя на поверхности земли.

Кстати, так как электроны очень подвижны, то при образовании молнии часть их может «потеряться», шаровая молния в целом окажется заряженной (положительно), и ее движение будет определяться распределением электрического поля.

Остаточный электрический заряд позволяет объяснить такие интересные свойства шаровой молнии, как ее способность двигаться против ветра, притягиваться к предметам и висеть над высокими местами.

Цвет шаровой молнии определяется не только энергией сольватных оболочек и температурой горячих «объемчиков», но и химическим составом ее вещества. Известно, что если при попадании линейной молнии в медные провода появляется шаровая молния, то она часто бывает окрашена в голубой или зеленый цвет — обычные «цвета» ионов меди.

Вполне возможно, что и возбужденные атомы металлов тоже могут образовывать кластеры. Появлением таких «металлических» кластеров можно было бы объяснить некоторые эксперименты с электрическими разрядами в результате которых появлялись светящиеся шары, похожие на шаровую молнию.

Из сказанного может создаться впечатление, что благодаря кластерной теории проблема шаровой молнии получила, наконец, свое окончательное разрешение. Но это не совсем так.

Несмотря на то что за кластерной теорией стоят вычисления, гидродинамические расчеты устойчивости, с её помощью удалось, по-видимому, понять многие свойства шаровых молний, было бы ошибкой сказать, что загадки шаровой молнии больше не существует.

В подтверждение один лишь штрих, одна деталь. В своем рассказе В. К. Арсеньев упоминает о тоненьком хвостике, протянувшемся от шаровой молнии. Пока мы не можем объяснить ни причину его возникновения, ни даже что это такое…

Как уже говорилось, в литературе описано около тысячи достоверных наблюдений шаровой молнии. Это конечно, не очень много. Очевидно, что каждое новое наблюдение при тщательном его анализе позволяет получить интересную информацию о свойствах шаровой молнии, помогает в проверке справедливости той или иной теории.

Поэтому очень важно, чтобы как можно больше наблюдений стало достоянием исследователей и сами наблюдатели активно участвовали в изучении шаровой молнии. Именно на это направлен эксперимент «Шаровая молния», о котором будет рассказано дальше.

Новое на сайте

>

Самое популярное