Домой Виноград Белки способные стабилизировать конформацию других белков. Почему белковая цепь находит единственно верную укладку среди многих вариантов. Некоторые закономерности фолдинга белка

Белки способные стабилизировать конформацию других белков. Почему белковая цепь находит единственно верную укладку среди многих вариантов. Некоторые закономерности фолдинга белка

После того как пептидная цепь отходит от рибосомы она должна принять свою биологически активную форму, т.е. свернуться определенным образом, связать какие-либо группы и т.п. Реакции превращения полипептида в активный белок называются процессинг или посттрансляционная модификация белков .

Посттрансляционная модификация белков

К основным реакциям процессинга относятся:

1. Удаление с N-конца метионина или даже нескольких аминокислот специфичными аминопептидазами.

2. Образование дисульфидных мостиков между остатками цистеина.

3. Частичный протеолиз – удаление части пептидной цепи, как в случае с инсулином или протеолитическими ферментами ЖКТ.

4. Присоединение химической группы к аминокислотным остаткам белковой цепи:

  • фосфорной кислоты – например, фосфорилирование по аминокислотам Серину, Треонину, Тирозину используется при регуляции активности ферментов или для связывания ионов кальция,
  • карбоксильной группы – например, при участии витамина К происходит γ-карбоксилирование глутамата в составе протромбина, проконвертина, фактора Стюарта, Кристмаса, что позволяет связывать ионы кальция при инициации свертывания крови,
  • метильной группы – например, метилирование аргинина и лизина в составе гистонов используется для регуляции активности генома,
  • гидроксильной группы – например, присоединение ОН-группы к лизину и пролину с образованием гидроксипролина и гидроксилизина необходимо для созревания молекул коллагена при участии витамина С ,
  • йода – например, в тиреоглобулине присоединение йода необходимо для образования предшественников тиреоидных гормонов йодтиронинов,

5. Включение простетической группы:

  • углеводных остатков – например, гликирование требуется при синтезе гликопротеинов.
  • гема – например, при синтезе гемоглобина, миоглобина, цитохромов, каталазы,
  • витаминных коферментов – биотина, ФАД, пиридоксальфосфата и т.п.

6. Объединение протомеров в единый олигомерный белок, например, гемоглобин, коллаген, лактатдегидрогеназа, креатинкиназа.

Фолдинг белков

Фолдинг – это процесс укладки вытянутой полипептидной цепи в правильную трехмерную пространственную структуру. Для обеспечения фолдинга используется группа вспомогательных белков под названием шапероны (chaperon , франц. – спутник, нянька). Они предотвращают взаимодействие новосинтезированных белков друг с другом, изолируют гидрофобные участки белков от цитоплазмы и "убирают" их внутрь молекулы, правильно располагают белковые домены.

фолдинг и тд "фолдинг белков - Процесс сворачивания полипептидной цепи в правильную пространственную структуру. Индивидуальные белки, продукты одного гена, имеют идентичную аминокислотную последовательность и приобретают в одинаковых условиях клетки одинаковую конформацию и функцию. для многих белков, имеющих сложную пространственную структуру, фолдинг протекает при участии "шаперонов"

Ренативация рибонуклеазы. процесс денатурации белков может быть обратимым. Это открытие было сделано при изучении денатурации рибонуклеазы - расщепляющего связи между нуклеотидами в РНК. Рибонуклеаза - глобулярный белок, содержащий одну полипептидную цепь, состоящую из 124 аминокислотных остатков. Его конформацию стабилизируют 4 дисульфидные и множество слабых связей.

Обработка рибонуклеазы меркаптоэтанолом приводит к разрыву дисульфидных связей и восстановлению SH-групп цистеиновых остатков, что нарушает компактную структуру белка. Добавление мочевины или гуанидинхлорвдаиприводит к образованию случайным образом свёрнутых полипептидных цепей рибонуклеазы, лишённых. денатурации фермента. если путём диализа очистить рибонуклеазу от денатурирующих агентов и меркаптоэтанола, ферментативная активность белка постепенно восстанавливается. Этот процесс называется ренатурацией

Возможность ренативации доказана и для других белков. необходимое условие для восстановления его конформации - целостность первичной структуры белка.

белки, способные связываться с белками, находящимися в неустойчивом, склонном к агрегации состоянии,способные стабилизировать их конформацию, обеспечивая фолдинг белков получили название "шапероны".

Роль шаперонов в фолдинге белков

в период синтеза белка на рибосоме защиту реакционно-способных радикалов осуществляют Ш-70.Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию осуществляется в пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомернoго комплекса, состоящего из 14 субъединиц. Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60.

Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий

Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий, относят к белкам теплового шока.При действии (высокая температура, гипоксия, инфекция, УФО, изменение рН среды, изменение молярности среды, действие токсичных химических веществ, тяжёлых металлов) в клетках усиливается синтез БТШ. они могут препятствовать их полной денатурации и восстанавливать нативную конформацию белков.

Болезни, связанные с нарушением

фолдинга белков Болезнь Альцхаймера - амилоидоз нервной системы, поражающий лиц преклонного возраста и характеризующийся прогрессирующим расстройством памяти и полной деградацией личности. В ткани мозга откладывается амилоид - белок, образующий нерастворимые фибриллы, нарушающие структуру и функции нервных клеток.

Прионовые белки особый класс белков, обладающих инфекционными свойствами. Попадая в организм человека, они способны вызывать тяжёлые неизлечимые заболевания ЦНС, называемые прионовыми болезнями. Прионовый белок кодируется тем же геном, что и его нормальный аналог, т.е. они имеют идентичную первичную структуру. Однако два белка обладают различной конформацией: прионовый белок характеризуется высоким содержанием?-слоёв, в то время как нормальный белок имеет много спиральных участков. прионовый белок обладает устойчивостью к действию протеаз.

Потрясающую игру разработали учёные из Вашингтонского университета (США). Программа под названием Fold.it представляет собой модель сворачивания белков в трёхмерные конструкции. Геймер должен попытаться сделать это наиболее удачным образом. В программу будут загружаться реальные данные о настоящих, только что изобретённых протеинах, которые непонятно как сворачиваются. Результаты отправятся через интернет в центр обработки, где их проверят на суперкомпьютере (это будет с осени, а пока что в программу заложены уже решённые загадки, так что сейчас она выполняет роль тренажёра).

В самом деле, все геймеры нашего мира тратят миллиарды человеко-часов на бесполезные для человечества игры типа WoW, Counter-Strike или пасьянса «Косынка». В то же время они могли бы использовать интеллект более эффективно: например, сворачивая белки на экране своего монитора. Это ведь тоже по-своему интересно.

Один из разработчиков игры, профессор биохимии Дэвид Бейкер, искренне верит, что где-то в мире живут таланты, у которых есть врождённая способность просчитывать в уме 3D-модели протеинов. Какой-нибудь 12-летний мальчик из Индонезии увидит игру и сможет решить задачи, которые не под силу даже суперкомпьютеру. Кто знает, может, такие люди действительно есть?

Каждый протеин (в человеческом теле их более 100 000 видов) представляет собой длинную молекулу. Предсказать, в какую замысловатую форму свернётся эта молекула в тех или иных условиях (и способна ли она вообще свернуться в какую-либо устойчивую форму) - задача высшей степени сложности. Компьютерное моделирование представляет собой ресурсоёмкий процесс, но в то же время критически важный в фармацевтике. Ведь не зная формы белка невозможно смоделировать его свойства. Если же эти свойства являются полезными, то протеины можно синтезировать и на их базе сделать новые эффективные препараты, например, для лечения рака или СПИДа (Нобелевская премия гарантирована в обоих случаях).

В настоящее время над обсчитыванием модели каждой новой молекулы белка трудятся сотни тысяч компьютеров в распределённой вычислительной сети , однако ученые из Вашингтонского университета предлагают другой способ: не тупой перебор всех вариантов, а интеллектуальный мозговой штурм через компьютерную игру. Количество вариантов сокращается на порядок, а суперкомпьютер гораздо быстрее найдёт правильные параметры фолдинга.

В трёхмерную «развлекалку» Fold.it могут играть все: даже дети и секретарши, которые понятия не имеют о молекулярной биологии. Разработчики постарались сделать такую игру, чтобы она была интересна каждому. А результат игры вполне может стать основой для Нобелевской премии и спасти жизни тысяч людей.

Программа выпущена в версиях под Win и Mac. Дистрибутив размером 53 МБ можно

Каждая клетка нашего тела является фабрикой по производству белков. Часть из них производится для внутреннего пользования, для поддержания жизни клетки, а другая часть «идет на экспорт». Все свойства белковых молекул (в том числе способность изумительно точно катализировать превращения других молекул в клетке) зависят от пространственной структуры белка, причем структура каждого белка уникальна.

Пространственная структура образуется уникальной укладкой белковой цепи, состоящей из разных аминокислотных остатков (бусинок разных цветов — рис. 1). Последовательность аминокислот в цепи белка определяется его геномом и синтезируется рибосомой, после чего пространственная структура цепи формируется «сама собой» в ходе сворачивания белковой цепи, которая выходит из рибосомы еще практически неупорядоченной.

Образование уникальной белковой глобулы из неупорядоченной цепи (как и ее разворачивание) требует преодоления «барьера», имеющего вид нестабильной «полусвернутой» глобулы (рис.1)

Алексей Финкельштейн

Сворачивают эту цепь взаимодействия ее аминокислот, причем в одну и ту же структуру — как в организме, так и в пробирке. Разнообразие возможных укладок одной и той же цепи невообразимо велико. Но у заданной последовательности аминокислот есть, как правило, только одна стабильная («правильная») структура, которая и придает белку его уникальные свойства. Стабильна же она потому, что именно она обладает минимальной энергией.

Тот же принцип действует при образовании кристаллов: вещество приобретает ту структуру, энергия связей в которой минимальна.

Что общего у белка и Вселенной

Здесь перед учеными возник вопрос: как белковая цепь может спонтанно «найти» свою единственную стабильную структуру, если перебор колоссального числа всех вариантов (порядка 10 100 для цепи из 100 аминокислотных остатков) занял бы времени больше, чем время жизни Вселенной. Этот «парадокс Левинталя», сформулированный полвека назад, был решен только теперь. Для его решения пришлось привлечь методы теоретической физики.

Кристаллы различных белков, выращенные на космической станции «Мир» и во время полетов шаттлов NASA

NASA Marshall Space Flight Center

Ученые из Института белка Российской академии наук (ИБ ) создали теорию скоростей образования пространственных структур молекул белка. Результаты работы были недавно опубликованы в журналах Atlas of Science , Chem Phys Chem и «Биофизика» . Работа поддержана грантом Российского научного фонда (РНФ).

«Способность белков спонтанно формировать свои пространственные структуры за считаные секунды или минуты — давняя загадка молекулярной биологии.

В нашей работе представлена физическая теория, позволяющая оценить скорость этого процесса в зависимости от величины белков и сложности их устройства», — начинает рассказ о своей работе член-корреспондент РАН, доктор физико-математических наук, главный научный сотрудник Института белка РАН, руководитель гранта РНФ Алексей Финкельштейн.

«Давно известно, что белковая цепь приобретает свою уникальную структуру при одних условиях среды, а при других (например, при подкислении или подогреве раствора) эта структура разворачивается. На стыке этих условий уникальная структура белка находится в динамическом равновесии с развернутой формой его цепи, — продолжает он. — Процессы сворачивания и разворачивания там сосуществуют, их физика наиболее прозрачна. Поэтому мы сосредоточились именно на таких равновесных и квазиравновесных условиях — в отличие от других исследователей, которые как будто резонно (но ошибочно, как оказалось) полагали, что путь к тайне сворачивания белка надо искать там, где оно протекает наиболее быстро».

Развернуть белок — хорошее начало, но не выход

«Первый подход к проблеме Левинталя был разработан нами давно, — рассказывает Алексей Финкельштейн, — и заключался в следующем: так как теоретически проследить путь сворачивания белка очень трудно, нужно изучать процесс его разворачивания. Звучит парадоксально, но в физике существует принцип «детального равновесия», который гласит: любой процесс в равновесной системе протекает по тому же пути и с той же скоростью, что и обратный ему. И так как в динамическом равновесии скорости сворачивания и разворачивания одинаковы, мы рассмотрели более простой процесс разворачивания белка (ведь разломать проще, чем сделать) и охарактеризовали тот «барьер» (см. картинку 1), нестабильность которого определяет скорость процесса».

Следуя принципу детального равновесия, ученые из Института белка РАН оценили и «сверху», и «снизу» скорость сворачивания белков — как больших, так и маленьких, как с простой, так и со сложной укладкой цепи. Небольшие и просто устроенные белки сворачиваются быстрее (оценка скорости «сверху»), а большие и/или сложно устроенные — медленнее (оценка «снизу»). Значения всех остальных возможных скоростей сворачивания заключены между ними.

Однако не все биологи были удовлетворены полученным решением, так как, во-первых, их интересовал путь сворачивания (а не разворачивания) белка, а во-вторых, физический «принцип детального равновесия» был, по-видимому, им плохо понятен.

И работы продолжались: на этот раз учеными из ИБ РАН были произведены расчеты сложности сворачивания белка. Давно известно, что взаимодействия в белках связаны в основном с так называемыми вторичными структурами. Вторичные структуры — это стандартные, довольно крупные локальные «строительные блоки» белковой структуры, определяемые в основном локальными аминокислотными последовательностями в них. Количество возможных вариантов укладки таких блоков в структуру свернутого белка можно подсчитать, что и было сделано учеными из ИБ РАН. Число таких вариантов огромно — порядка 10 10 (но далеко не 10 100 !) для цепи из порядка 100 аминокислот, и белковая цепь может, согласно теоретическим оценкам, «просканировать» их за минуты или — для более длинных цепей — за часы. Так была получена самая верхняя оценка времени сворачивания белка.

Регулярная вторичная структура - альфа-спираль

WillowW

Результаты, полученные двумя способами (т.е. при анализе и разворачивания, и сворачивания белка), сходятся и подтверждают друг друга.

«Наша работа имеет фундаментальное значение для конструирования в будущем новых белков для нужд фармакологии, биоинженерии, нанотехнологии, — заключает Алексей Финкельштейн.

— Вопросы скорости сворачивания белков актуальны, когда речь идет о предсказании структуры белка по его аминокислотной последовательности, а особенно — о дизайне новых, не встречающихся в природе белков».

«Что изменилось после получения гранта РНФ? Появилась возможность закупить новое современное оборудование и реактивы для работы (ведь наша лаборатория в основном экспериментальная, хотя я здесь рассказал только о нашей теоретической работе). Но главное: грант РНФ позволил специалистам заниматься наукой, а не искать подработку на стороне или в дальних краях», — говорит Алексей Финкельштейн.

Новое на сайте

>

Самое популярное