Домой Ягоды Какой элемент необходим для роста растений. О значении микроэлементов или чего не хватает растению? Самый простой способ получить красивую лужайку перед домом

Какой элемент необходим для роста растений. О значении микроэлементов или чего не хватает растению? Самый простой способ получить красивую лужайку перед домом

Растения страдают не только от специфических вредителей и возбудителей болезней, но и от нарушения условий нормальной жизнедеятельности. Развиваются неинфекционные болезни при недостатке или избытке тех или иных элементов питания, при недостатке или избытке влаги, под действием механических повреждений, повреждений морозом, солнцем, при неправильной обработке пестицидами.

Причиной неинфекционного заболевания служат абиотические факторы окружающей среды, которые нарушают те или иные физиологические, биохимические функции растений, вызывающие патологический процесс.
Признаки болезней на одинаковых растениях проявляются одновременно, массово в пределах всего поля, сада, теплицы и т. д.
Болезни не передаются от растения к растению, их развитие можно приостановить, исключив действие неблагоприятного фактора.

Для нормальной жизнедеятельности растительного организма требуется лишь небольшая группа элементов. Питательными называются вещества, необходимые для жизни растений. Элемент считается необходимым , если его отсутствие не позволяет растению завершить свой жизненный цикл; недостаток элемента вызывает специфические нарушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредственно участвует в процессах превращения веществ и энергии, а не действует на растение косвенно.

Установлено, что к необходимым для высших растений элементам (кроме 45% углерода, 6,5% водорода, 42% кислорода, усвояемых в процессе воздушного питания) относятся следующие:

Макроэлементы , содержание которых колеблется от десятков до сотых долей процента: N, P, S, K, Ca, Mg, Fe;

Микроэлементы , содержание которых колеблется от тысячных до стотысячных долей процента: Cu, Mn, Zn, Mo, B.

Потребность растений в этих элементах зависит от биологических свойств растений и почвенно-климатических условий. Значение каждого из элементов питания строго специфично, поэтому ни один из них не может быть заменён другим.

Недостаток того или иного элемента питания может вызвать серьезные нарушения в развитии растений, которые проявляются в виде характерных симптомов. Симптомы могут быть довольно четкими, специфичными, но могут быть и нехарактерными. Внешне это выражается не только в изменении общего вида растения (недоразвитость, карликовость и т. д.), но и в проявлении характерных для данного вида голодания симптомов — некрозов на листьях, изменении окраски определенных органов и т. д.

Голодание растений не всегда бывает вызвано отсутствием или недостаточным содержанием того или иного элемента в почве.Доступность элементов питания зависит от их формы, почвенных условий (кислотности, влажности, буферных свойств), состава микрофлоры, что необходимо учитывать при диагностике и проведении защитных мероприятий.

Внешние признаки недостатка отдельных элементов питания у разных растений бывают различными. Поэтому по внешним признакам можно судить о недостатке в почве того или иного элемента питания и о потребности растений в удобрениях.
Симптомы недостаточности минерального питания растений можно разделить на две большие группы:

I. Первую группу составляют главным образом симптомы, проявляющиеся на старых листьях растения . К ним относятся симптомы недостатка азота, фосфора, калия и магния . Очевидно, при нехватке указанных элементов они перемещаются в растении из более старых частей в молодые растущие части, на которых не развиваются признаки голодания.

II. Вторую группу составляют симптомы, проявляющиеся на точках роста и молодых листочках . Симптомы этой группы характерны для недостатка кальция, бора, серы, железа, меди и марганца . Эти элементы, по-видимому, не способны перемещаться из одной части растения в другую. Следовательно, если в воде и грунте нет достаточного количества перечисленных элементов, то молодые растущие части не получают необходимого питания, в результате чего они заболевают и погибают.

Азот входит в состав белков, хлорофилла, алкалоидов, фосфатидов и других органических соединений. Это наиболее важный питательный элемент для всех растений .

Признаки недостатка азота проявляются весьма отчётливо на разных стадиях развития . Общими и основными признаками недостатка азота у растений являются: угнетённый рост, короткие и тонкие побеги и стебли, мелкие соцветия, слабая облиственность растений, слабое ветвление и слабое кущение, мелкие, узкие листья, окраска их бледно-зелёная, хлоротичная.

***** Но изменение окраски листьев может быть вызвано и другими причинами, кроме недостатка азота. Пожелтение нижних листьев бывает при недостатке влаги в почве, а также при естественном старении и отмирании листьев.

При недостатке азота посветление и пожелтение окраски начинается с жилок и прилегающей к ним части листовой пластинки; части листа, удаленные от жилок, могут сохранять еще светло-зелёную окраску. На листе, пожелтевшем от недостатка азота, как правило, не бывает зелёных жилок.

*****При естественном старении листьев пожелтение их начинается с части листовой пластинки, расположенной между жилками, а жилки и ткани около них сохраняют еще зелёную окраску.

При недостатке азота посветление окраски начинается с более старых, нижних листьев, которые приобретают жёлтый, оранжевый и красный оттенки. Эта окраска переходит далее и на более молодые листья, может проявляться и на черешках листьев. Листья при недостатке азота опадают преждевременно, созревание растений ускоряется. Недостаток азота снижает водоудерживающую способность растительных тканей. Поэтому низкий уровень азотного питания не только снижает урожай, но и уменьшает эффективность использования воды посевом. Основной источник азота в почве – перегной (гумус). Содержание азота в гумусе составляет около 5%.

При недостатке азота у картофеля изменение окраски начинается с верхушек и краёв долей листа, постепенно все листья приобретают более светлую окраску по сравнению с обычной; со временем окраска листьев может измениться до бледно-жёлтой. В исключительных случаях края нижних листьев теряют хлорофилл и закручиваются, иногда подвергаются «ожогу». Характерны задержка роста и опадение листьев.

Фосфор входит a состав нуклеиновых кислот, нуклеопротеидов, фосфолипидов, ферментов, витаминов. Фосфор повышает холодостойкость растений, ускоряет их развитие и созревание, способствует улучшению развития корней, их глубокому проникновению в почву, улучшает снабжение растений питательными веществами и влагой.

Недостаток фосфора по внешнему виду растений определить труднее, чем недостаток азота. При недостатке фосфора наблюдается ряд таких же признаков, как и при недостатке азота,— угнетённый рост (особенно у молодых растений), короткие и тонкие побеги, мелкие, преждевременно опадающие листья. Однако имеются и существенные различия — при недостатке фосфора окраска листьев тёмно-зелёная, голубоватая, тусклая. При сильном недостатке фосфора в окраске листьев, черешков листьев и колосьев появляются пурпурные , а у некоторых растений—фиолетовые оттенки . При отмирании тканей листа появляются тёмные, иногда чёрные пятна.
Засыхающие листья имеют тёмный, почти чёрный цвет, а при недостатке азота — светлый . Признаки недостатка фосфора появляются сначала на более старых, нижних листьях. Характерным признаком недостатка фосфора является также задержка цветения и созревания. Главный источник фосфорного питания – минеральные соединения фосфора в почве.

При недостатке фосфора бобовые культуры имеют тёмно-зелёную окраску. Черешки и листовые пластинки загнуты кверху. Растения низкорослые с тонкими красноватыми стеблями.

Калий не обнаружен в составе ни одного органического соединения, а образует с ними комплексы. Тем не менее элемент играет в жизни растений существенную роль. Он улучшает обмен веществ, способствует увеличению устойчивости растений к засухе. При достаточном содержании калия в листьях образуется много сахаров, что повышает осмотическое давление клеточного сока и увеличивает устойчивость растений к лёгким заморозкам.

Симптомы дефицита калия начинают проявляться с побледнения листьев. Тусклая голубовато-зелёная окраска листьев (до хлоротичной). Края листьев опускаются вниз . По краям листа появляется ободок засыхающей ткани - краевой "ожог" . При сильном калийном голодании побурение охватывает почти всю пластинку листа. Неравномерный рост листовых пластинок, листья сморщенные. Растение становится низкорослым с короткими междоузлиями, побеги вырастают тонкими.

Признаки калийного голодания могут ярко проявляться на сильнокислых почвах и там, куда вносили избыточные дозы кальция и магния. Недостаток калия может сопровождаться деформацией и курчавостью листьев . Многолетники и плодовые растения на почвах теряют свою зимостойкость. Незначительный дефицит калия приводит к закладке на деревьях небывало большого количества мелких плодовых почек, дерево все усыпано цветами, но плоды из них развиваются очень мелкие.

При нехватке калия у капусты белокочанной старые листья бронзовеют, а затем буреют. У лука старые листья на кончиках желтеют и подсыхают. У моркови нижние листья бледнеют и закручиваются.

Несмотря на малое содержание железа в растениях, физиологическое значение его очень велико. Железо входит в состав ферментов, участвующих в дыхании и восстановлении нитратов.

Дефицит железа проявляется в виде хлороза листьев, главным образом на многолетних растениях, в виде нарушения фотосинтеза, замедления роста и развития. Признаки недостатка железа появляются, прежде всего, на молодых листьях. Наиболее распространён на карбонатных почвах, где железо находится в недоступной для растений форме.


Бор концентрируется в молодых листьях и генеративных органах растений. Он активизирует процессы окисления и фотосинтеза.

Недостаток бора вызывает опробковение . Опробковение может быть как внутренним, так и наружным. При внутреннем опробковении в плодах образуются сухие, твердые коричневые участки отмершей ткани. Такие плоды значительно мельче здоровых, большинство их преждевременно опадает. Наружное опробковение развивается обычно в первой по­ловине вегетации, до того как плод достигнет половины своей нормальной величины, и появляется чаще всего вблизи ча­шечки. Вначале поражённые участки имеют водянистую кон­систенцию, затем становятся светло-коричневыми, сморщива­ются, на них выделяются янтарно-жёлтые капельки, которые вскоре затвердевают и отваливаются. В связи с тем, что рост ткани на этих участках приостанавливается, плоды получают­я мелкими, деформированными, с трещинами. На вегетативных органах недостаток бора проявляется ре­же , чем на плодах, и обнаруживается обычно лишь при очень большом дефиците .

Недостаток бора растения испытывают на карбонатных почвах, а также при внесении в высоких дозах извести.

Особенно чувствительны к недостатку этого элемента свёкла, лён, подсолнечник, цветная капуста.


Марганец содержится в растениях в очень малых количествах, однако рост, развитие и формирование урожая сельскохозяйственных растений без него невозможны. Марганец принимает участие в фотосинтезе, входит в состав многих рибосом и хлоропластов, а также ферментов.

Недостаток марганца чаще бывает на карбонатных, на торфянистых, пойменных и лугово-черноземных почвах, а также при нехватке влаги. При недостатке марганца наблюдается хлороз между жилками листа - на верхних листьях между жилками появляется желтовато-зелёная или желтовато-серая окраска, жилки остаются зелёными, что придает листу пёстрый вид. В дальнейшем участки хлорозных тканей отмирают, при этом появляются пятна различной формы и окраски. Признаки недостатка появляются прежде всего на молодых листьях и в первую очередь у основания листьев, а не на кончиках, как при недостатке калия.
Медь входит в состав некоторых ферментов, молекул белка. В оптимальных концентрациях медь способствует образованию и сохранению хлорофилла в листьях.


Недостаток меди чаще наблюдается на торфяно-болотных, а также на карбонатных и песчаных почвах. Растения различаются по чувствительности к недостатку меди.

Устойчив к недостатку меди картофель. Из зерновых наиболее чувствительны к недостатку меди пшеница, затем овес, ячмень и рожь. Недостаток меди у злаковых вызывает так называемую болезнь обработки: наблюдается остановка роста, хлороз и побеление кончиков молодых листьев (у пшеницы и ячменя), потеря тургора у молодых листьев и стеблей, листья опускаются, увядают. Растения сильно кустятся, стеблевание задерживается, образование семян подавлено (пустозёрность). У пшеницы при недостатке меди листья, охватывающие колос, слегка хлоротичные и искривлены, иногда закручиваются в спираль. Головка колоса также хлоротична и искривлена, образование зерна слабое. При сильном недостатке меди не образуется колосьев или метёлок и семян.


Кальций содержится во всех растительных клетках. Он усиливает обмен веществ в растениях, влияет на активность ферментов.


Недостаток кальция наблюдается на песчаных и супесчаных кислых почвах, особенно при внесении высоких доз калийных удобрений, а также на солонцах. Признаки недостатка появляются прежде всего на молодых листьях. Листья бывают хлоротичные, искривлённые, и края их закручиваются кверху . Края листьев неправильной формы, на них может обнаруживаться опалённость бурого цвета. Наблюдается повреждение и отмирание верхушечных почек и корешков, сильная разветвлённость корней.

Магнием бедны песчаные и супесчаные дерново-подзолистые почвы.

При недостатке магния наблюдается характерная форма хлороза — у краёв листа и между жилками зелёная окраска изменяется на жёлтую, красную, фиолетовую. Между жилками в дальнейшем появляются пятна различного цвета вследствие отмирания тканей. При этом крупные жилки и прилегающие к ним участки листа остаются зелёными. Кончики листьев и края загибаются, в результате чего листья куполообразно выгибаются , края листьев морщинятся и постепенно отмирают. Признаки недостатка появляются и распространяются от нижних листьев к верхним. Цинк входит в состав ферментов и усиливает их активность, участвует в белковом, углеводном, фосфорном обмене веществ (Шкаликов В. А., 2003).

Недостаток цинка наблюдается на кислых песчаных, карбонатных и болотных почвах. При недостатке цинка наблюдаются пожелтение и пятнистость листьев, иногда захватывающие и жилки листа, появляются бронзовые оттенки в окраске листьев, розетчатость и мелколистность; междоузлия образуются короткие.

Симптомы недостатка цинка развиваются на всём растении или локализованы на более старых нижних листьях. Вначале на листьях нижних и средних ярусов, а потом и на всех листьях растения, появляются разбросанные пятна серо-бурого и бронзового цвета . Ткань таких участков как бы проваливается и затем отмирает. Молодые листья ненормально мелки и покрыты жёлтыми крапинками или же равномерно хлоротичны, принимают слегка вертикальное положение, края листьев могут закручиваться кверху. В исключительных случаях междоузлия у голодающих растений короткие, а листья маленькие и толстые. Пятна появляются также на стержнях листьев и на стеблях.

Молибден входит в состав ферментов, участвует в окислительно-восстановительных процессах, синтезе витаминов и хлорофилла, способствует синтезу и обмену белковых веществ в растениях.

Симптомы недостатка молибдена проявляются вначале на старых листьях . Появляется ясно выраженная крапчатость ; жилки листьев остаются светло-зелёными. Вновь развивающиеся листья вначале зелёные, но по мере роста становятся крапчатыми. Участки хлоротичной ткани впоследствии вздуваются, края листьев закручиваются внутрь; вдоль краёв и на верхушках листьев развивается некроз.

Патологическое состояние растений может быть обусловлено также избытком элементов питания . Избыток одних веществ ведёт к накоплению их в растениях и отрицательно сказывается на усвоении других. Кроме того, излишнее количество минеральных солей зачастую бывает токсичным для растений.
Внесение азота выше нормы , особенно при хорошем освещении вызывает сильный вегетативный рост, при котором почти не образуются цветочные почки. Высокие дозы азотных удобрений требуют обеспечения растений в достаточной мере и другими элементами, в частности медью, бором, магнием и железом. Ранней весной и поздней осенью, когда рост лимитируется недостатком света, относительный дефицит элементов, вызываемый большим количеством азота, проявляется слабее. Однако нарушение соотношения азота и калия задерживает вызревание побегов . При недостаточном поливе повышается концентрация водорастворимых солей в почве, что может вызвать отмирание молодых корней.

Избыток азота в почве приводит к полеганию злаков, ухудшению качества зерна, клубней, корнеплодов, фруктов, снижает устойчивость к заболеваниям.

При чрезмерном внесении калийных удобрений у растений образуются укороченные цветоносы ; старые листья быстро желтеют, ухудшается окраска цветов. Если в почве накапливается слишком много калия , затрудняется усвоение магния и кальция. Двухвалентные катионы кальция и магния из закрытого грунта вымывается слабо. Вынос их растениями также значительно меньший, чем калия, поэтому среднее соотношение калия и магния в подкормках должно быть 7,5:1 . Это помогает избегать отрицательного влияния избытка калия при недостатке магния.

Чрезмерные дозы фосфора в почве вызывают преждевременное старение растений . Зафосфачивание отрицательно влияет на доступность железа, цинка и других микроэлементов.
При систематическом поливе растений жёсткой водой в почве накапливается кальций и усиливается относительный дефицит калия и магния. При этом падает доступность микроэлементов - марганца, бора, железа, цинка. Излишек кальция в растениях ускоряет процесс старения и вызывает преждевременное опадение листьев.

Перенасыщение почв магнием усиливает дефицит кальция, калия и железа.


Натрий повышает концентрацию воднорастворимых солей, а также затрудняет поступление в растения кальция, магния и калия.

При недостатке железа снижается обеспеченность растений марганцем, цинком, медью, молибденом, иногда даже фосфором.

Накопление меди в корнях ограничивает поступление железа в растения. Содержание меди в листьях при избытке её в почве возрастает незначительно. Токсичность избыточного количества меди проявляется обычно на почвах с низким содержанием органических веществ. Перенасыщение медью происходит при систематическом применении медных препаратов против болезней и вредителей.


Признаки повышенного содержания цинка - водянистые прозрачные пятна на нижних листьях растений вдоль главной жилки. Пластинка листа с выростами неправильной формы становится неровной; через некоторое время наступает некроз тканей и листья опадают.



Насыщению почвы бором способствуют систематические подкормки свежеразведённой навозной жижей, в 1 л которой содержится до 10 мг бора. При его избытке края нижних листьев приобретают коричневый цвет. В дальнейшем между жилками появляются коричневые пятна и листья опадают.


Вредный избыток марганца встречается на кислых почвах, особенно при внесении физиологически кислых удобрений, а также при избыточном увлажнении.

Особенно чувствительны к избытку марганца сахарная и кормовая свекла, люцерна, клевер и некоторые другие культуры. Избыточное поступление марганца проявляется у этих культур в характерных изменениях на листьях.

При обнаружении первых признаков токсичности марганца необходимо внести известь, лучше доломит или мергель, содержащие магний.

Растения чутко реагируют на значительные изменения температурных условий внешней среды . Резкие отклонения температуры за пределы режима, пригодного для произрастания данного растения, вызывают нарушения в нормальном процессе его жизнедеятельности, ослабляют защитные функции.

Нередко наблюдается повреждение всходов из-за переохлаждения. При температуре около 0 С замедляется их рост, желтеют и деформируются пластинки листьев, дыхательные процессы преобладают над ассимиляционными. Общее ослабление растительного организма при длительном нахождении в неблагоприятных климатических условиях может закончиться его гибелью. Слабо повреждённые растения при улучшении этих условий хорошо восстанавливаются и могут дать нормальный урожай. Степень повреждения низкими температурами и весенними заморозками снижается при соблюдении агротехники и хорошем режиме питания, особенно калием.

Наиболее вредоносно для растений замерзание , так как этот процесс необратим и приводит к нарушению целостности растительной ткани. В результате замерзания в межклеточных пространствах и в самих клетках образуются кристаллы льда. При оттаивании замёрзшей растительной ткани из неё вытекает клеточный сок; ткань сначала становится прозрачной, затем чернеет и высыхает. Чем богаче растения водой, тем сильнее повреждаются они морозом.


В зимний период для древесных пород большую опасность представляет чередование оттаивания и замораживания . После оттепелей, резко сменяющихся сильными морозами, на стволах деревьев появляются морозобойные трещины и отставания коры (отлупы).

Колебания температуры осенью, зимой и особенно ранней весной могут вызывать солнечно-морозные ожоги .
Ожог обычно возникает после сильного нагревания коры солнцем. Наблюдаются такого рода повреждения на наиболее крупных ветвях и стволах с южной или юго-западной стороны.


В зоне повреждения солнечно-морозным ожогом кора ствола и ветвей темнеет, подсыхает и отпадает, а обнажившаяся древесина остаётся незащищённой от неблагоприятных воздействий. Нередко такие ожоги переходят постепенно в раковую опухоль неинфекционной природы - морозобойный рак .

Слишком высокая температура и сухость воздуха у некоторых растений вызывает расстройство деятельности устьичного аппарата и усиление испарения, в результате — у многих видов семена образуются слабыми, недоразвитыми.

Температура почвы также в значительной степени определяет течение многих заболеваний растений.

В холодной почве корни медленнее поглощают воду, при этом симптомы увядания могут наблюдаться даже в условиях нормальной влажности. В результате растения ослабевают и быстрее заселяются патогенами, вызывающими корневые гнили.

Избыток или недостаток влаги также отражается на нормальном развитии: при засухе наблюдается карликовый рост и преждевременное созревание у травянистых растений или сбрасывание листьев у древесных пород, при избытке влаги происходит растрескивание плодов или корнеклубней.




Однако насыщенность почвы влагой не является самым важным фактором . Для обеспечения растения влагой важно то, какое количество влаги могут взять корни из почвы. А это зависит от вида растения и характера почвы .

Из-за недостатка влаги наблюдается карликовый рост травянистых растений.

Для образования хлорофилла растения необходим свет .

При недостаточном освещении они становятся слабыми, вытягиваются. Стебли у таких растений теряют прочность и нередко полегают. Особенно часто это происходит при загущенных посевах культур. Полегание наблюдается также при нарушении условий выращивания.
При недостаточном освещении растения ослабевают, покровные ткани их становятся тонкими и легче заражаются патогенами.


На растения также оказывают негативное влияниемеханические повреждения . К этой группе относятся повреждения растений, обусловленные различными атмосферными явлениями (бурей, градом, молнией, ливнями и др.), а также повреждения, вызванные небрежностью человека (поломка ветвей, травмирование стволов, ушибы плодов и др.).

Под действием сильного ветра , например, пластинки листьев ударяются одна о другую, в результате чего на выпуклых частях их появляются вначале блестящие, как бы отполированные расплывчатые пятна. В дальнейшем поверхность листа в местах пятен становится вогнутой и буреет. Сильный ветер, несущий почвенные и др. твёрдые частицы, повреждает листья, хвою, плоды, побеги, на которых появляются многочисленные мелкие некротические пятна. Сильные порывы ветра, ураганы приводят к ветровалу и бурелому, особенно в насаждениях, поражённых гнилевыми и раковыми болезням растений. Под действием постоянных сильных ветров нарушается рост, изменяются строение древесины и форма деревьев.

Повреждение градом вызывает появление на побегах в местах удара вдавленных с разорванными краями коричневых неправильной формы пятен. На плодах градобоины проявляются в виде вдавленных, вначале коричневых, затем сероватых твёрдых с мелкими трещинами пятен.

Поломка ветвей и стволов может происходить под действием большого скопления снега, ледяной корки в зимний период или в результате повреждения молнией во время грозы.

Механические повреждения ветвей и стволов могут наноситься во время обработки почвы, в садах в период уборки урожая.

Град нередко вызывает массовое опадение цветков, семян, хвои, листьев, повреждение коры деревьев, гибель посевов.

Любые механические повреждения ветвей, стволов, плодов и других частей растения являются «воротами» для проникновения вредных микроорганизмов, находящихся обычно на поверхности органов растения, в воздухе, почве, в ящиках для сбора плодов.

В местах механических повреждений ветвей и стволов происходит, например, заражение черным или настоящим (европейским) раком, бактериальным ожогом, цитоспорозом и другими болезнями.
Порезы и вмятины способствуют проникновению во внутренние ткани плодов грибов и бактерий, вызывающих различные гнили.

Болезни, вызываемые действием проникающих излучений.

Проникающая радиация – это излучения, появляющиеся при радиоактивном распаде, которые проникают через толщи вещества и оказывают вредное влияние на живые организмы. В их числе: рентгеновские, космические, γ-лучи, α- и β-частицы. Действие проникающих излучений зависит от дозы. Для большинства растений летальная доза облучения около 2000-3000 рентген. При продолжительном облучении большими дозами в растениях развивается патологический процесс, называемый лучевой болезнью.

У поражённых лучевой болезнью растений проявляются следующие признаки: 1) задержка в росте или, реже, ускорение роста – следствие изменения синтеза ростовых веществ; 2) хлорозы – в результате повреждения хлоропластов; 3) исчезновение зоны меристемных клеток в корнях, рост корневых волосков осуществляется только растяжением; 4) разного рода деформации. Степень поражения растения при лучевой болезни зависит от типа излучения, его дозы, окружающих условий, а также от морфологических и физиологических особенностей растений.

Доза облучения, получаемая растением, нередко зависит от способности растения накапливать в своих тканях радиоактивные вещества. Чем больше накапливается в растении радионуклидов – тем выше доза облучения. Поэтому наиболее чувствительны к радиоактивному загрязнению хвойные растения, поскольку в их вечнозелёных кронах задерживается много радионуклидов, выпадающих из атмосферы с осадками.

Между неинфекционными и инфекционными болезнями существует прямая зависимость.

Неинфекционные болезни создают условия для распространения и развития инфекционных заболеваний. Ослабленные растения быстро заражаются инфекционными болезнями и погибают.

Борьба с неинфекционными болезнями должна быть направлена прежде всего на устранение причин, их вызывающих, а также на создание максимально благоприятных условий для роста и развития растений: возделывание устойчивых сортов, соблюдение севооборотов и оптимальных сроков посадки, создание высоких агрофонов, применение подкормок.

Водянка:

Причина - физиологическая. Водянка становится наиболее заметной, когда температура воздуха ниже, чем температура почвы, влажность почвы и относительная влажность воздуха высокие. Освещение недостаточное.
В комнатных условиях поражение может наступить, если сначала растения находились в чрезмерно сухих условиях (пересушена почва), а затем обильно поливались.

Часто водянкой поражается плющелистная пеларгония из-за нарушения светового режима, недостаточного питания и высокой влажности почвы.
Кроме того водянке склонны Brassica, Dracaena, Fatshedera, Peperomia и Polyscias, бегонии, ипомея батат, папоротники, пальмы, анютины глазки, клеома, брокколи и цветная капуста.
Могут поражаться: камелия, эвкалипт, гибискус, бирючина, шеффлера и тис.




Симптомы:
Водянка обычно проявляется на нижней поверхности листьев (но может - и на верхней стороне листьев, на стебле). Первым симптомом является появление нескольких или многочисленных водянистых пузырей или "шишек"на нижней стороне нижних или старых листьев на растении. Пузыри приобретают вскоре тёмный коричнево-жёлтый цвет или цвет ржавчины; внешне похожи на грибную болезнь ржавчину или проявление бактериальной инфекции. Сильно поражённые листья часто желтеют и опадают.
Кроме того, поражение водянкой может напоминать поражение паутинными клещами или трипсами. Чтобы исключить повреждение вредителями, необходимо тщательно осмотреть растения: нижние стороны листьев и точки роста.

Нужно обеспечить растение необходимым уровнем освещения, не заливать, вовремя подкармливать удобрениями.
Почву под уличными растениями рекомендуется мульчировать.

Плющелистную пеларгонию рекомендовали раньше каждую третью подкормку "кормить" удобрением с кальцием и нитратом калия; это укрепляет клеточные стенки растений, делает их более устойчивыми к водянке. Однако, исследования в Университете штата Канзас не подтвердили, что дополнительный кальций помогает противостоять водянке.

Испорченные листья уже не способны вернуть прежний вид, поэтому их можно удалить.

На листьях

Самые устойчивые к водянке сорта плющелистной пеларгонии:

Sugar Baby
Double Lilac White
Salmon Queen
Sybil Holmes
Galilee
Vinco
Van Gogh
Flare
Charade
Lambada
Baroch
Bernardo

Наиболее подверженные:

Amethyst (по др. данным - среднеустойчивый сорт)
Yale
Balcon Princess
King of Balcon
Balcon Imperial
Balcon Royale
Beauty of Eastborne

Среднеустойчивые:

Madeline Crozy
Cornell
Spain
Pascal
Rigi
Rouletta
Nicole
Blanche Roche
Nico
Pico





Растения способны поглощать из окружающей среды практически все элементы периодической системы Д.И. Менделеева. Причем многие рассеянные в земной коре элементы накапливаются в растениях в значительных количествах.

Питательными веществами называются вещества, необходимые для жизни организма. Элемент считается необходимым, если его отсутствие не позволяет растению завершить свой жизненный цикл; недостаток элемента вызывает специфические нарушения жизнедеятельности растения, предотвращаемые или устраняемые внесением этого элемента; элемент непосредственно участвует в процессах превращения веществ и энергии, а не действует на растение косвенно.

Необходимость элементов можно установить только при выращивании растений на искусственных питательных средах - в водных и песчаных культурах. Для этого используют дистиллированную воду или химически чистый кварцевый песок, химически чистые соли, химически стойкие сосуды и посуду для приготовления и хранения растворов.

Точнейшими вегетационными опытами установлено, что к необходимым для высших растений элементам (кроме 45 % углерода, 6,5 % водорода и 42 % кислорода, усвояемых в процессе воздушного питания) относятся следующие:

макроэлементы‚ содержание которых колеблется от десятков до сотых долей процента: азот‚ фосфор‚ сера‚ калий‚ кальций‚ магний;

микроэлементы, содержание которых колеблется от тысячных до стотысячных долей процента: железо‚ марганец‚ медь‚ цинк‚ бор‚ молибден.

Имеются еще и такие элементы, которые усиливают рост лишь определенных групп растений. Для роста некоторых растений засоленных почв (галофитов) оказывается полезным натрий. Необходимость натрия проявляется у растений С 4 и САМ. У этих растений показана необходимость натрия для регенерации ФЕП при карбоксилировании. Недостаток натрия у этих растений приводит к хлорозу и некрозам, а также тормозит развитие цветка. В натрии нуждаются и многие С 3 -растения. Показано, что этот элемент улучшает рост растяжением и выполняет осморегулирующую функцию, подобно калию. Благоприятное влияние оказывает натрий на рост сахарной свеклы.

Для роста диатомовых водорослей необходим кремний. Он улучшает рост некоторых злаков, таких, как рис и кукуруза. Кремний повышает устойчивость растений против полегания, так как входит в состав клеточных стенок. Хвощи нуждаются в кремнии для прохождения жизненного цикла. Однако и другие виды аккумулируют достаточно кремния и отвечают при внесении кремния повышением темпов роста и продуктивности. В гидрированной форме SiO 2 кремний накапливается в эндоплазматическом ретикулуме, клеточных стенках, в межклеточных пространствах. Он может также образовывать комплексы с полифенолами и в этой форме вместо лигнина служит для укрепления клеточных стенок.

Показана необходимость ванадия для Scenedesmus (зеленая одноклеточная водоросль), причем это очень специфическая потребность, так как даже для роста хлореллы ванадий не нужен.

Конец работы -

Эта тема принадлежит разделу:

Лекции по физиологии растений

Московский государственный областной университет.. д а климачев.. лекции по физиологии растений Москва климачев д а..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МОСКВА – 2006
Печатается по решению кафедры ботаники с основами сельского хозяйства. Климачев Д.А. Лекции по физиологии растений. М.: Изд-во МГОУ‚ 2006. – 282 с.

И основные направления исследований
В биосфере главенствующее положение занимает растительный мир-основа жизни на нашей планете. Растение обладает уникальным свойством-способностью накапливать энергии» света в органических веществах

Природа и функции основных химических компонентов растительной клетки
Земная кора и атмосфера содержит более ста химических элементов. Из всех этих элементов лишь ограниченное количество было отобрано в ходе эволюции для форми­рования сложного, высокоорганизованного

Элементарный состав растений
Азот - входит в состав белков, нуклеиновых кислот, фосфолипидов, порфиринов‚ цитохромов, коферментов (НАД, НАДФ). Поступает в растения в виде NО3-, NО2

Углеводы
Углеводы - сложные органические соединения, молекулы которых построены из атомов трех химических элементов: углерода, кислорода, водорода. Углеводы - основ­ной источник энергии для живых систем. Кр

Растительные пигменты
Пигменты - высокомолекулярные природные окрашенные соединения. Из не­скольких сотен пигментов, существующих в природе, важнейшими с биологической точки зрения являются металлопорфириновые и флавино

Фитогормоны
Известно, что жизнь животных контролируется нервной системой и гормонами, но далеко не все знают, что жизнь растений тоже контролируется гормонами, ко­торые называют фитогормонами. Они регулируют ж

Фитоалексины
Фитоалексины - это низкомолекулярные антибиотические вещества высших рас­тений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром дос­тижении антимикробных концентраций они мо

Клеточная оболочка
Клеточная оболочка придает клеткам и тканям растений механическую прочность, защищает протоплазматическую мембрану от разрушения под влиянием гидростатиче­ского давления, развиваемого внутри клетки

Вакуоль
Вакуоль - полость, заполненная клеточ­ным соком и окруженная мембраной (тонопластом). В молодой клетке обычно имеется не­сколько мелких вакуолей (провакуолей). В про­цессе роста клетки образуется о

Пластиды
Различают три вида пластид: хлоропласта - зеленые, хромопласты - оранжевые, лейкопласты - бесцветные. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно со­ста

Органы, ткани и функциональные системы высших растений
Главная особенность живых организмов заключается в том‚ что они представляют собой открытые системы‚ которые обмениваются с окружающей средой энергией‚ веществом и и

Регуляция активности ферментов
Изостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от коли

Генетическая система регуляции
Генетическая регуляция включает в себя регуляцию на уровне репликации‚ транскрипции, процессинга и трансляции. Молекулярные механизмы регуляции здесь те же (рН‚ ноны, модификация молекул, белки-рег

Мембранная регуляция
Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все фун

Трофическая регуляция
Взаимодействие с помощью питательных веществ - наиболее простой способ связи между клетками, тканями и органами. У растений корни и другие гетеротрофные органы зависят от поступления ассимилятов‚ о

Электрофизиологическая регуляция
Растительные организмы в отличие от животных не имеют нервной системы. Тем не менее, электрофизиологические взаимодействия клеток‚ тканей и органов играют существенную роль в координации функционал

Ауксины
Одни из первых экспериментов по регуляции роста у растений были выполнены Чарльзом Дарвином и его сыном Фрэнсисом и изложены в работе «Сила движения у растений»‚ опубликованной в 1881 г. Дарвины си

Цитокинины
Вещества, необходимые для индукции деления растительных клеток, получили название цитокининов. Впервые в чистом виде фактор клеточного деления был выделен из автоклавированного препарата ДНК спермы

Гиббереллины
Японский исследователь Е.Куросава в 1926 г. установил, что культуральная жидкость фитопатогенного гриба Gibberella fujikuroi содержит химическое вещество, способствующее сильному вытягиванию стебле

Абсцизины
В 1961 г. В.Лью и Х.Карнс из сухих зрелых коробочек хлопчатника выделили в кристаллическом виде вещество, ускоряющее опадение листьев, и назвали его абсцизином (от англ. abscission - отделение, опа

Брассиностероиды
Впервые в пыльце рапса и ольхи были обнаружены вещества, обладающие регулирующей рост активностью и названные брассинами. В 1979 г. было выделено активное начало (брассинолид) и определено его хими

Термодинамические основы водного обмена растений
Введение в физиологию растений понятий термодинамики дало возможность математически описать и объяснить причины, вызывающие как водообмен клеток, так и транспорт воды в системе почва - растение - а

Поглощение и передвижение воды
Источником воды для растений является почва. Количество доступной для растения воды определяется ее состоянием в почве. Формы почвенной влаги: 1. Гравитационная вода – заполняет п

Транспирация
В основе расходования воды растительным организмом лежит физический процесс испарения – переход воды из жидкого состояния в парообразное‚ происходящий в результате соприкосновения органов растения

Физиология устьичных движений
Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации СО2 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запу

Пути снижения интенсивности транспирации
Перспективным способом снижения уровня транспирации является применение антитранспирантов. По механизму действия их можно разделить на две группы: вещества‚ которые вызывают закрывание устьиц; веще

История фотосинтеза
В старые времена врач обя­зан был знать ботанику, ведь многие лекарственные средст­ва готовились из растений. Неудивительно, что лекари не­редко выращивали растения, проводили с ними различные опыт

Лист как орган фотосинтеза
В процессе эволюции растений сформировался специализированный орган фотосинтеза – лист. Приспособление его к фотосинтезу шло в двух направлениях: возможно более полное поглощение и запасание лучист

Хлоропласты и фотосинтетические пигменты
Лист растения - орган, обеспечивающий условия для проте­кания фотосинтетического процесса. Функционально же фото­синтез приурочен к специализированным органеллам - хлоропластам. Хлоропласты высших

Хлорофиллы
В настоящее время известно несколько различных форм хлорофилла, которые обозначают латинскими буквами. Хлоропласты высших растений содержат хлорофилл а и хлорофилл b. Они были идентифицированы русс

Каротиноиды
Каротиноиды - жирорастворимые пигменты желтого, оран­жевого и красного цветов. Они входят в состав хлоропластов и хромопластов незеленых частей растений (цветков, плодов, кор­неплодов). В зеленых л

Организация и функционирование пигментных систем
Пигменты хлоропластов объединены в функциональные ком­плексы - пигментные системы, в которых реакционный центр - хлорофилл а, осуществляющий фотосенсибилизацию, связан процессами переноса энергии с

Циклическое и нециклическое фотосинтетическое фосфорилирование
Фотосинтетическое фосфорилирование, т. е. образование АТФ в хлоропластах в ходе реакций, активируемых светом, может осуществляться циклическим и нециклическим путями. Циклическое фотофосфо

Темновая фаза фотосинтеза
Продукты световой фазы фотосинтеза АТФ и НАДФ. Н2 ис­пользуются в темновой фазе для восстановления СО2 до уровня углеводов. Реакции восстановления происходят насто

С4-путь фотосинтеза
Путь усвоения СО2, установленный М. Кальвиным, является основным. Но существует большая группа растений, включаю­щая более 500 видов покрытосеменных, у которых первичными продуктами фикс

САМ-метаболизм
Цикл Хетча и Слэка обнаружен также у растений-суккулентов (из родов Crassula, Bryophyllum и др.). Но если у С4-растений кооперация достигнута за счет пространственного разделения двух ци

Фотодыхание
Фотодыхание - это индуцированное светом поглощение кис­лорода и выделение СО2, которое наблюдается только в расти­тельных клетках, содержащих хлоропласты. Химизм этого про­цесса значител

Сапротрофы
В настоящее время грибы относят к самостоятельному цар­ству, однако многие стороны физиологии грибов близки к фи­зиологии растений. По-видимому, сходные механизмы лежат и в основе их гетеротрофного

Насекомоядные растения
В настоящее время известно свыше 400 видов покрытосе­менных растений, которые ловят мелких насекомых и другие ор­ганизмы, переваривают свою добычу и используют продукты ее разложения как дополнител

Гликолиз
Гликолиз - это процесс генерации энергии в клетке, происхо­дящий без поглощения О2 и выделения СО2. Поэтому его ско­рость трудно измерить. Основной функцией гликолиза наряду с

Электрон-транспортная цепь
В рассмотренных ре­акциях цикла Кребса и при гликолизе молекулярный кислород не участвует. Потребность в кислороде возникает при окислении восстановленных переносчиков НАДН2 и ФАДН2

Окислительное фосфорилирование
Главной особенностью внут­ренней мембраны митохондрии является присутствие в ней бел­ков - переносчиков электронов. Эта мембрана непроницаема для ионов водорода, поэтому перенос последних через мем

Пентозофосфатное расщепление глюкозы
Пентозофосфатный цикл‚ или гексозомонофосфатный шунт‚ часто называют апотомическим окислением‚ в отличие от гликолитического цикла‚ называемого дихотомическим (распад гексозы на две триозы). Особен

Жиры и белки как дыхательный субстрат
Запасные жиры расходуются на дыхание проростков‚ развивающихся из семян‚ богатых жирами. Использование жиров начинается с их гидролитического расщепления липазой на глицерин и жирные кислоты‚ что п

Признаки голодания растений
Во многих случаях при недостатке элементов минерального питания у растений появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а

Антагонизм ионов
Для нормальной жизнедеятельности как растительных, так и животных организмов в окружающей их среде должно быть определенное соотношение различных катионов. Чистые растворы солей одного какого-либо

Поглощение минеральных веществ
Корневая система растений поглощает из почвы как воду, так и питательные вещества. Оба эти процесса взаимосвязаны, но осуществляются на основе разных механизмов. Многочисленные исследования показал

Ионный транспорт в растении
В зависимости от уровня организации процесса различают три типа транспорта веществ в растении: внутриклеточный, ближний (внутри органа) и дальний (между органами). Внутриклеточный

Радиальное перемещение ионов в корне
Путем обменных процессов и диффузии ионы поступают в клеточные стенки ризодермы, а затем через коровую паренхиму направляются к проводящим пучкам. Вплоть до внутреннего слоя коры эндодермы возможно

Восходящий транспорт ионов в растении
Восходящий ток ионов осуществляется преимущественно по сосудам ксилемы, которые лишены живого содержимого и являются составной частью апопласта растения. Механизм ксилемного транспорта - массовый т

Поглощение ионов клетками листа
На долю проводящей системы приходится около 1/4 объема ткани листа. Суммарная длина разветвлений проводящих пучков в 1 см листовой пластинки достигает 1 м. Такая насыщенность тканей листа проводяще

Отток ионов из листьев
Почти все элементы, за исключением кальция и бора, могут оттекать из листьев, достигших зрелости и начинающих стареть. Среди катионов во флоэмных экссудатах доминирующее место принадлежит калию, на

Азотное питание растений
Основными усвояемыми формами азота для высших растений являются ионы аммония и нитрата. Наиболее полно вопрос об использовании растениями нитратного и аммиачного азота разработан академиком Д. Н. П

Ассимиляция нитратного азота
Азот входит в состав органических соединений только в восстановленной форме. Поэтому включение нитратов в обмен веществ начинается с их восстановления, которое может осуществляться и в корнях, и в

Ассимиляция аммиака
Аммиак, образовавшийся при восстановлении нитратов или молекулярного азота, а также поступивший в растение при аммонийном питании, далее усваивается в результате восстановительного аминирования кет

Накопление нитратов в растениях
Темпы поглощения нитратного азота часто могут превышать скорость его метаболизации. Связано это с тем, что многовековая эволюция растений шла в условиях недостатка азота и вырабатывались системы не

Клеточные основы роста и развития
Основой роста тканей, органов и всего растения являются образование и рост клеток меристематической ткани. Различают апикальную, латеральную и интеркалярную (вставочную) меристемы. Апикальная мерис

Закон большого периода роста
Скорость роста (линейного, массы) в онтогенезе клетки, ткани, любого органа и растения в целом непостоянна и может быть выражена сигмовидной кривой (рис. 26). Впервые эта закономерность роста была

Гормональная регуляция роста и развития растений
Многокомпонентная гормональная система участвует в управлении ростовыми и формообразовательными процессами растений, в реализации генетической программы роста и развития. В онтогенезе в отдельных ч

Влияние фитогормонов на рост и морфогенез растений
Прорастание семян. В набухающем семени центром образования или высвобождения гиббереллинов, цитокининов и ауксинов из связанного (конъюгированного) состояния является зародыш. Из з

Использование фитогормонов и физиологически активных веществ
Изучение роли отдельных групп фитогормонов в регуляции роста и развития растений определило возможность использования этих соединений, их синтетических аналогов и других физиологически активных вещ

Физиология покоя семян
Покой семян относится к завершающей фазе эмбрионального периода онтогенеза. Основным биологическим процессом, наблюдаемым при органическом покое семян, является их физиологическое дозревание‚ вслед

Процессы, протекающие при прорастании семян
При прорастании семян выделяют следующие фазы. Поглощение воды - сухие семена, находящиеся в состоянии покоя, поглощают воду из воздуха или какого-либо субстрата до наступления критической

Покой растений
Рост растений не является непрерывным процессом. У большинства растений время от времени наступают периоды резкого замедления или даже почти полной приостановки ростовых процессов – периоды покоя.

Физиология старения растений
Этап старения (старости и отмирания) - это период от полного прекращения плодоношения до естественной смерти растения. Старение - это период закономерного ослабления процессов жизнедеятельности, из

Осенняя окраска листьев и листопад
Осенью лиственные леса и сады меняют цвет листьев. На место монотонной летней окраски выступает большое разнообразие ярких тонов. Листья грабов, кленов и берез становятся светло-желтыми, д

Влияние микроорганизмов на рост растений
Многие почвенные микроорганизмы обладают способностью стимулировать рост растений. Полезные бактерии могут оказывать свое влияние непосредственно‚ поставляя растениям фиксированный азот‚ хелатирова

Движения растений
Растения в отличие от животных прикреплены к месту своего обитания и не могут перемещаться. Однако и для них характерно движение. Движение растений - это изменение положения органов растений в прос

Фототропизмы
Среди факторов, вызывающих проявление тропизмов, свет был первым, на действие которого человек обратил внимание. В древних литературных источниках были описаны изменения положения органов растений

Геотропизмы
Наряду со светом на растения оказывает влияние сила тяжести, определяющая положение растений в пространстве. Присущую всем растениям способность воспринимать земное притяжение и реагировать на него

Холодостойкость растений
Устойчивость растений к низким температурам подразделяют на холодостойкость и морозоустойчивость. Под холодостойкостью понимают способность растений переносить положительные температуры несколько в

Морозоустойчивость растений
Морозоустойчивость - способность растений переносить температуру ниже 0оС, низкие отрицательные температуры. Морозоустойчивые растения способны предотвращать или уменьшать действие низки

Зимостойкость растений
Непосредственное действие мороза на клетки - не единственная опасность, угрожающая многолетним травянистым и древесным культурам, озимым растениям в течение зимы. Помимо прямого действия мороза рас

Влияние на растения избытка влаги в почве
Постоянное или временное переувлажнение характерно для многих районов земного шара. Оно нередко наблюдается также при орошении, особенно проводимом методом затопления. Избыток воды в почве может бы

Засухоустойчивость растений
Обычным явлением для многих регионов России и государств СНГ стали засухи. Засуха - это длительный бездождливый период, сопровождаемый снижением относительной влажности воздуха, влажности почвы и п

Влияние на растения недостатка влаги
Недостаток воды в тканях растений возникает в результате превышения ее расхода на транспирацию перед поступлением из почвы. Это часто наблюдается в жаркую солнечную погоду к середине дня. При этом

Физиологические особенности засухоустойчивости
Способность растений переносить недостаточное влагообеспечение является комплексным свойством. Она определяется возможностью растений отсрочить опасное уменьшение оводненности протоплазмы (избегани

Жароустойчивость растений
Жароустойчивость (жаровыносливость) - способность растений переносить действие высоких температур, перегрев. Это генетически обусловленный признак. По жароустойчивости выделяют две группы

Солеустойчивость растений
За последние 50 лет уровень Мирового океана поднялся на 10 см. Эта тенденция, по предсказаниям ученых, будет продолжаться и дальше. Следствием этого является возрастающий дефицит пресной воды, а до

Основные термины и понятия
Вектор – самореплицирующаяся молекула ДНК (например‚ бактериальная плазмида)‚ используемая в генной инженерии для переноса генов. vir-гены

Из Agrobacterium tumefaciens
Почвенная бактерия Agrobacterium tumefaciens - фитопатоген, который в процессе своего жизненного цикла трансформирует клетки растений. Эта трансформация приводит к образованию корончатого галла - о

Векторные системы на основе Тi-плазмид
Самый простой способ использования природной способности Тi-плазмид к генетической трансформации растений предполагает встраивание интересующей исследователя нуклеотидной последовательности в Т-ДНК

Физические методы переноса генов в растительные клетки
Системы переноса генов с помощью Agrobacterium tumefaciens эффективно работают только в случае некоторых видов растений. В частности, однодольные растения, включая основные зерновые культуры (рис,

Бомбардировка микрочастицами
Бомбардировка микрочастицами, или биолистика, - наиболее многообещающий метод введения ДНК в растительные клетки. Золотые или вольфрамовые сферические частицы диаметром 0,4-1,2 мкм покрывают ДНК, о

Вирусам и гербицидам
Растения, устойчивые к насекомым-вредителям Если бы хлебные злаки можно было изменять методами генной инженерии так, чтобы они продуцировали функциональные инсектициды, то мы получили бы к

Воздействиям и старению
В отличие от большинства животных, растения физически не могут защитить себя от неблагоприятных воздействий со стороны окружающей среды: высокой освещенности, ультрафиолетового облучения, высоких т

Изменение окраски цветков
Цветоводы все время стараются создавать растения, цветки которых имеют более привлекательный внешний вид и лучше сохраняются после того, как их срежут. С помощью традиционных методов скрещивания за

Изменение пищевой ценности растений
За многие годы агрономы и селекционеры достигли больших успехов в улучшении качества и повышении урожайности самых разных сельскохозяйственных культур. Однако традиционные методы выведения новых со

Растения как биореакторы
Растения дают большое количество биомассы, а выращивание их не составляет труда, поэтому разумно было попытаться создать трансгенные растения, способные синтезировать коммерчески ценные белки и хим

Растения можно сравнить с живыми организмами. Они также питаются, растут и размножаются. Под питанием растений садоводы подразумевают всасывание корневищем минеральных и органических веществ, которые в дальнейшем усваиваются либо перерабатываются растением в иные химические элементы.

Самый простой способ получить красивую лужайку перед домом

Вы, конечно же, видели идеальный газон в кино, на аллее, а возможно, и на соседской лужайке. Те, кто хоть раз пытался вырастить зеленую площадку у себя на участке, без сомнений скажут, что это огромный труд. Газон требует тщательной посадки, ухода, удобрения, полива. Однако так думают только неопытные садоводы, профессионалы давно знают про инновационное средство - жидкий газон AquaGrazz .

Для того чтобы корневая система могла всасывать нужное количество питательных веществ, необходима совокупность факторов. Такими стали: температура, кислотность почвы, концентрация и состав минералов, находящихся в грунте.

Исследования доказали, что помимо азота и кислорода для роста растения просто необходим полный комплекс элементов, иначе развитие будет медленным и неполноценным. Наиболее важными являются:

  • азот;
  • калий;
  • железо;
  • фосфор;
  • магний.

Виды питательных элементов

Практически каждый химический элемент может находится в различной форме, от которой будут зависеть его концентрация и способность к усваиванию растениями. Исходя из этого, элементы подразделяются на 3 группы:

  • ультрамикроэлементы. Используются для питания растений в особо малых количествах, но пренебрегать подобной подкормкой не стоит;
  • микроэлементы. Потребляются растениями в малом количестве;
  • макроэлементы. Растения требуют их в большом количестве, потому их внесение должно иметь глобальный характер.

Для оптимального развития растение должно получать весь комплекс минеральных веществ. При этом каждый элемент должен иметь свою концентрацию и нужную форму. Иначе растение его не впитает. Недостаточное минеральное питание растений проявляется признаками голодания. Опытный человек может сразу определить, чего именно не хватает растению и исправить ситуацию путем внесения необходимых элементов.


Аналогично этому, переизбыток элементов отразится на внешнем виде растения, но с решением такой проблемы могут возникнуть трудности. Даже малый переизбыток бора и магния способен затормозить процессы роста растения. Таким органом является корневище, именно оно, находясь на глубине, наиболее подвержено влиянию от передозировок химическими элементами.

Недостаток минеральных веществ также оказывает губительное влияние на растение. К примеру, резкое снижение концентрации магния может вызвать скорое голодание и остановку роста. Обусловлено это тем, что минеральные вещества, попадая в ткани растения, участвуют в создании клеток и органоидов. При этом минеральные вещества способны оказывать влияние на образование биоколлоидов, отсутствие которых уничтожит растение.

Какие элементы необходимы растению?

  • Азот. Является крайне важным элементом, поскольку его наличие необходимо для всех типов растений. Данное вещество способствует образованию аминокислот и белков. А при распаде азот образует аммиачные соединения, которые используются растениями в качестве азотного питания. При недостатке подобного элемента у растений начинается голодание, которое сопровождается замедлением роста и образованием мелких листьев. При этом побеги растения теряют свою форму, а нижние ярусы перестают развиваться. Первыми признаками азотного голодания является потемнение листвы, обусловленное замедленными процессами фотосинтеза. В дальнейшем проблемы увеличиваются, и отражается это в разрушении структуры листьев с их последующим опаданием.


  • Фосфор – в естественных условиях может встречаться в минеральной и органической формах. Все зависит от качественного состава почвы, а именно: если почва обладает повышенной кислотностью, там будет находиться повышенное количество минеральной формы фосфора. Обусловлено это все химической структурой и взаимодействием между веществами на молекулярном уровне. Естественно, на таких грунтах тип питания растения несколько изменится и перейдет в другую форму. Но признаки фосфорного голодания останутся такими же. В первую очередь, это пожелтение листьев и замедление почкообразования. Также явным признаком голодания может стать увядание цветов, они попросту не будут получать необходимого количества минералов.
  • Магний. Элемент, отвечающий за прочность растительных тканей. При его недостатке качество листвы резко упадет. Также следует указать, что магний воздействует не только на растение, но и на почву. Так, он с легкостью избавит почву от переизбытка извести и создаст нейтральные условия в почве, благодаря чему корневище будет усваивать большее количество элементов.
  • Калий. Этот элемент играет важную роль в развитии растений. Во-первых, он участвует в большинстве физиологических процессов, необходимых для жизни растения. А во-вторых, его наличие необходимо для хорошего развития корневища, от размеров и качеств которого будет зависеть дальнейшее минеральное питание растений. Еще калий обладает профилактическими свойствами и придает растениям устойчивость к низким температурам. Калий является основным элементом минерального питания растений. Недостаток данного элемента можно наблюдать по реакции верхушек растений: молодые листья получают желтый окрас и практически не развиваются.


  • Кальций представлен для растений в виде различных солей. Это могут быть фосфаты и карбонаты. Основное воздействие кальций оказывает именно на почву. При нормальной концентрации кальция почва раскисляется и становится оптимальной для развития и последующего питания растений. Естественно, растение потребляет кальций, но это количество настолько мало, что практически не учитывается.
  • Железо – используется растением для образования хлорофиллов. Недостаток железа проявляется быстрым старением листьев. Наступает фаза хлороза, и листва опадает. Бор и кобальт наравне с железом обладают функциями для образования хлоропластов и хлорофиллов.
  • Цинк – нужен растению для оптимального дыхания. Он обладает свойствами, которые позволяют клеткам растения впитывать СО2 и в дальнейшем перерабатывать его в кислород.

Как разделить питание растений?

В первую очередь, следует рассказать про почвенное питание растений. А поскольку большинство минералов находится под землей, именно такой тип питания отвечает за насыщение растения минеральными веществами. Питание происходит за счет корневой системы (это орган, способный выкачивать и перерабатывать вещества в форму, подходящую для питания и усвоения их растениями).

Так же, как людям и животным, растениям жизненно необходимы питательные вещества, которое они получают из почвы, воды и воздуха. Состав почвы напрямую влияет на здоровье растения, ведь именно в почве находятся основные микроэлементы: железо, калий, кальций, фосфор, марганец и многие другие. В случае, если какого-то элемента не хватает, растение болеет и даже может погибнуть. Впрочем, переизбыток минеральных веществ не менее опасен.

Как узнать, какого элемента в почве недостаточно или, наоборот, слишком много? Анализом почв занимаются специальные исследовательские лаборатории, и все крупные растениеводческие хозяйства прибегают к их услугам. Но что же делать простым садоводам и любителям домашних цветов, как можно самостоятельно диагностировать нехватку питательных веществ? Все просто: если в почве не хватает железа, фосфора, магния и любого другого вещества, растение само подскажет об этом, ведь здоровье и внешний вид зеленого питомца зависит, в том числе, и от количества минеральных элементов в грунте. На таблице ниже можно увидеть сводную информацию по симптомам и причинам заболевания.

Рассмотрим подробнее симптомы недостатка и переизбытка отдельных веществ.

Дефицит микроэлементов

Чаще всего растение испытывает дефицит отдельных микроэлементов в случае, когда состав почвы не сбалансирован. Слишком высокая или, наоборот, низкая кислотность, излишнее содержание песка, торфа, извести, чернозема - всё это приводит к недостатку какого-либо минерального компонента. На содержание микроэлементов оказывают влияние и погодные условия, особенно чересчур низкая температура.

Обычно симптомы, характерные для дефицита микроэлементов, ярко выражены и не пересекаются друг с другом, поэтому выявить недостаток полезных веществ довольно просто, особенно опытному садоводу.

[!] Не путайте внешние проявления, характерные для недостатка минеральных веществ, с проявлениями, возникающими в случае поражения растений вирусными или грибковыми заболеваниями, а также различными видами насекомых-вредителей.

Железо – жизненно необходимый для растения элемент, участвующей в процессе фотосинтеза и накапливаемый, главным образом, в листьях.

Нехватка железа в почве, а значит и в питании растения - одно из самых распространенных заболеваний, получивших название хлороз. И, хотя хлороз, это симптом, характерный также и для дефицита магния, азота и многих других элементов, недостаток железа - первая и главная причина хлороза. Признаки железного хлороза - пожелтение или побеление межжилкового пространства листовой пластины, при этом цвет самих жилок не меняется. В первую очередь, страдают верхние (молодые) листья. Рост и развитие растения не прекращается, но вновь появляющиеся побеги имеют нездоровую хлоротичную окраску. Недостаток железа чаще всего возникает на почвах с повышенной кислотностью.

Дефицит железа лечится специальными препаратами, содержащими хелат железа: Ферровит, Миком-Реаком Хелат Железа, Микро-Fe. Хелат железа также можно сделать самостоятельно, смешав 4 гр. железного купороса с 1 л. воды и добавив в раствор 2,5 гр. лимонной кислоты. Один из самых действенных народных способов для устранения нехватки железа - воткнуть в почву несколько старых ржавых гвоздей.

[!] Как узнать, что содержание железа в почве пришло в норму? Молодые растущие листики имеют нормальный зеленый цвет.

Магний. Около 20% этого вещества содержится в хлорофилле растения. Это значит, что магний необходим для правильного фотосинтеза. Кроме того, минерал участвует в окислительно-восстановительных процессах

Когда в почве не хватает магния, на листьях растения также возникает хлороз. Но, в отличие от признаков железного хлороза, прежде всего страдают нижние, более старые листья. Цвет листовой пластины между жилками меняется на красноватый, желтоватый. По всему листу появляются пятна, указывающие на отмирание тканей. Сами жилки свой цвет не меняют, а общая окраска листьев напоминает рисунок в елочку. Часто при недостатке магния можно увидеть деформирование листа: заворачивание и морщинистость краев.

Для устранения недостатка магния используются специальные удобрения, содержащие в составе большое количество необходимого вещества - доломитовая мука, калимагнезия, сульфат магния. Хорошо восполняет дефицит магния древесная зола и пепел.

Медь важна для правильного белкового и углеводного процессов в растительной клетке и, соответственно, развития растения.

Излишнее содержание торфа (гумуса) и песка в почвосмеси часто приводит к дефициту меди. В народе эта болезнь называется белой чумой или белокосицей. Особенно остро реагируют на недостаток меди цитрусовые домашние растения, томаты, злаковые. Выявить недостаток меди в почве помогут следующие признаки: общая вялость листьев и стеблей, особенно верхних, задержка и остановка роста новых побегов, отмирание верхушечной почки, белые пятна на кончике листа или по всей листовой пластине. У злаковых иногда наблюдается скручивание листа в спираль.

Для лечения дефицита меди используют медьсодержащие удобрения: суперфосфат с медью, медный купорос, пиритные огарки.

Цинк оказывает большое влияние на скорость окислительно-восстановительных процессов, а также на синтез азота, углевода и крахмалов.

Недостаток цинка обычно проявляется в кислых болотных или песчаных почвах.Симптомы дефицита цинка, как правило, локализированы на листьях растения. Это общее пожелтение листа или появление отдельных пятен, часто пятна становятся более насыщенного, бронзового цвета. Впоследствии ткань на таких участках отмирает. В первую очередь симптомы появляются на старых (нижних) листьях растения, постепенно поднимаясь все выше. В некоторых случаях, пятна могут появляться и на стеблях. Вновь появляющиеся листочки имеют ненормально малый размер и покрыты желтыми крапинками. Иногда можно наблюдать закручивание листа вверх.

В случае дефицита цинка применяют цинкосодержащие комплексные удобрения или сульфат цинка.

Бор. С помощью этого элемента растение борется с вирусными и бактериальными заболеваниями. Кроме того, бор активно участвует в процессе роста и развития новых побегов, бутонов, плодов.

Заболоченные, карбонатные и кислые почвы очень часто приводят к борному голоданию растения. Особенно от дефицита бора страдают различные виды свеклы и капусты. Признаки недостатка бора проявляются, в первую очередь, на молодых побегах и верхних листиках растения. Окраска листьев меняется на светло-зеленую, листовая пластина скручивается в горизонтальную трубочку. Жилки листа становятся темными, даже черными, и ломаются при сгибании. Особенно сильно, вплоть до отмирания, страдают верхние побеги, поражается точка роста, вследствие чего растение развивается с помощью боковых отростков. Замедляется или полностью останавливается образование цветков и завязей, уже появившиеся цветы и плоды осыпаются.

Восполнить недостаток бора поможет борная кислота.

[!] Применять борную кислоту необходимо с максимальной осторожностью: даже небольшая передозировка приведет к гибели растения.

Молибден. Молибден необходим для фотосинтеза, синтеза витаминов, азотного и фосфорного обменов, кроме того минерал является компонентом многих ферментов растения.

Если на старых (нижних) листьях растения появилось большое количество бурых или коричневых крапинок, а жилки при этом остались нормального зеленого цвета, возможно растению не хватает молибдена. При этом поверхность листа деформируется, вздуваясь, а края листьев закручиваются. Новые молодые листики вначале не меняют окраску, но со временем крапчатость появляется и на них. Проявление молибденовой недостаточности получило название «Заболевание Виптейль»

Дефицит молибдена можно восполнить такими удобрениями, как молибденовокислый аммоний и молибдат аммония.

Марганец необходим для синтеза аскорбиновой кислоты и сахаров. Кроме того элемент увеличивает содержание хлорофилла в листьях, повышает сопротивляемость растения неблагоприятным факторам, улучшает плодоношение.

Дефицит марганца определяется по ярко выраженной хлорозной окраске листьев: центральная и боковые жилки остаются насыщенно-зеленого цвета, а межжилковая ткань осветляется (становится светло-зеленой или желтоватой). В отличие от железного хлороза, рисунок выражен не столь заметно, а желтизна не такая яркая. Вначале симптомы можно увидеть у основания верхних листьев. Со временем, по мере старения листьев, хлоротичный узор расплывается, и на листовой пластине появляются полоски вдоль центральной жилки.

Для лечения недостатка марганца применяется сульфат марганца или комплексные удобрения, содержащие марганец. Из народных средств можно использовать слабый раствор марганцовки или разведенный навоз.

Азот – один из самых важнейших для растения элементов. Существует две формы азота, одна из которых необходима для окислительных процессов в растении, а другая – для восстановительных. Азот помогает поддерживать необходимый водный баланс, а также стимулирует рост и развитие растения.

Чаще всего недостаток азота в почве возникает ранней весной, из-за низких температур почвы, препятствующих образованию минералов. Дефицит азота ярче всего проявляется на стадии раннего развития растения: тонкие и вялые побеги, мелкие листья и соцветия, низкое ветвление. В целом растение плохо развивается. Кроме того, на недостаток азота может указывать изменение окраски листа, в частности окраски жилок, как центральной, так и боковых. При азотном голодании вначале желтеют жилки, а впоследствии желтеют и околожилковые ткани листа. Также окраска жилок и листа может становиться красноватой, бурой или светло-зеленой. В первую очередь симптомы проявляются на более старых листьях, со временем захватывая все растение.

Недостаток азота можно восполнить удобрениями, содержащими нитратный азот (калийная, аммиачная, натриевая и другие селитры) или аммонийный азот (аммофос, сульфат аммония, мочевина). Высокое содержание азота присутствует в натуральных органических удобрениях.

[!] Во второй половине года азотные удобрения следует исключить, так как они могут препятствовать переходу растения с состояние покоя и подготовке к зимовке.

Фосфор. Этот микроэлемент особенно важен в период цветения и образования плодов, так как стимулирует развитие растения, в том числе и плодоношения. Фосфор необходим и для правильной зимовки, поэтому лучшее время для внесения фторсодержащих удобрений – вторая половина лета.

Признаки дефицита фосфора трудно спутать с какими-либо другими симптомами: листья и побеги окрашиваются в голубоватый цвет, теряется глянцевость поверхности листа. В особо запущенных случаях окраска может быть даже фиолетовой, пурпурной или бронзовой. На нижних листьях появляются участки отмершей ткани, затем лист полностью усыхает и опадает. Опавшие листья окрашены в темный, почти черный цвет. При этом молодые побеги продолжают развиваться, но выглядят ослабленными и угнетенными. В целом недостаток фосфора отражается на общем развитии растения - замедляется образование соцветий и плодов, снижается урожайность.

Лечение дефицита фосфора проводится с помощью фосфорных удобрений: фосфатной муки, фосфата калия, суперфосфата. Большое количество фосфора содержится в птичьем помете. Готовые фосфорные удобрения долго растворяются в воде, поэтому их необходимо вносить заранее.

Калий - один из основных элементов минерального питания растения. Его роль огромна: поддержание водного баланса, повышение иммунитета растения, усиление сопротивляемости к стрессам и многое другое.

Недостаточное количество калия приводит к возникновению краевого ожога листа (деформация края листа, сопровождающаяся засыханием). На листовой пластине появляются бурые пятна, жилки выглядят как будто вдавленными в лист. Симптомы в первую очередь проявляются на более старых листьях. Часто недостаток калия приводит к активному листопаду в период цветения. Стебли и побеги поникают, развитие растения замедляется: приостанавливается появление новых бутонов и ростков, завязывание плодов. Даже если новые побеги вырастают, их форма недоразвита и уродлива.

Восполнить недостаток калия помогают такие подкормки, как хлористый калий, калимагнезия, сульфат калия, древесная зола.

Кальций важен для правильного функционирования клеток растения, обмена белков и углеводом. От недостатка кальция в первую очередь страдает корневая система.

Признаки дефицита кальция проявляются, прежде всего, на молодых листочках и побегах:коричневая пятнистость, искривленность, закручивание.В дальнейшем и уже сформированные, и вновь появляющиеся побеги отмирают. Нехватка кальция приводит к нарушению усвояемости других минеральных веществ, поэтому на растении могут появиться признаки калийного, азотного или магниевого голодания.

[!] Следует отметить, что домашние растения редко страдают от дефицита кальция, так как водопроводная вода содержит довольно много солей этого вещества.

Увеличить количество кальция в почве помогают известковые удобрения: мел, доломитовый известняк, доломитовая мука, гашеная известь и многие другие.

Переизбыток микроэлементов

Слишком большое содержание минералов в почве так же вредно для растения, как и их дефицит. Обычно такая ситуация складывается в случае перекорма удобрениями и перенасыщения почвы. Несоблюдение дозировки удобрений, нарушение срока и частоты внесения подкормок – всё это и приводит к излишнему содержанию минералов.

Железо. Избыток железа встречается очень редко и обычно вызывает затруднение усвоения фосфора и марганца. Поэтому симптомы переизбытка железа сходны с симптомами дефицита фосфора и марганца: темный, голубоватый оттенок листьев, прекращение роста и развития растения, отмирание молодых побегов.

Магний. Если магния в составе почвы слишком много, перестает усваиваться кальций, соответственно симптомы переизбытка магния в целом схожи с симптомами дефицита кальция. Это скручивание и отмирание листьев, искривленная и рваная форма листовой пластины, задержка в развитии растения.

Медь. При избытке меди на нижних, более старых листьях, появляются коричневатые пятна, впоследствии эти участки листа, а затем и весь лист, отмирают. Рост растения существенно замедляется.

Цинк. Когда в почве чересчур много цинка, лист растения покрывается белесыми водянистыми пятнами с нижней стороны. Поверхность листа становится бугристой, впоследствии пораженные листья опадают.

Бор. Избыточное содержание бора проявляется, прежде всего, на нижних, более старых, листьях в виде небольших коричневатых пятен. Со временем пятна увеличиваются в размере. Пораженные участки, а затем и весь лист, отмирают.

Молибден. В случае переизбытка молибдена в почве, растение плохо усваивает медь, поэтому симптомы сходны с признаками недостатка меди: общая вялость растения, замедление развития точки роста, светлые пятна на листьях.

Марганец. Избыток марганца по своим признакам напоминает магниевое голодание растения: хлороз на более старых листьях, пятна различного цвета на листовой пластине.

Азот. Слишком большое количество азота приводит в бурному наращиванию зеленой массы в ущерб цветению и плодоношению. Кроме того передозировка азота в сочетании с излишним поливом значительно закисляет почву, что в свою очередь провоцирует образование корневых гнилей.

Фосфор. Избыточное количество фосфора препятствует усвоению азота, железа и цинка, вследствие чего развиваются симптомы, характерные для дефицита этих элементов.

Калий. Если в почве наблюдается слишком большое содержание калия, растение перестает усваивать магний. Возникает замедление развития растения, листья приобретают бледно-зеленый цвет, по контуру листа возникает ожог.

Проанализировав при помощи новейших статистических методов эволюционное дерево семейства пасленовых, американские и британские ученые пришли к выводу, что самонесовместимость (отторжение близкородственной пыльцы) в этой группе растений многократно исчезала в разных эволюционных линиях и, по-видимому, никогда не появлялась вновь. То, что до сих пор свыше 40% видов пасленовых сохранили самонесовместимость, объясняется межвидовым отбором. У самонесовместимых видов понижены темпы вымирания, и поэтому средняя скорость диверсификации (то есть разность скоростей появления видов и их вымирания) у них существенно выше, чем у видов, способных к самоопылению. Это пока один из немногих примеров, демонстрирующих действенность межвидового отбора.

Многие теоретики признают возможность действия отбора не только на уровне генов и особей, но и на более высоких уровнях, в том числе на уровне видов. Межвидовой отбор может иметь место, если какие-то наследственные признаки, передающиеся от родительских видов к дочерним, существенно влияют на темп диверсификации (r), который представляет собой разность скоростей (или вероятностей) появления видов (λ) и их вымирания (μ).

Могут быть, однако, и такие ситуации, в которых межвидовой отбор, несмотря на всю свою медленность и низкую эффективность, всё-таки способен повлиять на макроэволюционные процессы. Например, если признак, поддерживаемый межвидовым отбором, с точки зрения генов и особей является нейтральным или если частота мутаций, ведущих к исчезновению данного признака, очень низка (сопоставима с темпами появления и вымирания видов). Однако до сих пор известно очень мало конкретных фактов, указывающих на действенность межвидового отбора (Jablonski, 2008. Species Selection: Theory and Data ; Rabosky & McCune, 2010. Reinventing species selection with molecular phylogenies).

Проблема тут в том, что, хотя разные группы организмов могут сильно различаться по темпам появления и вымирания видов, эти различия, как правило, трудно увязать с какими-то конкретными признаками (морфологическими, физиологическими или поведенческими). Американские и британские биологи выбрали для проверки предположения о действенности межвидового отбора на редкость удобный объект - семейство пасленовых, и очень подходящий признак - самонесовместимость. Удобность объекта обусловлена огромным видовым разнообразием пасленовых и их хорошей изученностью, в том числе на генетическом уровне. Самонесовместимость, или отторжение родственной пыльцы (рис. 1), интересна тем, что, во-первых, этот признак, исходя из общих соображений, вполне может влиять на темпы видообразования и вымирания, во-вторых - и это главное - он распространен среди видов пасленовых достаточно хаотично. Во многих родах пасленовых одни виды имеют систему самонесовместимости, тогда как другие, в том числе близкородственные, виды такой системы не имеют. При этом наличие или отсутствие самонесовместимости практически не коррелирует с другими признаками этих растений. Это дает основания надеяться, что если удастся выявить корреляцию между самонесовместимостью и темпами диверсификации, то эта корреляция будет отражать причинную связь.

В семействе пасленовых около 2700 видов, из которых примерно 41% имеют систему самонесовместимости, 57% ее не имеют, а 2% видов - двудомные, то есть имеющие отдельные мужские и женские растения, так что для них проблема самооплодотворения не актуальна. Авторы построили филогенетическое (эволюционное) дерево для 356 видов пасленовых, по которым имеются необходимые молекулярные данные (дерево строилось по последовательностям двух ядерных генов и четырех пластидных) и для которых точно установлено наличие или отсутствие механизма самонесовместимости.

Анализ получившегося дерева показал (впрочем, это было понятно и раньше), что самонесовместимость унаследована пасленовыми от общего предка и с тех пор многократно утрачивалась в разных эволюционных линиях. Утратить эту систему легко, а восстановить обратно - трудно, потому что это сложный молекулярный комплекс, в котором участвует множество специализированных белков. Судя по всему, в эволюции пасленовых почти или вовсе не было случаев восстановления самонесовместимости после ее утраты.

Почему самонесовместимость часто утрачивается, более или менее понятно. Переход к самооплодотворению дает немедленное преимущество в эффективности распространения собственных генов (см.: , «Элементы», 23.10.2009); к тому же самооплодотворение может давать адаптивное преимущество, когда с доставкой пыльцы от неродственных особей возникают трудности - например, из-за большой разреженности популяции (см.: Чтобы превратить самок в гермафродитов, достаточно двух мутаций , «Элементы», 16.11.2009). Непонятно другое: если этот признак часто утрачивается и почти никогда не восстанавливается, почему до сих пор сохранилось так много видов, обладающих системой самонесовместимости?

Чтобы ответить на этот вопрос, авторы проанализировали филогенетическое дерево пасленовых при помощи новой методики, которая называется BiSSE (binary state speciation and extinction model); см.: Maddison et al., 2007. Estimating a Binary Character"s Effect on Speciation and Extinction . Этот метод предназначен как раз для анализа зависимости скоростей появления и вымирания видов от какого-нибудь бинарного (то есть принимающего одно из двух значений) признака, такого как наличие или отсутствие самонесовместимости. Метод позволяет подобрать шесть наиболее подходящих к данному дереву параметров: λ 1 и λ 2 - средние скорости видообразования для видов с двумя альтернативными состояниями признака, μ 1 и μ 2 - скорости вымирания, q 12 и q 21 - вероятности перехода признака из состояния 1 в 2 и обратно. В данном случае вероятность перехода от отсутствия самонесовместимости к ее наличию считалась равной нулю.

Расчеты показали, что темп видообразования у видов, практикующих самоопыление, значительно выше, чем у самонесовместимых. Однако темп вымирания у них еще выше, так что итоговая скорость диверсификации (r = λ – μ) оказывается выше у видов, обладающих системой самонесовместимости. Несмотря на то, что совокупность самоопыляющихся видов постоянно пополняется за счет превращения самонесовместимых видов в самоопыляющиеся, а обратное превращение «запрещено», численность самонесовместимых видов не снижается до нуля, а остается на постоянном уровне (порядка 30–40%), потому что такие виды эффективнее «размножаются», передавая своим видам-потомкам самонесовместимость по наследству. Это и есть межвидовой отбор в действии: именно благодаря межвидовому отбору самонесовместимость до сих пор не исчезла у пасленовых.

Повышенная скорость видообразования у растений, способных к самоопылению, очевидно, связана с тем, что у них не так остро стоит проблема «размывания» полезных комбинаций аллелей, сложившихся в ходе приспособления к местным условиям. Одно-единственное растение, попавшее в необычные условия, способно дать начало новому виду. Почему они чаще вымирают, тоже в общем-то понятно: у них должны быстрее накапливаться вредные мутации и реже фиксироваться мутации полезные (подробнее о пользе перекрестного оплодотворения см. в заметке Опыты на червях доказали, что самцы - вещь полезная , «Элементы», 23.10.2009).

Данная работа показала, что межвидовой отбор способен оказывать заметное влияние на макроэволюцию. Он может обеспечить длительное сохранение сложного признака, который в каждой отдельно взятой эволюционной линии имеет тенденцию исчезать и почти никогда не появляется вновь. Но нужно помнить, что медлительный и малоэффективный межвидовой отбор, конечно, не в состоянии создать такой признак «с нуля»: подобным творческим потенциалом обладает только отбор на более низких уровнях (в первую очередь на уровне генов и особей).

Новое на сайте

>

Самое популярное