Домой Ягоды Неподвижная наклонная плоскость наклонена под углом. Проецирование сил. Движение по наклонной плоскости

Неподвижная наклонная плоскость наклонена под углом. Проецирование сил. Движение по наклонной плоскости

Цель работы – экспериментальное определение работы силы трения при скольжении груза по наклонной плоскости.

1. Теоретическая часть

Рис.1. Брусок на наклонной плоскости

На брусок массой m , находящийся на наклонной плоскости, действуют несколько сил (рис.1) – сила тяжести
, сила нормальной реакции опорыи сила трения. Под действием этих сил брусок может двигаться или находиться в состоянии покоя.

Рассмотрим сначала состояние покоя, когда равнодействующая всех сил равна нулю:

(1)

где
– сила трения покоя. Введем оси координат так, как показано на рис. 1. Поскольку
то проекция уравнения (1) на осьдает

Т.о. в состоянии покоя сила трения покоя уравновешивает скатывающую силу

Если увеличивать угол наклона
то при некотором его предельном значении
этот баланс нарушится, и брусок начнет соскальзывать с наклонной плоскости. В момент начала соскальзывания сила трения покоя
принимает максимальное значение, равное силе трения скольжения

.

По закону Амонтона - Кулона сила трения скольжения по модулю равна

,

где – коэффициент трения.

Скольжение бруска по наклонной плоскости описывается уравнением динамики

(2)

Проекция уравнения (2) на ось y дает

.

.

На рис.2 показана зависимость сил трения покоя и трения скольжения от угла наклона
Каждая их этих зависимостей имеет свою область определения. Для функции
она лежит в пределах
. Область определения функции
лежит в интервале
. Вне этих областей обе функции не имеют физического смысла.

Рис.2. Зависимости
и
в функции от угла

Как видно из рис. 2, с ростом угла
сила трения покоя изменяется по синусоидальному закону, а сила трения скольжения изменяется по закону косинуса. Пересечение этих двух функций происходит при угле
, при достижении которого брусок начнет скользить вниз по наклонной плоскости. Значение
находится из равенства

откуда можно найти коэффициент трения

(3)

Измерив длину пути l бруска по наклонной плоскости и угол ее наклона
, можно определить работу силы трения по предельному углу
и соответствующему коэффициенту трения

Теперь заставим брусок массы m 1 скользить не вниз, а вверх по наклонной плоскости. Для этого (см. рис. 3) привяжем к бруску конец нити, перекинутой через блок; на другом конце нити привяжем груз массы m 2 , при опускании которого нить будет тянуть брусок вверх по наклонной плоскости с ускорением а .

Рис. 3. Схема системы наклонная плоскость – брусок-груз.

На длине пути l вдоль наклонной плоскости (координата ) брусок массойm 1 , при перемещении из т. 1- состояния покоя в т. 2 приобретает некоторую скорость и соответственно кинетическую энергию
Кинетическая энергия может быть рассчитана как суммарная работа всех сил, приложенных к бруску:

. –работа скатывающей силы,

так как

-работа силы натяжения нити.

Далее будем считать, что нить и блок невесомы, поэтому натяжение нити по обе стороны от блока одинаково: Т 1 = Т 2 = Т . Уравнение движения (второй закон Ньютона) груза m 2 в проекции на ось у дает

откуда имеем значение Т

Высота опускания груза по законам кинематики равна:

Поэтому ускорение груза можно выразить через измеряемые величины - высоту h и время  спуска груза m 2 -

Все тела рассматриваемой системы связаны нерастяжимой нитью и, следовательно, движутся с одинаковой скоростью и ускорением. Поэтому скорость бруска массы m 1 в конце отрезка пути длиной l (положение 2) равна

.

С учетом измеренных и рассчитанных величин уравнение (5) перепишется в виде

,

Учтем, что длина участка 1-2 подъема бруска по наклонной плоскости равна высотеопускания груза (
), тогда из (5) получимвыражение для определения работы силы трения
по кинематическим параметрам (углу наклона
,длине и времени )перемещения бруска по наклонной плоскости

. (7)

Приборы и пренадлежности:

1. Лабораторная установка.

В данной статье рассказывается о том, как решать задачи про движение по наклонной плоскости. Рассмотрено подробное решение задачи о движении связанных тел по наклонной плоскости из ЕГЭ по физике.

Решение задачи о движении по наклонной плоскости

Прежде чем перейти непосредственно к решению задачи, как репетитор по математике и физике, рекомендую тщательно проанализировать ее условие. Начать нужно с изображения сил, которые действуют на связанные тела:

Здесь и — силы натяжения нити, действующие на левое и правое тело, соответственно, — сила реакции опоры, действующая на левое тело, и — силы тяжести, действующие на левое и правое тело, соответственно. С направлением этих сил все понятно. Сила натяжения направлена вдоль нити, сила тяжести вертикально вниз, а сила реакции опоры перпендикулярно наклонной плоскости.

А вот с направлением силы трения придется разбираться отдельно. Поэтому на рисунке она изображена пунктирной линией и подписана со знаком вопроса. Интуитивно понятно, что если правый груз будет «перевешивать» левый, то сила трения будет направлена противоположно вектору . Наоборот, если левый груз будет «перевешивать» правый, то сила трения будет сонаправлена с вектором .

Правый груз тянет вниз сила Н. Здесь мы взяли ускорение свободного падения м/с 2 . Левый груз вниз тоже тянет сила тяжести, но не вся целиком, а только ее «часть», поскольку груз лежит на наклонной плоскости. Эта «часть» равна проекции силы тяжести на наклонную плоскости, то есть катету в прямоугольном треугольнике , изображенном на рисунке, то есть равна Н.

То есть «перевешивает» все-таки правый груз. Следовательно, сила трения направлена так, как показано на рисунке (мы ее нарисовали от центра масс тела, что возможно в случае, когда тело можно моделировать материальной точкой):

Второй важный вопрос, с которым нужно разобраться, будет ли вообще двигаться эта связанная система? Вдруг окажется так, что сила трения между левым грузом и наклонной плоскостью будет настолько велика, что не даст ему сдвинуться с места?

Такая ситуация будет возможна в том случае, когда максимальная сила трения, модуль которой определяется по формуле (здесь — коэффициент трения между грузом и наклонной плоскостью, — сила реакции опоры, действующая на груз со стороны наклонной плоскости), окажется больше той силы, которая старается привести систему с движение. То есть той самой «перевешивающей» силы, которая равна Н.

Модуль силы реакции опоры равен длине катета в треугольнике по 3-музакону Ньютона (с какой по величине силой груз давит на наклонную плоскость, с такой же по величине силой наклонная плоскость действует на груз). То есть сила реакции опоры равна Н. Тогда максимальная величина силы трения составляет Н, что меньше, чем величина «перевешивающей силы».

Следовательно, система будет двигаться, причем двигаться с ускорением. Изобразим на рисунке эти ускорения и оси координат, которые нам понадобятся далее при решении задачи:

Теперь, после тщательного анализа условия задачи, мы готовы приступить к ее решению.

Запишем 2-ой закон Ньютона для левого тела:

А в проекции на оси координатной системы получаем:

Здесь с минусом взяты проекции, векторы которых направлен против направления соответствующей оси координат. С плюсом взяты проекции, векторы которых сонаправлен с соответствующей осью координат.

Еще раз подробно объясним, как находить проекции и . Для этого рассмотрим прямоугольный треугольник , изображенный на рисунке. В этом треугольнике и . Также известно, что в этом прямоугольном треугольнике . Тогда и .

Вектор ускорения целиком лежит на оси , поэтому и . Как мы уже вспоминали выше, по определению модуль силы трения равен произведению коэффициента трения на модуль силы реакции опоры. Следовательно, . Тогда исходная система уравнений принимает вид:

Запишем теперь 2-ой закон Ньютона для правого тела:

В проекции на ось получаем.

Движение тела по наклонной плоскости - это классический пример движения тела под действием нескольких несонаправленных сил. Стандартный метод решения задач о такого рода движении состоит в разложении векторов всех сил по компонентам, направленным вдоль координатных осей. Такие компоненты являются линейно независимыми. Это позволяет записать второй закон Ньютона для компонент вдоль каждой оси отдельно. Таким образом второй закон Ньютона, представляющий собой векторное уравнение, превращается в систему из двух (трех для трехмерного случая) алгебраических уравнений.

Силы, действующие на брусок,
случай ускоренного движения вниз

Рассмотрим тело, которое соскальзывает вниз по наклонной плоскости. В этом случае на него действуют следующие силы:

  • Сила тяжести mg , направленная вертикально вниз;
  • Сила реакции опоры N , направленная перпендикулярно плоскости;
  • Сила трения скольжения F тр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела)

При решении задач, в которых фигурирует наклонная плоскость часто удобно ввести наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg , а вектора силы трения F тр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α ) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α ) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.
Сила трения скольжения F тр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: F тр = µmg cos(α ). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз , получаем выражения суммарной равнодействующей силы и ускорения:

F x = mg (sin(α ) – µ cos(α ));
a x = g (sin(α ) – µ cos(α )).

Не трудно видеть, что если µ < tg(α ), то выражение имеет положительный знак и мы имеем дело с равноускоренным движением вниз по наклонной плоскости. Если же µ > tg(α ), то ускорение будет иметь отрицательный знак и движение будет равнозамедленным. Такое движение возможно только в случае, если телу придана начальная скорость по направлению вниз по склону. В этом случае тело будет постепенно останавливаться. Если при условии µ > tg(α ) предмет изначально покоится, то он не будет начинать соскальзывать вниз. Здесь сила трения покоя будет полностью компенсировать «тянущую» компоненту силы тяжести.



Когда коэффициент трения в точности равен тангенсу угла наклона плоскости: µ = tg(α ), мы имеем дела с взаимной компенсацией всех трех сил. В этом случае, согласно первому закону Ньютона тело может либо покоиться, либо двигаться с постоянной скоростью (При этом равномерное движение возможно только вниз).

Силы, действующие на брусок,
скользящий по наклонной плоскости:
случай замедленного движения вверх

Однако, тело может и заезжать вверх по наклонной плоскости. Примером такого движения является движение хоккейной шайбы вверх по ледяной горке. Когда тело движется вверх, то и сила трения и «тянущая» компонента силы тяжести направлены вниз вдоль наклонной плоскости. В этом случае мы всегда имеем дело с равнозамедленным движением, поскольку суммарная сила направлена в противоположную скорости сторону. Выражение для ускорения для этой ситуации получается аналогичным образом и отличается только знаком. Итак для тела, скользящего вверх по наклонной плоскости , имеем.

Наклонная плоскость представляет собой плоскую поверхность, расположенную под тем или иным углом к горизонтали. Она позволяет поднять груз с меньшей силой, чем если бы этот груз поднимался вертикально вверх. На наклонной плоскости груз поднимается вдоль этой плоскости. При этом он преодолевает большее расстояние, чем если бы поднимался вертикально.

Примечание 1

Причем во сколько раз происходит выигрыш в силе, во столько раз будет больше расстояние, которое преодолеет груз.

Рисунок 1. Наклонная плоскость

Если высота, на которую надо поднять груз, равна $h$, и при этом затрачивалась бы сила $F_h$, а длина наклонной плоскости $l$, и при этом затрачивается сила $F_l$, то $l$ так относится к $h$, как $F_h$ относится к $F_l$: $l/h = F_h/F_l$... Однако $F_h$ - это вес груза ($P$). Поэтому обычно записывают так: $l/h = P/F$, где $F$ - сила, поднимающая груз.

Величина силы $F$, которую надо приложить к грузу весом $Р$, чтобы тело находилось в равновесии на наклонной плоскости, равна $F_1 = Р_h/l = Рsin{\mathbf \alpha }$, если сила $Р$ приложена параллельно наклонной плоскости (рис.2, а), и $F_2$ = $Р_h/l = Рtg{\mathbf \alpha }$, если сила $Р$ приложена параллельно основанию наклонной плоскости (рис.2, б).

Рисунок 2. Движение груза по наклонной плоскости

а) сила параллельна плоскости б) сила параллельна основанию

Наклонная плоскость дает выигрыш в силе, с ее помощью можно легче поднять груз на высоту. Чем меньше угол $\alpha $, тем больше выигрыш в силе. Если угол $\alpha $ меньше угла трения, то груз самопроизвольно не будет двигаться, и нужно усилие, чтобы тянуть его вниз.

Если учесть силы трения между грузом и наклонной плоскостью, то для $F_1$ и $F_2$ получаются следующие значения: $F_1=Рsin($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)/cos${\mathbf \varphi }$; $F_2=Рtg($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)

Знак плюс относится к передвижению вверх, знак минус - к опусканию груза. Коэффициент полезного действия наклонной плоскости ${\mathbf \eta }$1=sin${\mathbf \alpha }$cos${\mathbf \alpha }$/sin(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно плоскости, и ${\mathbf \eta }$2=tg${\mathbf \alpha }$/tg(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно основанию наклонной плоскости.

Наклонная плоскость подчиняется «золотому правилу механики». Чем меньше угол между поверхностью и наклонной плоскостью (т. е. чем она более пологая, не круто поднимающаяся вверх), тем меньше надо прикладывать сил для подъема груза, но и большее расстояние необходимо будет преодолеть.

При отсутствии сил трения выигрыш в силе $K = P/F = 1/sin$$\alpha = l/h$. В реальных условиях из-за действия силы трения КПД наклонной плоскости меньше 1, выигрыш в силе меньше отношения $l/h$.

Пример 1

Груз массой 40 кг поднимают по наклонной плоскости на высоту 10 м при этом прикладывая силу 200 Н (рис.3). Какова длина наклонной плоскости? Трением пренебречь.

${\mathbf \eta }$ = 1

При движении тела по наклонной плоскости отношение прилагаемой силы к весу тела равно отношению длины наклонной плоскости к её высоте: $\frac{F}{P}=\frac{l}{h}=\frac{1}{{sin {\mathbf \alpha }\ }}$. Следовательно, $l=\frac{Fh}{mg}=\ \frac{200\cdot 10}{40\cdot 9,8}=5,1\ м$.

Ответ: Длина наклонной плоскости 5,1 м

Пример 2

Два тела с массами $m_1$ = 10 г и $m_2$ = 15 г связаны нитью, перекинутой через неподвижный блок, установленный на наклонной плоскости (рис. 4). Плоскость образует с горизонтом угол $\alpha $ = 30${}^\circ$. Найти ускорение, с которым будут двигаться эти тела.

${\mathbf \alpha }$ = 30 градусов

$g$ = 9.8 $м/c_2$

Направим ось ОХ вдоль наклонной плоскости, а ось ОY - перпендикулярно ей, и спроектируем на эти оси вектора $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$. Как видно из рисунка, равнодействующая сил, приложенных к каждому из тел, равна разности проекций векторов $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$ на ось ОХ:

\[\left|\overrightarrow{R}\right|=\left|P_{2x}-P_{1x}\right|=\left|m_2g{sin \alpha \ }-m_1g{sin \alpha \ }\right|=g{sin \alpha \left|m_2-m_1\right|\ }\] \[\left|\overrightarrow{R}\right|=9.8\cdot {sin 30{}^\circ \ }\cdot \left|0.015-0.01\right|=0.0245\ H\] \

Ответ: Ускорения тел $a_1=2,45\frac{м}{с^2};\ \ \ \ \ \ a_2=1,63\ м/с^2$

Напомним: когда говорят о гладкой поверхности, подразумевают, что трением между телом и этой поверхностью можно пренебречь.

На тело массой m, находящееся на гладкой наклонной плоскости, действуют сила тяжести m и сила нормальной реакции (рис. 19.1).

Удобно ось x направить вдоль наклонной плоскости вниз, а ось y – перпендикулярно наклонной плоскости вверх (рис. 19.1). Угол наклона плоскости обозначим α.

Уравнение второго закона Ньютона в векторной форме имеет вид

1. Объясните, почему справедливы следующие уравнения:


2. Чему равна проекция ускорения тела на ось x?

3. Чему равен модуль силы нормальной реакции?

4. При каком угле наклона ускорение тела на гладкой плоскости в 2 раза меньше ускорения свободного падения?

5. При каком угле наклона плоскости сила нормальной реакции в 2 раза меньше силы тяжести?

При выполнении следующего задания полезно заметить, что ускорение тела, находящегося на гладкой наклонной плоскости, не зависит от направления начальной скорости тела.

6. Шайбу толкнули вверх вдоль гладкой наклонной плоскости с углом наклона α. Начальная скорость шайбы v 0 .
а) Какой путь пройдет шайба до остановки?
б) Через какой промежуток времени шайба вернется в начальную точку?
в) С какой скоростью шайба вернется в начальную точку?

7. Брусок массой m находится на гладкой наклонной плоскости с углом наклона α.
а) Чему равен модуль силы, удерживающей брусок на наклонной плоскости, если сила направлена вдоль наклонной плоскости? Горизонтально?
б) Чему равна сила нормальной реакции, когда сила направлена горизонтально?

2. Условие покоя тела на наклонной плоскости

Будем теперь учитывать силу трения между телом и наклонной плоскостью.

Если тело покоится на наклонной плоскости, на него действуют сила тяжести m, сила нормальной реакции и сила трения покоя тр.пок (рис. 19.2).

Сила трения покоя направлена вдоль наклонной плоскости вверх: она препятствует соскальзыванию бруска. Следовательно, проекция этой силы на ось x, направленную вдоль наклонной плоскости вниз, отрицательна:

F тр.пок x = –F тр.пок

8. Объясните, почему справедливы следующие уравнения:


9. На наклонной плоскости с углом наклона α покоится брусок массой m. Коэффициент трения между бруском и плоскостью равен μ. Чему равна действующая на брусок сила трения? Есть ли в условии лишние данные?

10. Объясните, почему условие покоя тела на наклонной плоскости выражается неравенством

Подсказка. Воспользуйтесь тем, что сила трения покоя удовлетворяет неравенству F тр.пок ≤ μN.

Последнее неравенство можно использовать для измерения коэффициента трения: угол наклона плоскости плавно увеличивают, пока тело не начинает скользить по ней (см. лабораторную работу 4).

11.Лежащий на доске брусок начал скользить по доске, когда ее угол наклона к горизонту составил 20º. Чему равен коэффициент трения между бруском и доской?

12. Кирпич массой 2,5 кг лежит на доске длиной 2 м. Коэффициент трения между кирпичом и доской равен 0,4.
а) На какую максимальную высоту можно поднять один конец доски, чтобы кирпич не сдвинулся?
б) Чему будет равна при этом действующая на кирпич сила трения?

Сила трения покоя, действующая на тело, находящееся на наклонной плоскости, не обязательно направлена вдоль плоскости вверх. Она может быть направлена и вниз вдоль плоскости!

13. Брусок массой m находится на наклонной плоскости с углом наклона α. Коэффициент трения между бруском и плоскостью равен μ, причем и μ < tg α. Какую силу надо приложить к бруску вдоль наклонной плоскости, чтобы сдвинуть его вдоль наклонной плоскости:
а) вниз? б) вверх?

3. Движение тела по наклонной плоскости с учетом трения

Пусть теперь тело скользит по наклонной плоскости вниз (рис. 19.3). При этом на него действует сила трения скольжения, направленная противоположно скорости тела, то есть вдоль наклонной плоскости вверх.

? 15. Изобразите на чертеже в тетради силы, действующие на тело, и объясните, почему справедливы следующие уравнения:

16. Чему равна проекция ускорения тела на ось x?

17. Брусок скользит по наклонной плоскости вниз. Коэффициент трения между бруском и плоскостью равен 0,5. Как изменяется со временем скорость бруска, если угол наклона плоскости равен:
а) 20º? б) 30º? в) 45º? г) 60º?

18. Брусок начинает скользить по доске, когда ее наклоняют на угол 20º к горизонту. Чему ранен коэффициент трения между бруском и доской? С каким по величине и направлению ускорением будет скользить брусок вниз по доске, наклоненной на угол 30º? 15º?

Пусть теперь начальная скорость тела направлена вверх (рис. 19.4).

19. Изобразите на чертеже в тетради силы, действующие на тело, и объясните, почему справедливы следующие уравнения:


20. Чему равна проекция ускорения тела на ось x?

21. Брусок начинает скользить по доске, когда ее наклоняют на угол 20º к горизонту. Брусок толкнули вверх по доске. С каким ускорением он будет двигаться, если доска наклонена на угол: а) 30º? б) 15º? В каком из этих случаев брусок остановится в верхней точке?

22.Шайбу толкнули вверх по наклонной плоскости с начальной скоростью v 0 . Угол наклона плоскости α, коэффициент трения между шайбой и плоскостью μ. Спустя некоторое время шайба вернулась в начальное положение.
а) Сколько времени двигалась шайба вверх до остановки?
б) Какой путь прошла шайба до остановки?
в) Сколько времени после этого шайба возвращалась в начальное положение?

23. После толчка брусок двигался в течение 2 с вверх по наклонной плоскости и затем в течение 3 с вниз до возвращения в начальное положение. Угол наклона плоскости 45º.
а) Во сколько раз модуль ускорения бруска при движении вверх больше, чем при движении вниз?
б) Чему равен коэффициент трения между бруском и плоскостью?

Дополнительные вопросы и задания

24. Брусок соскальзывает без начальной скорости с гладкой наклонной плоскости высотой h (рис. 19.5). Угол наклона плоскости равен α. Какова скорость бруска в конце спуска? Есть ли здесь лишние данные?

25. (Задача Галилея) В вертикальном диске радиуса R просверлен прямолинейный гладкий желоб (рис. 19.6). Чему равно время соскальзывания бруска вдоль всего желоба из состояния покоя? Угол наклона желоба α, в начальный момент брусок покоится.

26. По гладкой наклонной плоскости с углом наклона α скатывается тележка. На тележке установлен штатив, на котором на нити подвешен груз. Сделайте чертеж, изобразите силы, действующие на груз. Под каким углом к вертикали расположена нить, когда груз покоится относительно тележки?

27. Брусок находится на вершине наклонной плоскости длиной 2 м и высотой 50 см. Коэффициент трения между бруском и плоскостью 0,3.
а) С каким по модулю ускорением будет двигаться брусок, если толкнуть его вниз вдоль плоскости?
б) Какую скорость надо сообщить бруску, чтобы он достиг основания плоскости?

28. Тело массой 2 кг находится на наклонной плоскости. Коэффициент трения между телом и плоскостью 0,4.
а) При каком угле наклона плоскости достигается наибольшее возможное значение силы трения?
б) Чему равно наибольшее значение силы трения?
в) Постройте примерный график зависимости силы трения от угла наклона плоскости.
Подсказка. Если tg α ≤ μ, на тело действует сила трения покоя, а если tg α > μ – сила трения скольжения.

Новое на сайте

>

Самое популярное