Домой Грибы Иностранная система связи с коммутацией каналов. Общие свойства сетей с коммутацией каналов. Методические указания по разделам курса

Иностранная система связи с коммутацией каналов. Общие свойства сетей с коммутацией каналов. Методические указания по разделам курса

Классификация сетей.

По территориальной распространенности

PAN (Personal Area Network) - персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

LAN (Local Area Network) - локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин «LAN» может описывать и маленькую офисную сеть, и сеть уровня большого завода, занимающего несколько сотен гектаров. Зарубежные источники дают даже близкую оценку - около шести миль (10 км) в радиусе. Локальные сети являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

CAN (Campus Area Network - кампусная сеть) - объединяет локальные сети близко расположенных зданий.

MAN (Metropolitan Area Network) - городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

WAN (Wide Area Network) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame relay), через которую могут «разговаривать» между собой различные компьютерные сети. Глобальные сети являются открытыми и ориентированы на обслуживание любых пользователей.

Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По типу функционального взаимодействия

Клиент-сервер,Смешанная сеть,Одноранговая сеть,Многоранговые сети

По типу сетевой топологии

Шина, Кольцо, Двойное кольцо, Звезда, Ячеистая, Решётка, Дерево, Fat Tree

По типу среды передачи

Проводные (телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель)

Беспроводные (передачей информации по радиоволнам в определенном частотном диапазоне)

По функциональному назначению

Сети хранения данных, Серверные фермы, Сети управления процессом, Сети SOHO, домовые сети

По скорости передач

низкоскоростные (до 10 Мбит/с), среднескоростные (до 100 Мбит/с), высокоскоростные (свыше 100 Мбит/с);

По необходимости поддержания постоянного соединения

Пакетная сеть, например Фидонет и UUCP, Онлайновая сеть, например Интернет и GSM

Сети с коммутацией каналов

Одним из важнейших вопросов в компьютерных сетях является вопрос о коммутации. В понятие коммутация входит:

1. механизм распределения маршрута при передаче данных

2. синхронное использование канала связи

Об одном из способов решения задачи коммутации мы и поговорим, а именно о сетях с коммутацией каналов. Но нужно заметить, что это не единственный способ решения стоящей задачи в компьютерных сетях. Но перейдем ближе к сути вопроса. Сети с коммутацией каналов образуют между конечными узлами общий и неразрывный физический участок (канал) связи, через который проходят данных с одинаковой скоростью. Надо заметить, что одинаковая скорость достигается из-за отсутствия "остановки" на отдельных участках, так как маршрут заранее известен.

Установка связи в сетях с коммутацией каналов всегда начинается первой, ведь нельзя проложить маршрут к нужной цели, не подключившись. А после установки соединения можно смело передавать нужные данные. Давайте взглянем на преимущества сетей с коммутацией каналов:

1. скорость при передаче данных всегда одна и таже

2. нет задержки на узлах при передачи данных, что важно при различных On-line событиях (конференции, общение, видео-трансляции)

Ну а теперь и о недостатках надо сказать пару слов:

1. не всегда можно установить соединение, т.е. иной раз сеть может быть занята

2. мы не может сразу передавать данные без предварительной установки связи, т.е. теряется время

3. не очень эффективное использование физических каналов связи

Про последний минус поясню: при создании физического канала связи мы полностью занимаем все линию, не оставляя возможности другим подключиться к ней.

В свою очередь сети с коммутацией каналов разделяются на 2 типа, использующих разных технологических подход:

1. коммутация каналов на основе частотного мультиплексирования (FDM)

Схема работы такова:

1. на входы коммутатора каждый пользователь передает сигнал

2. все сигналы с с помощью коммутатора заполняют полосы ΔF методом частотной модуляции сигнала

2. коммутация каналов на основе временного мультиплексирования (TDM)

Принцип коммутации каналов на основе временно мультиплексирования достаточно просто. Он основан на временном разделении, т.е. поочередно происходит обслуживание каждого из каналов связи, причем отрезок времени, для отправки сигнала абоненту, строго определен.

3.Коммутация пакетов
Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика. Первые шаги на пути создания компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер - и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может достигать 1:50 или даже 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут закреплены за данной парой абонентов и будут недоступны другим пользователям сети.

При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения (рис. 3). Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге - узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 3). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсацию трафика на магистральных связях между коммутаторами и тем самым наиболее эффективно использовать их для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. В таком случае время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее, общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени так, что их пики не совпадают. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 4 показано, что трафик, поступающий от конечных узлов на коммутаторы, распределен во времени очень неравномерно. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования. Буферизация сглаживает пульсации, поэтому коэффициент пульсации на магистральных каналах гораздо ниже, чем на каналах абонентского доступа - он может быть равным 1:10 или даже 1:2.

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока ее выполнение не завершится. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.
Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, но повышает пропускную способность сети в целом.

Задержки в источнике передачи:

· время на передачу заголовков;

· задержки, вызванные интервалами между передачей каждого следующего пакета.

Задержки в каждом коммутаторе:

· время буферизации пакета;

· время коммутации, которое складывается из:

o времени ожидания пакета в очереди (переменная величина);

o времени перемещения пакета в выходной порт.

Достоинства коммутации пакетов

1. Высокая общая пропускная способность сети при передаче пульсирующего трафика.

2. Возможность динамически перераспределять пропускную способность физических каналов связи между абонентами в соответствии с реальными потребностями их трафика.

Недостатки коммутации пакетов

1. Неопределенность скорости передачи данных между абонентами сети, обусловленная тем, что задержки в очередях буферов коммутаторов сети зависят от общей загрузки сети.

2. Переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети.

3. Возможные потери данных из-за переполнения буферов.
В настоящее время активно разрабатываются и внедряются методы, позволяющие преодолеть указанные недостатки, которые особенно остро проявляются для чувствительного к задержкам трафика, требующего при этом постоянной скорости передачи. Такие методы называются методами обеспечения качества обслуживания (Quality of Service, QoS).

Сети с коммутацией пакетов, в которых реализованы методы обеспечения качества обслуживания, позволяют одновременно передавать различные виды трафика, в том числе такие важные как телефонный и компьютерный. Поэтому методы коммутации пакетов сегодня считаются наиболее перспективными для построения конвергентной сети, которая обеспечит комплексные качественные услуги для абонентов любого типа. Тем не менее, нельзя сбрасывать со счетов и методы коммутации каналов. Сегодня они не только с успехом работают в традиционных телефонных сетях, но и широко применяются для образования высокоскоростных постоянных соединений в так называемых первичных (опорных) сетях технологий SDH и DWDM, которые используются для создания магистральных физических каналов между коммутаторами телефонных или компьютерных сетей. В будущем вполне возможно появление новых технологий коммутации, в том или ином виде комбинирующих принципы коммутации пакетов и каналов.

4.VPN (англ. Virtual Private Network - виртуальная частная сеть ) - обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети (например, Интернет). Несмотря на то, что коммуникации осуществляются по сетям с меньшим неизвестным уровнем доверия (например, по публичным сетям), уровень доверия к построенной логической сети не зависит от уровня доверия к базовым сетям благодаря использованию средств криптографии (шифрования, аутентификации, инфраструктуры открытых ключей, средств для защиты от повторов и изменений передаваемых по логической сети сообщений).

В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: узел-узел ,узел-сеть и сеть-сеть . Обычно VPN развёртывают на уровнях не выше сетевого, так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы (такие какTCP, UDP).

Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети - PPTP, причём используемую зачастую не для создания частных сетей.

Чаще всего для создания виртуальной сети используется инкапсуляция протокола PPP в какой-нибудь другой протокол - IP (такой способ использует реализация PPTP - Point-to-Point Tunneling Protocol) или Ethernet (PPPoE) (хотя и они имеют различия). Технология VPN в последнее время используется не только для создания собственно частных сетей, но и некоторымипровайдерами «последней мили» на постсоветском пространстве для предоставления выхода в Интернет.

При должном уровне реализации и использовании специального программного обеспечения сеть VPN может обеспечить высокий уровень шифрования передаваемой информации. При правильной настройке всех компонентов технология VPN обеспечивает анонимность в Сети.

VPN состоит из двух частей: «внутренняя» (подконтрольная) сеть, которых может быть несколько, и «внешняя» сеть, по которой проходит инкапсулированное соединение (обычно используется Интернет). Возможно также подключение к виртуальной сети отдельного компьютера. Подключение удалённого пользователя к VPN производится посредством сервера доступа, который подключён как к внутренней, так и к внешней (общедоступной) сети. При подключении удалённого пользователя (либо при установке соединения с другой защищённой сетью) сервер доступа требует прохождения процесса идентификации, а затем процесса аутентификации. После успешного прохождения обоих процессов, удалённый пользователь (удаленная сеть) наделяется полномочиями для работы в сети, то есть происходит процесс авторизации. Классифицировать VPN решения можно по нескольким основным параметрам:

[править]По степени защищенности используемой среды

Защищённые

Наиболее распространённый вариант виртуальных частных сетей. С его помощью возможно создать надежную и защищенную сеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.

Доверительные

Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Проблемы безопасности становятся неактуальными. Примерами подобных VPN решений являются: Multi-protocol label switching (MPLS) и L2TP (Layer 2 Tunnelling Protocol) (точнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).

[править]По способу реализации

В виде специального программно-аппаратного обеспечения

Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.

В виде программного решения

Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.

Интегрированное решение

Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.

[править]По назначению

Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.

Remote Access VPN

Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера, корпоративного ноутбука, смартфона или интернет-киоскa.

Используют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.

Используется для предоставления доступа к интернету провайдерами, обычно в случае если по одному физическому каналу подключаются несколько пользователей.

Client/Server VPN

Он обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. Такая необходимость очень часто возникает в тех случаях, когда в одной физической сети необходимо создать несколько логических сетей. Например, когда надо разделить трафик между финансовым департаментом и отделом кадров, обращающихся к серверам, находящимся в одном физическом сегменте. Этот вариант похож на технологию VLAN, но вместо разделения трафика, используется его шифрование.

[править]По типу протокола

Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его. Адресация в нём чаще всего выбирается в соответствии со стандартом RFC5735, из диапазона Приватных сетей TCP/IP

[править]По уровню сетевого протокола

По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

5. Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

· горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах

· вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.


Похожая информация.


В сетях с коммутацией каналов между вызывающей и вызываемой оконечными установками в течение всего времени передачи имеется сквозное соединение (рис. 3.3).

Рис. 3.3. Сегь с коммутацией каналов

Соединительный тракт состоит из ряда участков, которые в процессе установления соединения включаются последовательно друг за другом. Он является «прозрачным» в отношении кодов, используемых в оконечных установках при передаче данных, и методов управления. Время распространения сигнала данных по соединительному тракту постоянно.

В сеансе связи различают три фазы: установление соединения, передачу данных и разъединение соединения (см. рис. 3.1 а). Процессом установления соединения управляет вызывающая

оконечная установка, которая посылает в свой коммутационный узел сигнал вызова, получает от узла ответный сигнал (приглашение к набору номера) и вслед за этим передает в узел адресную информацию (знаки набора номера). Коммутационный узел обрабатывает эту информацию, занимает один из каналов в пучке, ведущем к следующему коммутационному узлу, и передает последнему знаки набора, необходимые для дальнейшего установления соединения. Таким образом постепенно по участкам вплоть до вызываемой оконечной установки образуется соединительный тракт. После завершения этого процесса от сети на вызывающую и вызываемую оконечные установки поступают сигналы, извещающие о том, что соединение включено и готово к передаче данных.

С этого момента ход передачи данных определяется оконечной установкой. В оконечной установке (автоматически или с участием абонента) принимается решение о мерах, которые необходимо принять для обнаружения и исправления ошибок передачи. Меры могут быть различными в зависимости от тех или иных условий работы.

Разъединение может быть начато любой из двух связанных между собой оконечных установок с помощью сигнала отбоя. По этому сигналу все коммутационные узлы, участвующие в образовании соединительного тракта, отключают соединения.

Среди сетей передачи данных с коммутацией каналов различают два типа: синхронные и асинхронные сети.

3.3.1. АСИНХРОННЫЕ СЕТИ С КОММУТАЦИЕЙ КАНАЛОВ

3.3.1.1. ОТЛИЧИТЕЛЬНЫЕ ПРИЗНАКИ АСИНХРОННЫХ СЕТЕЙ

В асинхронных сетях общая синхронизация по элементам отсутствует и для сети не задаются единые «такты». Отдельные АПД и коммутационные устройства имеют самостоятельные, независимые друг от друга тактовые генераторы.

На рис. 3.4 схематически изображена структура такой сети с оконечными установками, многоканальным оборудованием и коммутационными узлами. Для связи оконечных установок с коммутационными узлами используются абонентские линии и каналы многоканальных систем. Коммутационные узлы соединены между собой пучками каналов. Перед узлами пучки расщепляются на отдельные каналы.

Расщепление допускает определенную свободу в организации сети. Например, при передаче по линиям связи могут применяться системы как частотного, так и временного разделения каналов (см. разд. 1.4.2), в узлах сети может устанавливаться аппаратура как пространственной, так и временной коммутации каналов (см. том 1, разд. 6.1.3, а также ). Такая свобода в выборе

Рис. 3.4. Асинхронная сеть с коммутацией каналов

Каналообразующей и коммутационной аппаратуры необходима, в частности, при организации телеграфной связи и передачи данных по общей сети, когда в первую очередь должно использоваться уже имеющееся оборудование телеграфной сети, например, системы тонального телеграфирования (см, разд. 1.4.2.2). Тогда по мере технических и экономических возможностей указанное оборудование постепенно может дополняться или заменяться более совершенным, основанным на новых разработках в области техники связи.

Как показано на рис. 3.4, соединительный тракт между вызывающей и вызываемой оконечными установками состоит из нескольких участков, которые через коммутационные узлы последовательно включены друг за другом. Так как каждый участок тракта передачи и каждый коммутационный узел вносят свою долю в общее искажение передаваемого сигнала данных, то передачу и коммутацию необходимо осуществлять с возможно меньшими искажениями.

Требование минимума искажений важно в первую очередь для неизохронных сигналов, которые принципиально не поддаются коррекции. Изохронные сигналы данных, напротив, могут корректироваться на каждом участке тракта передачи и в каждом коммутационном узле. В системах временного разделения, имеющих синхронные каналы или каналы с образованием знаковых циклов (см. разд. 1.4.2.3), коррекция осуществляется автоматически. В системах частотного разделения, которые допускают передачу с варьируемой скоростью, т. е. являются «прозрачными» (см. 1.4.2.2) для коррекции необходимо устанавливать дополнительные устройства. Однако из-за высоких затрат от этого обычно отказываются, вследствие чего в таких случаях передача и коммутация также должны осуществляться с возможно меньшими искажениями.

3.3.1.2. СИСТЕМЫ ПЕРЕДАЧИ С ВРК В АСИНХРОННЫХ СЕТЯХ С КОММУТАЦИЕЙ КАНАЛОВ

В асинхронной сети С коммутацией каналов каждая система передачи с временным разделением (ВРК) имеет свой собственный синхронизм, не зависимый от синхронизма других систем. Вследствие этого тактовые частоты систем с ВРК различны, т. е. соединительный тракт между абонентами состоит из участков с не совсем одинаковыми скоростями передачи.

В системах с временным разделением синхронных каналов (см. разд. 1.4.2.3), в которых каждому поступающему с ООД биту ставится в соответствие один бит в групповом потоке, из-за различия в скоростях передачи может возникнуть явление проскальзывания сигналов с выпадением битов или добавлением лишних. Это означает, что один из битов не передается далее, так как следующая система имеет слишком низкую скорость передачи, или, наоборот, какой-либо из битов оказывается переданным повторно, так как следующая система имеет слишком высокую скорость (рис. 3.5).

Рис. 3.5. Проскальзывание битов в асинхронной сети с коммутацией каналов

Поэтому в системах с ВРК, работающих в асинхронных сетях с коммутацией каналов, необходимо применять специальные способы выравнивания скоростей, при которых за счет исключения или добавления согласующих («пустых») битов в каждом отдельном канале данных достигается согласование со скоростью передачи по каналам соединительного тракта. Иначе говоря, необходимы системы с временным разделением, имеющие каналы с согласованием скоростей - стаффинговые каналы (см. разд. 1.4.2.3).

С явлением проскальзывания битов следует считаться также в случае применения систем временного разделения, имеющих

каналы с образованием знаковых циклов (см. разд. 1.4.2.3). Такие системы должны выявлять знаковые циклы и устранять расхождения скоростей между каналами данных путем укорочения или удлинения стопового элемента.

В системах временного разделения с «прозрачными» каналами (см. разд. 1.4.2.3), преобразующих сигналы ООД в передаваемую последовательность битов путем позиционно-временного кодирования, проблема проскальзывания битов не возникает. Действительно, в этом случае сигнал после каждого участка передачи характеризуется, в принципе, неменяющимися временными соотношениями и таким же передается далее. Конечно, чтобы искажения, возникающие из-за многократного кодирования, были не слишком велики, неизбежная при кодировании ошибка должна оставаться на достаточно низком уровне.

3.3.1.3. ОБОРУДОВАНИЕ ВРЕМЕННОЙ КОММУТАЦИИ КАНАЛОВ В АСИНХРОННЫХ СЕТЯХ

Если к коммутационным узлам асинхронной сети подключены системы с ВРК, имеющие стаффинговые каналы или каналы с образованием знаковых циклов, то в устройствах последовательной временной коммутации по битам (см. том 1, разд. 6.1.3.2) допустимы искажения сигналов данных, составляющие не более половины единичного интервала.

При использовании систем временного разделения с «прозрачными» каналами или систем частотного разделения каналов искажения, возникающие в процессе последовательной коммутации битов, должны быть весьма малыми, так как они входят в суммарное искажение. Хотя в случае изохронных сигналов данных между коммутационной аппаратурой и многоканальной системой передачи можно было бы установить корректор, в нем потребовалось бы осуществлять описанное в разд. 3.3.1.2. согласование скоростей и пришлось бы примириться со связанными с этим затратами.

При наличии стаффинговых каналов и каналов с образованием знаковых циклов может применяться коммутация групп битов, которая обеспечивает более высокую производительность (см. разд. 2. 1.1.1, пример 3, табл. 2.1).

3.3.1.4. СТРУКТУРА АСИНХРОННОЙ СЕТИ С КОММУТАЦИЕЙ КАНАЛОВ

Структура асинхронной сети с коммутацией каналов показана на рис. 3.6, где изображен нижний уровень сети - часть сети от абонентов до коммутационного узла. Абонентские стыки образуют границу между ООД и сетью передачи данных. В местах расположения абонентов находятся также приборы подключения

(ПП), которые обеспечивают сопряжение ООД с сетью (см. разд. 2.2.2). В тех случаях, когда ООД не управляет непосредстственно через цепи данных стыка процессами установления и разъединения соединений, вместо ПП устанавливаются вызывные приборы (ВП), содержащие необходимые для такого управления элементы (см. разд. 2.2.1).

Рис. 3.6. Структура асинхронной сети с коммутацией каналов:

1 - абонентские стыки; 2 - приборы подключения или вызывные приборы; 3 - абонентские линии; 4 - мультиплексоры; 5 - концентраторы; 6 - соединительные линии; 7 - коммутационный узел

Через абонентские линии ПП и ВП связаны с мультиплексорами или концентраторами, которые обычно размещаются в том же месте, где оборудование коммутационной станции телефонной сети. С помощью мультиплексора образуется пучок каналов, число которых равно числу абонентских линий. Концентратор, наоборот, собирает и уплотняет нагрузку абонентских линий, поэтому в пучке должно быть меньше каналов, чем имеется абонентских линий (см. разд. 2.1.1.2).

Коммутационные узлы сети передачи данных устанавливаются в местах расположения центральных коммутационных станций телефонной сети, а при высокой плотности абонентов - и в местах главных коммутационных станций этой сети. Коммутационные узлы верхнего уровня сети передачи данных связаны между собой разветвленной системой линий.

3.3.1.5. СИНХРОНИЗАЦИЯ ОКОНЕЧНОГО ОБОРУДОВАНИЯ ДАННЫХ

Согласно Рекомендациям МККТТ, касающимся абонентских стыков аппаратуры передачи данных при подключении к сети передачи данных синхронного оконечного оборудования (см. разд. 1.1.3), сеть должна обеспечивать подачу на каждое ООД тактового синхросигнала и взаимный синхронизм по элементам между передающим и принимающим ООД. В асинхронных сетях с коммутацией каналов, где внутренняя общесетевая тактовая синхронизация отсутствует, это требование выполняется за счет установки в ПП или ВП тех абонентов, которые имеют синхронное ООД, синхронных тактовых генераторов. Эти генераторы формируют тактовые сигналы передачи и после установления соединения выделяют из поступающих с противоположной стороны сигналов данных тактовые синхросигналы приема. Достигнутый таким способом синхронизм по элементам является индивидуальным для каждого соединения и сохраняется только на то время, пока данное соединение существует.

3.3.1.6. НЕЗАВИСИМОСТЬ ПЕРЕДАЧИ ОТ ПОСЛЕДОВАТЕЛЬНОСТИ БИТОВ В АСИНХРОННЫХ СЕТЯХ

Передача между синхронными оконечными установками не должна зависеть от вида передаваемой последовательности битов. В асинхронных сетях требуемая независимость может быть обеспечена с помощью скремблеров (см. разд. 2.2.1.1, 2.2.2.2) . Согласно этому методу сигналы, поступающие от ООД, в фазе передачи данных скремблируются (их биты перемешиваются) в ПП или ВП на передающей стороне. В ПП или ВП на приемной стороне сигналы восстанавливаются в их первоначальном виде с помощью дескремблера.

Перед началом передачи ПП или ВП включает скремблер и по истечении времени, которое необходимо дескремблеру на противоположной стороне для вхождения в синхронизм, подает на ООД сигнал, разрешающий передачу. С этого момента скремблер обеспечивает наличие в направляемом на коммутационный узел сигнале смен символов даже в том случае, когда ООД выдает длинную последовательность одинаковых символов. Это предотвращает возможность случайного разъединения против желания абонентов, так как длинная последовательность нулей, которая могла бы быть принята за сигнал отбоя, при этом не появляется.

Если же действительно нужно разъединить соединение, то ПП или ВП, управляемые через стык от ООД, отключают скремблер и посылают в линию связи длинную последовательность нулей. Если в течение определенного интервала времени коммутационный узел принимал только символы «0», подряд следующие друг за другом, то он разъединяет соединение.

Передачу можно сделать независимой от последовательности символов (битов) и другим способом: в последовательность битов, выдаваемую ООД, по определенному правилу с помощью ПП или ВП вводить дополнительные биты. Однако данный метод приводит к повышению скорости передачи (см. разд. 3.3.2.5) и поэтому в асинхронных сетях с коммутацией каналов ограничивает свободу в выборе типа АПД.

Рассмотрим электронные цифровые автоматические телефонные станции, выпускаемые предприятиями Республики Беларусь. Это такие станции, как ЦСФ "Неман", ЭАТС "Ф - 50/1000" (обе - производство ОАО"Связьинвест"), АТС "Бета" (производитель - МПОВТ).

Все представленные выше станции обладают типичными достоинствами цифровых АТС (повышение качества передачи и коммутации, расширение спектра предоставляемых услуг, уменьшение объема работ при монтаже и обслуживании и т.д.), но по сравнению с зарубежными аналогами они имеют одно неоспоримое преимущество - цену. Стоимость одного номера в 2-4 раза меньше, чем на аналогичных импортных АТС, а если учесть значительное снижение эксплуатационных расходов в течение 25 лет эксплуатации, то экономический выигрыш будет еще более ощутим. Поэтому неудивительно, что предпочтение на ввод абонентской емкости на местных сетях отдается продукции именно белорусских производителей. Этому также способствует и то обстоятельство, что Государственная Программа импортозамещения предписывает использовать исключительно отечественное оборудование.

Основные технические характеристики ЦАТС, производимых в Республике Беларусь, приведены в таблице 2.1. В то же время нельзя не отметить тот факт, что зарубежные ЦАТС предоставляют абонентам гораздо больший перечень оказываемых услуг. Еще один недостаток ЦАТС, производимых в нашей республике, состоит в малой емкости (до 10000 портов) выпускаемых станций. Отсюда следует вывод: для успешного решения задачи, поставленной в моем дипломном проекте, продукция белорусских предприятий, к сожалению, не подходит .

Таблица 2.1 - Техническая характеристика ЦАТС, производимых в Республике Беларусь

Соединительные;

Абонентские

Наименование параметров

Максимальная абонентская емкость, номеров

Максимальное количество СЛ

Максимальное количество вызовов в ЧНН

Максимальный трафик в ЧНН (Эрл)

Потребляемая мощность на один номер (Вт)

Число портов на 1 плате

Обзор импортных систем коммутации

Для моего дипломного проекта наиболее подходят следующие коммутационные системы: DX-200 фирмы "Telenokia" (Финляндия), SI 2000 фирмы "Iskratel" (Словения), AXE-10 фирмы "Ericsson" (Швеция), EWSD фирмы "Siemens" (Германия), S12 Alkatel фирмы "Alkatel" (Германия).

Электронная цифровая коммутационная система DX-200.Система DX-200 активно используется во всем мире уже в течение многих лет и за это время заслужила уважение своей надежной и качественной работой. Система DX-200 характеризуется временным разделением каналов в коммутационном поле и цифровым способом передачи информации на основе системы передачи ИКМ-30/32. Управление осуществляется по записанной программе с применением распределенных функциональных управляющих устройств, реализованных на микропроцессорах. Система построена по модульному принципу, как аппаратных средств, так и программного обеспечения. Все функциональные блоки и программные средства подразделяются на независимые друг от друга модули. Модули взаимодействуют посредством стандартизированных сигналов.

Cистема DX-200 может использоваться в качестве опорной станции, транзитной станции, а также абонентских концентраторов.Опорная станция обеспечивает установление оконечных соединений между телефонными аппаратами абонентов местных сетей, а также выход на зоновые, междугородние и международние сети. Станции предназначены также для работы на районированных сетях с узлами входящего и исходящего сообщения, а также на сетях без узлообразования. На сетях может использоваться 5-, 6- и 7- значная нумерация, а также смешенная нумерация.

Транзитная станция предназначена для коммутации каналов, пропуска транзитной нагрузки на городскую телефонную станцию и обеспечивает организацию узлов входящего сообщения, узлов исходящего сообщения, узлов входящего междугороднего сообщения, узлов заказно-соединительных линий, совмещенных узлов, объединяющих вышеперечисленные узлы, узлов учрежденческих сетей.

Система DX-200 обеспечивает взаимодействие с существующими на сетях станциями: декадно-шаговыми, координатными, квазиэлектронными автоматическими телефонными станциями, а также со специальными информационными службами городской телефонной станции.

Для абонентов DX-200 предусмотрен целый ряд дополнительных видов услуг:

1) сокращенный набор номера;

3) повторный вызов без нового набора номера;

5) передача вызова в случае занятости вызываемого абонента на другой телефонный аппарат;

6) передача вызова на автоинформатор или телефонистке;

7) определение номера вызываемого абонента.

В системе DX-200 повременной учет стоимости разговора осуществляется при исходящей связи с учетом категории абонентов.

В состав системы DX-200 входят два типа автоматических телефонных станций: DX-210 и DX-220. Станция DX-210 в основном испольуется в качестве автоматической телефонной станции малой емкости . Основные характеристики системы DX-200 приведены в таблице 2.2.

Электронная цифровая коммутационная система SI 2000.Система SI 2000 предназначена для обслуживания телефонных сетей пригородной и сельской местности. Передовая концепция организации сети SI 2000 является базовой стратегией. В противоположность другим решениям данная концепция обеспечивает несравнимую экономическую выгоду и гибкость. Сети связи многих стран большей частью являются еще аналоговыми, и осуществить немедленную цифровизацию всех путей передачи практически невозможно. Наряду со стандартными возможностями система SI 2000 имеет еще некоторые специфические особенности, служащие для оптимизации решений, связанных с созданием цифровой сети связи.

Во всех телефонных станциях SI 2000 интегрированы аналоговые линейные комплекты. Такое решение для имеющегося аналогового оборудования передачи является экономически наиболее выгодным.

Разработка оптимизированной сети, ориентированной на пригородную и сельскую местность, требует создания цифровых островов. Способность SI 2000 синхронизироваться от цифровой сети позволяет выполнить цифровизацию подчиненных оконечных автоматических телефонных станций и трактов передачи. Для обеспечения беспрепятственного развития сети связи узловая SI 2000 будет выполнять в целом коммутацию и аналого-цифровое преобразование. Если будет смонтирована главная цифровая городская автоматическая телефонная станция, синхронизация SI 2000 будет выполняться от нее без какого-либо дополнительного оборудования.

Абонентом системы SI 2000 предоставляет следующие услуги:

декадный или частотный набор номера;

наличие контрольного счетчика у абонента;

наблюдение;

запрет некоторых видов исходящей связи;

переадресация вызова;

сокращенный набор номера (прямой вызов);

установка на ожидание

и многие другие со всей необходимой поддержкой по учету их стоимости.

Выносные модули в SI 2000 оптимизированы в соответствии с передовой концепцией организации сети. При возникновении потребности в больших емкостях используется автономные автоматические телефонные станции семейства SI 2000. Автономная автоматическая телефонная станция может быть преобразована в выносной модуль или, наоборот, без каких-либо изменений в аппаратных средствах.

Передача по маршрутам большой протяженности в сельской местности является более дорогостоящей, чем в городских зонах. Для того, чтобы сэкономить на оборудовании передачи, в систему SI 2000 интегрировано, в качестве обязательного, устройство ответвления каналов тракта ИКМ-30. В одном тракте ИКМ поток может быть разделен максимально по 15 станциям. Оборудование передачи данных может вводить или выделять свыше двух потоков данных со скоростью 64 килобит в секунду.

Основными достоинствами системы SI 2000 является надежность (менее 0,5 отказов на 100 линий в год), простота, распределенность и модульность, экономичность [ 7 ].

Основные характеристики системы SI 2000 приведены в таблице 2.2.

Электронная автоматическая коммутационная система AXE-10.Система коммутации AXE-10 может использоваться в качестве опорной автоматической телефонной станции, в качестве различных узлов связи (включая международние), а также в качестве центральных, узловых и оконечных автоматических телефонных станций малой емкости на сельских телефонных сетях.

В зависимости от варианта предлагаемого использования различают:

1) местную станцию AXE;

2) транзитную станцию;

3) станцию мобильной (подвижной) связи для создания сотовой сети связи.

Максимальная емкость AXE-10, используемой в качестве местной автоматической телефонной станции, составляет 200000 абонентских линий при средней продолжительности разговора 100 секунд и нагрузке на одну абонентскую линию до 0,1 эрланга.

Транзитная станция типа AXE-10 рассчитана до 2048 цифровых соединительных линий, позволяет пропускать нагрузку транзита до 200 тысяч абонентских линий, включаемых в местные автоматические телефонные станции. Допустимая нагрузка на один канал соединительной цифровой линии установлена равной 0,8 Эрланга.

Для аналого-цифрового преобразования используется импульсно-кодовая модуляция со скоростью передачи информации 2048 килобит в секунду.

Обмен управляющими сигналами с координатными автоматическими телефонными станциями осуществляется на базе системы сигнализации R2 посредством многочастотного кода "2 из 6".

При междугородней связи используется преимущественно одночастотная система сигнализации, применяется также система сигнализации по общему каналу сигнализации №7.

Посредством системы эксплуатации и технического обслуживания обеспечивается постоянное и всестороннее наблюдение за порядком и результатами установления соединений, контроль поступающей нагрузки.

Основные услуги, предоставляемые абонентам:

1) сокращенный набор номера;

3) наведение справки во время разговора;

4) переадресация вызова к телефону или на автоинформатор;

5) автоматическая конференц-связь;

6) установка на ожидание в случае занятости абонента с уведомлением;

7) вызов абонента по заказу;

8) сопровождающий вызов;

9) переключение на другой аппарат при занятости или при не ответе абонента;

10) ограничение исходящей связи;

11) определение номера вызывающего абонента при наличии заявки от вызывающего абонента;

12) автоматическая побудка.

Система коммутации может быть использована для планирования и разработки сетей связи в сельской местности. При этом должны учитываться большие расстояния, низкая телефонная плотность. В основе системы AXE-10 для сельской местности лежит тот же состав оборудования, что и для цифровой сети города. Дополнительно включается в поставку удаленный абонентский мультиплексор, позволяющий подключить до 128 абонентских линий. Предусмотрено использование кабельных цифровых линий связи или линий радиосвязи для соединения удаленных абонентских мультиплексоров с опорной автоматической телефонной станцией. Разработаны варианты размещения оборудования в специальных контейнерах, содержащих необходимые устройства для включения в сеть электропитания немедленного ввода в эксплуатация.

Для абонентов учрежденческого сектора специально разработаны такие услуги, как Центрекс и передача данных по специально выделенным каналам. С помощью этой услуги часть абонентов системы коммутации объединяется в группы с закрытой нумерацией и общим вызовом со стороны телефонной сети по выделенному номеру. Практически могут создаваться учрежденческие автоматические телефонные станции на базе одного и того же оборудования коммутации.

Система коммутации AXE-10 рассчитана на использование в качестве центральной станции сотовой сети связи типа NMT-450. Разработка специальной подсистемы для включения подвижной телефонной связи позволила организовать сопряжение системы AXE-10 с базовыми станциями сотовой связи .

Основные характеристики системы AXE-10 приведены в таблице 2.2.

Электронная автоматическая коммутационная система EWSD.Система EWSD приобрела прекрасную репутацию во многих странах мира благодаря своей надежности, экономической эффективности и многообразию предоставляемых услуг.

Цифровая электронная станция EWSD применяется: с использованием удаленного цифрового блока для оптимизации абонентской сети или для внедрения в зоне новых услуг, в качестве местной телефонной станции, в качестве транзитной телефонной станции, в качестве городской и транзитной междугородней станции, в качестве коммутационного центра для подвижных объектов, в качестве сельской станции, станции малой емкости, как контейнерная станция, в качестве коммутационной системы, в качестве центра эксплуатации и технического обслуживания группы станций, в качестве узла в системе общеканальной сигнализации, в цифровой сети интегрального обслуживания, для предоставления специальных услуг.

EWSD обеспечивает эксплуатационные компании многими преимущественными возможностями, которые, в свою очередь, обуславливаются универсальностью, гибкостью и эксплуатационными качествами коммутационной системы. К основным характерным возможностям EWSD можно отнести: интегрированный надзор, включающий надзор за работой, индикацию ошибок, процедуры анализа ошибок и их диагностику, внедрение в существующие сети, выбор маршрута, выбор альтернативного маршрута, регистрация учета стоимости телефонных разговоров, измерение нагрузки, управление базой данных и других.

В EWSD могут быть использованы все стандартные системы сигнализации. Передача сигнализации также осуществляется стандартными системами. Станция может работать как с абонентами с декадным набором номера, так и с абонентами с тональным набором номера. Для регистрации учета стоимости используются все стандартные методы.

Аналоговому абоненту могут быть представлены следующие виды услуг:

1) сокращенный набор номера;

2) соединение без набора номера (прямая связь);

3) соединение без выдержки времени;

4) передача входящего вызова при отсутствии абонента на службу отсутствующих абонентов;

5) автоинформатор с заранее записанными фразами;

7) временный запрет входящей связи;

8) постановка вызова на ожидание (в случае занятости вызываемого абонента);

9) наведение справки во время разговора;

10) конференц-связь;

11) распечатанная запись длительности и стоимости разговора;

12) автоматическая побудка;

13) специальный абонент;

14) приоритет вызовов

и другие.

Для абонентов цифровой сети интегрального обслуживания дополнительно могут быть предоставлены следующие виды услуг:

1) подключение до восьми оконечных устройств одновременно;

2) изменение оконечного устройства, выбор оконечного устройства;

3) мобильность оконечного устройства;

4) индикаторы услуги;

5) изменение услуги во времени вызова;

6) работа с одновременным пользованием двумя услугами;

7) регистрация учета стоимости разговора по отдельным услугам;

8) вызова, оплачиваемые абонентом и другие .

Основные характеристики системы EWSD приведены в таблице 2.2.

Электронная автоматическая коммутационная система Alkatel S12. При разработке системы большое внимание уделялось проблемам экономичности в производстве и эксплуатации. Экономичность производства обеспечивается высокой степенью унификации оборудования.

Главной функциональной характеристикой станции "Alkatel S12" является децентрализованная структура, основанная на полностью распределенном управлении, как функциями обработки информации, так и непосредственно процессами коммутации.

В сочетании с модульностью аппаратных и программных средств распределенное управление обеспечивает:

1) высокую надежность работы оборудования;

2) возможность построения станции в широком диапазоне емкостей;

3) гибкость в плановом наращивании емкостей системы по требованиям заказчика;

4) устойчивость к изменениям системных требований в будущем, поскольку новые применения будут связаны только с доукомплектованием станции новыми аппаратными или программными модулями без изменения архитектурных принципов и базовых аппаратно-программных средств;

5) упрощение программного обеспечения.

Модульная архитектура станции обеспечивает гибкое внедрение новых технологических решений и предоставление новых услуг в условиях эксплуатации без перерывов в работе. Новые технологические решения и версии программного обеспечения внедрены на сетях различных стран, доведя "Alkatel S12" до совершенного уровня соответствия требованиям к функциональным и технико-эксплуатационным характеристикам, а также обеспечив ее дальнейший эволюционный переход к узкополосной и широкополосной цифровой сети интегрального обслуживания.

Оборудование станции "Alkatel S12" предназначено для применения на сетях общего и специального назначения, охватывая спектр применения от малых вынесенных абонентских блоков до крупных городских и междугородних станций. Основными вариантами конфигурации оборудовании являются:

1) городские автоматические телефонные станции малой емкости (от 256 до 5376 абонентских линий);

2) городские автоматические телефонные станции средней и большой емкости (до 100000 абонентских линий);

3) транзитные узлы коммутации (до 60000 соединительных линий);

4) вынесенные абонентские концентраторы (до 976 абонентских линий).

Станции "Alkatel S12" обеспечивает предоставление абонентам следующих видов связи:

1) автоматическая внутренняя связь между всеми абонентами станции;

2) автоматическая входящая и исходящая местная связь к абонентам других станций;

3) транзитная связь между входящими и исходящими линиями;

4) автоматическая связь внутри определенной группы абонентов;

5) автоматическая исходящая связь к справочным службам;

6) полупостоянная коммутация.

Абонентам "Alkatel S12" предоставляются следующие виды дополнительных телефонных видов услуг:

1) переадресация входящего вызова к другому аппарату;

2) переадресация вызова в случае занятости абонента;

3) переадресация входящего вызова на автоинформатор или оператора;

4) сопровождающий вызов по паролю на аппарат, с которого заказывались услуги;

5) поисковая сигнализация;

6) установка на ожидание освобождения вызываемого абонента (ожидание с обратным вызовом);

7) повторный вызов без набора номера;

8) соединение с абонентом по предварительному заказу;

9) конференц-связь и другие.

Основные характеристики системы "Alkatel S12" приведены в таблице 2.2 .

Таблица 2.2 - Основные характеристики импортных систем коммутации

Как видно из вышесказанного, параметры импортных систем коммутации близки друг к другу, и в этом случае решающее значение имеет стоимость. Вот именно по этому критерию мной выбрана система коммутации AXE-10, как наилучшая по соотношению "качество-цена".

Рис. 3.3. Соотношения между временными интервалами и кадрами

3.2. Размещение логических каналов на физических каналах

Известно, что логические каналы образуются с помощью физических каналов. Метод размещения логических каналов на физических называется «отображением» - mapping .

Несмотря на то, что большинство логических каналов занимают только один временной интервал, некоторые логические каналы могут занимать более чем 1 TS. В этом случае информация логических каналов передаётся в одном и том же временном интервале физического канала в последовательных кадрах TDMA.

Поскольку логические каналы являются короткими, несколько логических каналов могут занимать один и тот же физический канал, что позволяет более эффективно использовать временные интервалы.

На рис. 3.4. показан случай, когда на одной несущей соты каналом DCCH из-за высокой нагрузки занимается дополнительный временной интервал.

Рис. 3.4. Размещение логических каналов на физических каналах

3.2.1. Несущая «0», временной интервал «0»

Нулевой временной интервал на нулевой несущей частоте в соте всегда резервируется для сигнализации. Таким образом, когда MS определила, что несущая частота является несущей BCCH, она знает, где и как считывать информацию.

При направлении передачи от BTS к MS (downlink) передается информация BCH и CCCH. Единственным каналом, по которому информация передается только в направлении от MS к BTS (uplink), является канал RACH. Канал для передачи информации RACH всегда свободен, поэтому MS может осуществить доступ в сеть в любое время.

3.2.2. Несущая «0», временной интервал «1»

Как правило, первый («1») временной интервал на нулевой несущей частоте в соте также всегда резервируется для сигнальных целей. Единственным исключением являются соты, где наблюдаются высокий или низкий трафик.

Как видно из рис. 3.4, если трафик в соте большой, то в целях установления соединения может быть занят третий физический канал, используя DCCH. Этим каналом может быть любой временной интервал, исключая временные интервалы «0» и «1» на несущей «0».

Это же происходит и тогда, когда нагрузка в соте низкая. В этом случае есть возможность занять временной интервал «0» на несущей «0» для передачи/приёма всей сигнальной информации: BCH, CCCH и DCCH. Таким образом, физический канал «1» может быть освобождён под трафик.

Восемь SDCCH каналов и 4 SACCH канала могут совместно использовать один и тот же физический канал. Это означает, что на одном физическом канале может быть установлено одновременно 8 соединений.

3.2.3. Несущая «0», временные интервалы со второго по седьмой и все остальные временные интервалы других несущих той же самой соты

Все остальные интервалы, кроме сигнальных интервалов «0» и «1» используются в соте под трафик, то есть для передачи речи или данных. В этом случае используется логический канал TCH.

Дополнительно MS во время разговора передает результаты измерений уровня сигнала, качества, временной задержки. Для этой цели используется канал SACCH, занимая на время один временной интервал TCH.

3.3. Пример обслуживания входящего вызова к MS

Рис. 3.5 схематично показывает обслуживание входящего вызова к MS и использование различных каналов управления.

Рис. 3.5. Вызов к MS

MSC/VLR располагает информацией о том, в какой LA находится MS. Сигнальное сообщение пейджинга передаётся тем BSC, который контролирует данную LA.

1. BSC распределяет вызывное сообщение между всеми базовыми станциями в требуемой LA. Базовые станции передают вызывные сообщения через эфир, используя канал PCH.

2. Когда MS обнаруживает идентифицирующий ее PCH, она осуществляет запрос на выделение канала управления через канал RACH.

3. BSC использует канал AGCH для информирования MS о том, какие каналы SDCCH и SACCH она может использовать.

4. SDCCH и SACCH используются для установления соединения. Занимается канал ТСН, а канал SDCCH освобождается.

5. MS и BTS переключаются на частоту канала TCH и выделенный под этот канал временной интервал. Если абонент отвечает, то соединение устанавливается. В процессе разговора радиосоединение контролируется посредством информации, передаваемой и получаемой MS по каналу SACCH.

Глава 4 - GPRS Служба пакетной передачи данных по радиоканалам общего пользования

GPRS использует общий физический ресурс радиоинтерфейса совместно с существующими ресурсами системы GSM с коммутацией каналов. Службу GPRS можно рассматривать как наложенную на сеть GSM. Это позволяет использовать одну и ту же физическую среду в сотах как для передачи речи с коммутацией каналов, так и для передачи данных с коммутацией пакетов. Ресурсы GPRS могут выделяться под передачу данных динамически в периоды, когда отсутствует сессия передачи информации с коммутацией каналов.

Для GPRS будет использовать те же физические каналы, но эффективность их использования намного больше по сравнению с традиционной GSM с коммутацией каналов, поскольку несколько пользователей GPRS могут использовать один канал. Это позволяет повысить утилизацию каналов. Кроме того, GPRS использует ресурсы только в период передачи и приема данных.

4.1 Архитектура сети GPRS

На приведено ниже рисунке показана структура системы GPRS. Поскольку GPRS является новой службой GSM, для нее используется существующая инфраструктура GSM с некоторыми модификациями. Решение для системы GPRS разрабатывалось таким образом, чтобы можно было быстро внедрять GPRS на сети с небольшими затратами.

Для внедрения GPRS необходимо выполнить модернизацию программного обеспечения элементов существующих сетей GSM, за исключением BSC, для которого требуется модернизация аппаратных средств (см. рис. 4.1). В сети GSM появляются два новых узла: Обслуживающий узел поддержки GPRS – Serving GPRS Support Node (SGSN) и Шлюзовой узел поддержки GPRS – Gateway GPRS Support Node (GGSN). Эта два узла физически могут быть реализованы в виде одного аппаратного узла. Возможно гибкое внедрение GPRS, сначала возможно, например, внедрение централизованного узла GPRS, который может представлять собой комбинацию узлов SGSN и GGSN. На следующей стадии они могут быть разделены на выделенные узлы SGSN и GGSN.

Ниже описывается, каким образом внедрение системы GPRS оказывает влияние на узлы GSM и какие терминалы GPRS существуют в сети.

Рис. 4.1 Архитектура сети GPRS (показаны BSS, CSS и PSS)

Интерфейс между SSGN и BSC является поддерживающим открытый интерфейс Gb, определенный в стандарте ETSI. Этот интерфейс позволяет оператору работать с мультивендорной конфигурацией.

4.2 Система базовых станций (BSS)

Система GPRS по радиоинтерфейсу взаимодействует с MS, передавая и принимая радиосигналы через систему BSS. BSS управляет передачей и приемом радиосигналов для всех видов сообщений: речи и данных, передаваемых в режиме коммутации каналов и коммутации пакетов. При внедрении GPRS для базовых станций BTS требуется дополнительное программное обеспечение и дополнительные аппаратные блоки.

BSS используется для разделения данных, передаваемых в режиме коммутации каналов и в режиме коммутации пакетов, поскольку только сообщения, передаваемые в режиме коммутации каналов направляются в MSC. Пакеты перенаправляются в новые узлы коммутации пакетов GPRS.

Система коммутации каналов (CSS)

CSS представляет собой традиционную систему SS сети GSM, включающую в себя уже рассмотренные ранее узлы (см. Главу 1, раздел 1.7: «Описание компонентов сети GSM»).

При внедрении GPRS необходима модернизация программного обеспечения MSC, которая позволяет выполнять комбинированные процедуры GSM/GPRS, например, комбинированную процедуру подключения MS (Attach): IMSI/GPRS.

Внедрение GPRS не оказывает влияния на GMSC, так как этот центр участвует в установлении соединения к абонентам сети GSM от абонентов сети фиксированной связи PSTN.

HLR является базой данных , в которой содержатся все абонентские данные, в том числе данные, относящиеся к абонированию службы GPRS. Таким образом, в HLR хранятся данные как для службы коммутации каналов, так и для службы коммутации пакетов. Эта информация включает в себя, например, разрешение/запрет на использование услуг GPRS абоненту, имя узла доступа (Access Point Name – APN) провайдера службы Интернет (Internet Service Provider – ISP), а также указание на то, выделены ли для MS адреса IP. Эта информация хранится в HLR как контекстное абонирование (context subscription) протокола пакетной передачи данных PDP. В HLR может храниться до 5 контекстов PDP на одного абонента. Доступ к хранящейся в HLR информации осуществляется из SGSN. При роуминге обращение за информацией может осуществляться в HLR, не связанный с собственным узлом SGSN.

Для работы HLR в сети GPRS необходима модернизация его программного обеспечения.

4.3.1 Центр аутентификации (AUC)

AUC не требует какой-либо модернизации при работе с GPRS. Новым свойством с точки зрения AUC в сети GPRS является только новый алгоритм шифрования, который определен для GPRS как А5.

Служба коротких сообщений – взаимодействующий MSC (SMS-IW-MSC) позволяет MS с функциями GPRS передавать и принимать SMS через радиоканалы GPRS. SMS-IW-MSC не изменяется при внедрении GPRS.

4.3.2Система коммутации пакетов (PSS)

PSS является новой системой, разработанной специально для GPRS. Эта система основана на протоколах Интернет (IP). Она включает в себя новые узлы пакетной коммутации, в общем контексте известные как GSN (Узлы поддержки GPRS). В настоящее время существуют два вида узлов GPRS: Обслуживающий узел поддержки GPRS (SGSN) и Шлюзовой узел поддержки GPRS (GGSN). Интерфейсы SGSN связывают его со стандартными узлами сети GSM, такими, как MSC/BSC, а интерфейсы GGSN связывают этот узел в с внешними сетями пакетной передачи данных, такими, как сеть Интернет или корпоративная сеть Интернет.

4.3.3 Терминалы GGSN

Существуют три класса MS, которые могут работать с GPRS.

Класс А: MS класса А одновременно поддерживает GPRS и другие службы GSM. Это означает, что MS одновременно выполняет функции подключения (attach), активизации, мониторинга, передачи информации и т. д. как для передачи речи, так и для пакетной передачи данных. MS класса А одновременно может обслуживать вызов для речевой службы и принимать пакетные данные.

Класс В: MS класса В одновременно наблюдает за каналами GSM и GPRS, но в каждый момент времени может принимать/передавать информацию либо службы с коммутацией каналов, либо службы с коммутацией пакетов.

Класс С: MS класса С поддерживает только неодновременные операции, например, attach. Если MS этого класса поддерживает как службы GSM, так и службы GPRS, она может получать вызовы только от выбранной по умолчанию или назначенной оператором службы. Не назначенные или не выбранные службы являются недоступными.

4.3.4 Другие объекты

Биллинговый шлюз (Biling Gateway – BGw).

BGw облегчает внедрение GPRS в сети мобильной связи путем реализации функций, упрощающих управление начислением оплаты для GPRS в биллинговой системе. В частности, очень полезной является функция Advanced Processing – усовершенствованная обработка биллинговой информации.

Критерии начисления оплаты при пользовании услугами GPRS фундаментально отличаются от тех критериев, которые применяются для служб с коммутацией каналов. В частности, они основаны на объеме переданной/полученной информации, не на времени занятия каналов. Сессия GPRS может быть активной в течение достаточно длительного периода времени, тогда как реальная передача данных осуществляется в короткие промежутки времени при наличие свободных радиоресурсов. В этом случае время занятия радиоресурсов является несущесвтенным критерием для начилсения полаты в сравнении с обхемом данных.

Информация о начислении оплаты может быть получена от SGSN и GGSN, использующих интерфейсы, отличающиеся от интерфейсов MSC и для этой информации создаются отчеты CDR нового типа. Некоторыми новыми типами CDR являются:

· S-CDR, связанные с использованием радиосети и переданные от SGSN.

· G-CDR, связанные с использованием внешних сетей передачи данных и переданные от GGSN.

· CDR, связанные с использованием службы коротких сообщений, основанной на GPRS.

Во время одной сессии GPRS может быть сгенерировано несколько S-CDR и G-CDR.

BGw позволяет начислять оплату за услуги передачи данных с минимальным влиянием на уже существующие биллинговые системы. BGw может либо трансформировать данные в тот формат, который распознается существующей биллинговой системой, либо может использоваться для создания нового биллингового приложения, специально адаптированного для начисления оплаты за объем. Это позволяет внедрять службы передачи данных очень быстро и осуществлять начисление оплаты за пользование услугами немедленно, в реальном режиме времени.

Узлы поддержки GPRS

Узлами поддержки GPRS являются SGSN и GGSN, каждый из которых выполняет специфические функции в составе сети GPRS. Ниже описываются эти конкретные индивидуальные функции.

Обслуживающий узел поддержки GPRS (SGSN)

SGSN расположен в сети GPRS, как показано на рис. 4.2. Этот узел взаимодействует с BSC, MSC/VLR, SMS-G и HLR. Этот узел подключается к базовой сети передачи данных (backbone network) для организации связи с GGSN и другими SGSN.

Рис. 4.2 Интерфейсы SGSN

SGSN обслуживает всех абонентов GPRS, физически расположенных в пределах географической зоны обслуживания SGSN. SGSN выполняет в GPRS функции, аналогичные тем, которые выполняет MSC в сети GSM. То есть этот узел управляет функциями подключения, отключения MS, обновления информации о местоположении и т. д. Абоненты GPRS могут быть обслужены любым узлом SGSN в сети в зависимости от их местоположения.

Функции SGSN.

В составе сети GPRS узел SGSN выполняет следующие функции. Управление мобильностью (ММ). Узел SGSN реализует функции протокола ММ в MS и по сетевым интерфейсам. Процедурами ММ, поддерживаемыми по этому интерфейсу, являются подключение IMSI как для вызовов GPRS, так и для вызовов с коммутацией каналов, обновление зоны маршрутизации, обновление комбинированной зоны маршрутизации и зоны местоположения, передача пейджинговых сигналов.

Протокол ММ позволяет сети поддерживать перемещающихся абонентов. ММ позволяет MS перемещаться из одной соты в другую, перемещаться из одной зоны маршрутизации SGSN в другую, перемещаться между узлами SGSN в пределам сети GPRS.

Понятие «зона местоположения» (LA) не используется в GPRS. Аналогом этого понятия в GPRS является зона маршрутизации (Routing Area – RA). RA состоит из одной или нескольких сот. В первой реализации RA была эквивалентна LA.

ММ позволяет абонентам передавать и получать данные во время перемещения в пределах своей сети PLMN, а также при перемещении в другую сеть PLMN. SGSN поддерживает стандартный интерфейс Gs в направлении MSC/VLR для MS классов A и B, что позволяет выполнять следующие процедуры:

- Комбинированное подключение/отключение GPRS / IMSI . Процедура «IMSI attach» осуществляется через SGSN. Это позволяет объединять/комбинировать действия и таким образом экономить радиоресурсы. Эти действия зависят от класса MS.

- Комбинированный пейджинг . Если MS зарегистрирована одновременно как IMSI/GPRS терминал, (работа в режиме I), MSC/VLR выполняет пейджинг через SGSN. Сеть также может координировать предоставление служб с коммутацией каналов или с коммутацией пакетов. Координация пейджинговой операции означает, что сеть передает пейджинговые сообщения для служб с коммутацией каналов по тем же каналам, которые используются для служб с коммутацией пакетов, то есть пейджинговый канал GPRS или канал трафика GPRS.

- Комбинированные обновление метоположения (зоны местоположения LA или зоны маршрутизации RA) для служб с коммутацией каналов GSM и служб с коммутацией пакетов GPRS. MS выполняет функции обновления местоположения отдельно, передавая информацию о новой LA в MSC и новой RA в SGSN. По интерфейсу Gs оба узла: MSC и SGSN могут обмениваться информацией об обновлении местоположения абонента, позволяя тем самым друг другу выполнять обновление. Это позволяет экономить на функциях сигнализации по радиоинтерфейсу.

Управление сеансами (Session Management – SM)

Процедуры SM включают в себя активизацию контекста протокола пакетной передачи данных (PDP), деактивизацию этого контекста и его модификацию.

Контекст PDP используется для установления и разъединения виртуального канала передачи данных между терминалом, подключенным к MS и GGSN.

SGSN затем сохраняет данные, которые включают в себя:

Идентификатор контекста PDP - индекс, используемый для указания на конкретный контекст PDP.

Тип PDP. Это тип контекста PDP. В настоящее время поддерживается IPv4.

Адрес PDP. Это адрес мобильного терминала. Это либо адрес IPv4, если абонент указывает его при заключения контракта на предоставление услуг пакетной передачи данных, либо это пустое множество при использовании динамического режима назначения адреса.

Имя узла доступа (APN). Это сетевой идентификатор внешней сети, например: wap. *****

Определенное качество обслуживания (QoS). Это профиль QoSЮ, на который может подписаться абонент.

Контекст PDP должен быть активным в SGSN до того, как какой-либо блок пакетной передачи данных (PDU) может быть передан в MS или получен из MS.

Когда в SGSN поступает сообщение о запросе на активизацию контекста PDP, он запрашивает функцию управления разрешением. Эта функция ограничивает число регистраций в пределах одного узла SGSN и контролирует качество в пределах каждой зоны. Затем SGSN проверяет, разрешен ли абоненту доступ к конкретной сети ISP или корпоративной сети передачи данных.

Начисление оплаты

Эта функция обеспечивает оператора достаточной информацией о действиях абонента и позволяет составлять счета на основе объема переданной информации (объем переданных данных, SMS), а также о продолжительности сеанса передачи данных (время включения/регистрации, продолжительность активного состояния контекста PDP) .

Возможности службы GPRS по начислению оплаты полностью соответствуют спецификациям ETSI для S-CDR (SGSN), G-CDR (GGSN) и SMS CDR.

CDR содержит все обязательные поля и следующие опциональные поля:

S-CDR: отметку о классе MS, информацию о зоне маршрутизации RA, код зоны, идентификатор соты, информацию о смене SGSN в процессе сеанса, диагностическую информацию, номер последовательности в отчете, идентификатор узла.

G-CDR: флаг динамического адреса, диагностическую информацию, номер последовательности в отчете, идентификатор узла.

У всех CDR имеются идентификаторы, благодаря этому можно отсортировать все CDR, относящиеся к одному сеансу управления мобильностью ММ и связанные с соответствующими сеансами PDP, что является важным с точки зрения выставления счетов. Это распространятеся на все CDR от всех узлов GPRS.

CDR в узлах GPRS сначала подпадают в буфер временного хранения, в котором хранятся около 15 минут, затем они записываются на жесткий диск. Емкость диска для хранения данных о начислении оплаты приблизительно рассчитана на хранение данных о начислении оплаты, эквивалентных 72 часам.

Оператор может конфигурировать следующие параметры:

Пункт назначения (например, биллинговая система);

Максимальный объем памяти на диске для хранения CDR;

Максимальное время хранения CDR;

Таймер буферизации в оперативной памяти (RAM);

Объем буферизации в оперативной памяти (RAM);

Метод извлечения данных.

Выбор GGSN

SGSN выбирает GGSN (включая сервер доступа) на основе протокола пакетной передачи данных (PDP), имени узла доступа (APN) и данных о конфигурации. Он использует сервер доменного имени (Domain Name Server) в базовой сети для установления идентичности SGSN, обслуживающего запрашиваемый APN. Затем SGSN устанавливает тоннель с помощью тоннельного протокола GPRS (GTP) для подготовки GGSN к дальнейшей обработке.

DIV_ADBLOCK192">

Ниже приведен пример успешной доставки сообщения SMS по радиоканалам GPRS:

SMS-C определяет, что необходимо переслать сообщение в MS. SMS-C перенаправляет это сообщение в SMS-GMSC. SMS-GMSC проверяет адрес пункта назначения и запрашивает информацию о маршрутизации из HLR для доставки SMS. HLR передает результирующее сообщение, которое может включать в себя информацию о SGSN, в зоне действия которого в данный момент находится искомая MS, информацию о MSC или информацию об обоих узлах. Если результирующее сообщение не содержит номер SGSN, это означает, что HLR располагает информацией о том, что MS находится вне зоны действия SGSN и недоступна через этот SGSN. Если результирующее сообщение содержит номер MSC, сообщение SMS будет доставляться традиционным образом через сеть GSM. Если результирующее сообщение содержит номер SGSN, SMS-GMSC перенаправит SMS в SGSN. SGSN передаст SMS в MS, и отправит сообщение об успешной доставке сообщения в SMS-C.

4.6 Шлюзовой узел поддержки GPRS (GGSN)

GGSN обеспечивает интерфейс в направлении внешней IP сети с пакетной передачей данных. GGSN обеспечивает функции доступа для внешних устройств, таких, как маршрутизаторы ISP и серверы RADIUS, обеспечивающие функции безопасности. С точки зрения внешней сети IP GGSN действует как маршрутизатор для адресов IP всех абонентов, обслуживаемых сетью GPRS. Направление пакетов к нужному SGSN и преобразование протоколов также обеспечивается узлом GGSN.

4.7 Функции GGSN

GGSN выполняет следующие функции в составе сети GSPR:

- Подключение к сети IP . GGSN поддерживает соединения с внешними сетями IP с помощью сервера доступа. Сервер доступа использует сервер RADIUS для назначения динамических адресов IP.

- Обеспечение безопасности передачи данных по протоколу IP . Эта функция обеспечивает безопасную передачу между SGSN и GGSN (интерфейс Gi). Эта функция необходима при подключении абонентов GPRS через их собственную корпоративную сеть (VPN). Она также повышает безопасность управления трафиком между узлами GPRS и системами управления. Функции безопасности протокола IP позволяют шифровать все передаваемые данные. Это является защитой от нелегального доступа и обеспечивает гарантии конфиденциальности передачи пакетов данных, целостность данных и аутентификацию источника данных. Механизмы обеспечения безопасности основываются на фильтрации, аутентификации и шифровании на уровне IP. Для обеспечения более высокой степени безопасности при передаче по базовой сети IP эта функция интегрируется в маршрутизатор как в SGSN, так и в GGSN (а также в шлюзовые устройства, действующие на границах сетей). Для этого решения используется заголовок аутентификации Opv4 IPSEC, использующий алгоритм MD5 и инкапсулированную нагрузку для обеспечения безопасности (ESP), в которой используется режим цепочечного блочного шифрования американского стандарта шифрования данных (DES-CBC). Система также готова к введению новых алгоритмов шифрования (например, ассиметричного протокола аутентификации с ключами общего пользования и т. д.)

- Маршрутизация. Маршрутизация является функцией SGSN.

- Управление сеансами. GGSN поддерживает процедуры управления сеансами (то есть активизацию, деактивизацию и модификацию контекста PDP). Управление сеансами описано в разделе «Функции SGSN. Управление сеансами».

- Поддержка функции начисления оплаты. GGSN также генерирует CDR для каждой обслуживаемой MS. CDR содержит регистрационный файл с отметкой времени для процедур управления сеансами в случае применения режима начисления оплаты, основанного на учете времени и файл с учетом объема переданной информации.

4.8 Логические каналы

В системе GSM определено около 10 типов логических каналов. Эти каналы используются для передачи различных типов информации. Так, например, пейджинговый канал PCH используется для передачи вызывного сообщения, а по широковещательному каналу управления BCCH передается информация о системе. Для GPRS определена новая совокупность логических каналов. Большинство из них имеют наименования, аналогичные и соответствующие наименованиям каналов в GSM. Наличие в сокращенном наименовании логического канала буквы «Р», означающей «Packet» и стоящей перед всеми остальными буквами, указывает на то, что это канал GPRS. Так, например, пейджинговый канал в GPRS обозначается как PPCH – Packet Paging Channel.

Новым логическим каналом системы GPRS является канал PTCCH (Packet Timing advance Control Channel). Это канал уведомления о временной задержке TA, он необходим для регулировки этого параметра. В системе GSM информация, относящаяся к этому параметру, передается по каналу SACCH.

Для поддержки GPRS могут быть назначены группы каналов для соединений с коммутацией пакетов (PS). Каналы, назначенные для GPRS для обслуживания трафика, поступающего из домена с коммутацией каналов (CSD), обозначаются как каналы пакетной передачи данных PDCH. Эти PDCH будут принадлежать домену с коммутацией пакетов (PSD). Для назначения PDCH используется мультислотовая структура кадра и TCH, способный поддерживать PS.

В соте каналы PDCH будут сосуществовать с каналами обслуживания трафика для CS. Ответственным за назначение каналов PDCH является блок управления пакетной передачей PCU.

В PSD несколько соединений PS могут совместно использовать один и тот же канала PDCH. Одно соединение PS определяется как поток временных блоков (TBF), который передается в обоих направлениях: uplink и downlink. MS может располагать одновременно двумя TBF, один из их которых используется в направлении uplink, а другой – в направленииdownlink.

При назначении TBF для MS резервируется один или несколько PDCH. PDCH располагаются в совокупности каналов PDCH, называемой PSET и только один канал PDCH в одном и том же PSET может использоваться для MS. До резервирования канала система должна убедиться в том, что в PSD есть один или несколько свободных каналов PDCH.

4.9 Назначение каналов в системе GPRS

Канал PBCCH так же, как и канал BCCH в GSM, является широковещательным каналом управления и используется только в информационной системе пакетной передачи данных. Если оператор не назначает в системе каналы PBCCH, информационная система пакетной передачи данных использует для своих целей канал BCCH.

Этот канал состоит из логических каналов, используемых для общей сигнализации управления, необходимой для пакетной передачи данных.

Этот канал пейджингового вызова используется только в направлении downlink. Он используется для передачи вызывного сигнала к MS до начала передачи пакетов. PPCH может быть использован в группе пейджинговых каналов как для режима коммутации пакетов, так и для режима коммутации каналов. Использование канала PPCH для режима с коммутацией каналов возможно только для терминалов GPRS классов А и В в сети с режимом работы I.

PRACH – Packet Random Acces Channel, используется только в направлении uplink. PRACH используется MS для инициализации передачи в направлении uplink для передачи данных или сигнализации.

PAGCH – Packet Access Grant Channel используется только в направлении downlink в фазе установления соединения для передачи информации о назначении ресурса. Передается в MS до начала передачи пакетов.

PNCH – Packet Notification Channel используется только в направлении downlink. Этот канал используется для передачи уведомления PTM-M (Point-to-Multipoin – Multicast) к группе MS до передачи пакета PTM-M. Для мониторинга канала PNCH должен быть назначен режим DRX. Услуги DRX не специфицированы для GPRS фазы 1.

PАCCH - Packet Associated Control Channel переносит информацию сигнализации, связанную с конкретным MS. Информация сигнализации включает в себя, например, подтверждения и информацию управления выходной мощностью терминала. По каналу PАCCH передаются также сообщения о назначении или переназначении ресурса. Этот канал использует ресурсы совместно с каналами PDTCH, назначенными конкретной MS. Кроме того, по этому каналу может быть передано пейджинговое сообщение в сторону MS, находящейся в состоянии соединения с коммутацией каналов, о том, что данная MS вовлекается в режим передачи пакетов.

PTCCH/U - Packet Timing advance Control Channel используется только в направлении uplink. Этот канал используется для передачи пакета случайного доступа для оценки временной задержки одной MS, находящейся в режиме передачи пакетов.

PTCCH/D - Packet Timing advance Control Channel используется только в направлении downlink.. Этот канал используется для передачи информации об обновлении значения временной задержки для нескольких MS. Один PTCCH/D используется совместно с несколькими PTCCH/U.

По этому каналу передаются пакеты данных. Если система работает в режиме PTM-M, он временно назначается для одной MS из группы. Если система работает в мультислотовом режиме, одна MS может параллельно использовать несколько каналов PDTCH для одного сеанса передачи пакетов. Все трафиковые каналы передачи пакетов являются двунаправленными, при этом различают PDTCH/U для направления передачи uplink, и PDTCH/D для направления передачи downlink.

Глава 5 - Система коммутации

Введение

Система коммутации подвижной радиосвязи приведена на рис. 5.1

676 " style="width:506.9pt;border-collapse:collapse;border:none">

5.2. Центр коммутации подвижной связи/визитный регистр (MSC/VLR)

5.2.1 Функции MSC

MSC – это основной узел в системе GSM. Этот узел управляет всеми функциями по обслуживанию входящих и исходящих вызовов между MS. Основными функциями данного узла являются.

Предельные расстояния для радиоканалов приводятся поставщиками в предположении, что в пределах первой зоны Френеля каких-либо физических помех нет. Абсолютное ограничение на дальность связи радиорелейных каналов накладывает кривизна земли, смотри рис. 7.15 . Для частот выше 100 МГц волны распространяются прямолинейно (рис. 7.15.А) и, следовательно, могут фокусироваться. Для высоких частот (ВЧ) и УВЧ земля поглощает волны, но для ВЧ характерно отражение от ионосферы (рис. 7.15Б) - это сильно расширяет зону вещания (иногда осуществляется несколько последовательных отражений), но этот эффект неустойчив и сильно зависит от состояния ионосферы.


Рис. 7.15.

При построении длинных радиорелейных каналов приходится ставить ретрансляторы. Если антенны размещены на башнях высотой 100 м расстояния между ретрансляторами может составлять 80-100 км. Стоимость антенного комплекса обычно пропорциональна кубу диаметра антенны .

Диаграмма излучения направленной антенны показана на рис. 7.16 (стрелкой отмечено основное направление излучения). Эту диаграмму следует учитывать при выборе места установки антенны, особенно при использовании большой мощности излучения. Иначе один из лепестков излучения может прийтись на места постоянного пребывания людей (например, жилье). Учитывая эти обстоятельства, проектирование такого рода каналов целесообразно поручить профессионалам.


Рис. 7.16.

4-го октября 1957 года в СССР был запущен первый искусственный спутник земли, в 1961 году в космос полетел Ю. А. Гагарин, а вскоре на орбиту был выведен первый телекоммуникационный спутник "Молния" - так началась космическая эра коммуникаций. Первый в РФ спутниковый канал для Интернет (Москва-Гамбург) использовал геостационарный спутник "Радуга" (1993). Стандартная антенна INTELSAT имеет диаметр 30 м и угол излучения 0,01 0 . Спутниковые каналы используют частотные диапазоны, перечисленные в таблице 7.6 .

Таблица 7.6. Частотные диапазоны, используемые для спутниковых телекоммуникаций
Диапазон Нисходящий канал ( Downlink )[ГГц] Восходящий канал ( Uplink )[ГГц] Источники помех
С 3,7-4,2 5,925-6,425 Наземные помехи
Ku 11,7-12,2 14,0-14,5 Дождь
Ka 17,7-21,7 27,5-30,5 Дождь

Передача всегда ведется на более высокой частоте, чем прием сигнала со спутника .

Диапазон пока еще "заселен" не слишком плотно, кроме того, для этого диапазона спутники могут отстоять друг от друга на 1 градус. Чувствительность к помехам от дождей может быть обойдена использованием двух наземных приемных станций, разнесенных на достаточно большое расстояние (размер ураганов ограничен). Спутник может иметь много антенн, направленных на разные регионы поверхности земли. Размер пятна "засветки" такой антенны на земле может иметь размер несколько сот километров. Обычный спутник обладает 12-20 транспондерами (приемопередатчиками), каждый из которых имеет полосу 36-50МГц, что позволяет сформировать поток данных 50 Мбит/с. Два транспондера могут использовать разную поляризацию сигнала, работая при одной и той же частоте. Такая пропускная способность достаточна для получения 1600 высококачественных телефонных каналов (32кбит/c). Современные спутники используют узкоапертурную технологию передачи VSAT ( Very Small Aperture Terminals). Диаметр пятна "засветки" на земной поверхности для этих антенн равен примерно 250 км. Наземные терминалы используют антенны диаметром 1 метр и выходную мощность около 1 Вт. При этом канал к спутнику имеет пропускную способность 19,2 Кбит/с, а со спутника - более 512 Кбит/c. Непосредственно такие терминалы не могут работать друг с другом через телекоммуникационный спутник. Для решения этой проблемы используются промежуточные наземные антенны с большим усилением, что существенно увеличивает задержку (и удорожает систему), смотри рис. 7.17 .


Рис. 7.17.

Для создания постоянных каналов телекоммуникаций служат геостационарные спутники, висящие над экватором на высоте около 36000 км.

Теоретически три таких спутника могли бы обеспечить связью практически всю обитаемую поверхность Земли (см. рис. 7.18).


Рис. 7.18.

Реально геостационарная орбита переполнена спутниками различного назначения и национальной принадлежности. Обычно спутники помечаются географической долготой мест, над которыми они висят. При существующем уровне развития технологии неразумно размещать спутники ближе, чем 2 0 . Таким образом, сегодня нельзя разместить более 360/2=180 геостационарных спутников.

Система геостационарных спутников выглядит как ожерелье, нанизанное на невидимую глазу орбиту. Один угловой градус для такой орбиты соответствует ~600 км. Может показаться, что это огромное расстояние . Плотность спутников на орбите неравномерна – на долготе Европы и США их много, а над Тихим океаном – мало, там они просто не нужны. Спутники не вечны, время их жизни обычно не превосходит 10 лет, они выходят из строя главным образом не из-за отказов оборудования, а из-за нехватки горючего для стабилизации их положения на орбите. После выхода из строя спутники остаются на своих местах, превращаясь в космический мусор. Таких спутников уже сейчас немало, со временем их станет еще больше. Конечно, можно предположить, что точность вывода на орбиту со временем станет выше и люди научатся выводить их с точностью в 100 м. Это позволит размещать в одной "нише" 500-1000 спутников (что сегодня представляется почти невероятным, ведь нужно оставить пространство для их маневров). Человечество может таким образом создать нечто похожее на искусственное кольцо Сатурна, состоящее целиком из мертвых телекоммуникационных спутников. До этого дело вряд ли дойдет, так как будет найден способ удаления или восстановления неработающих спутников, хотя с неизбежностью это существенно удорожит услуги таких коммуникационных систем.

К счастью, спутники, использующие разные частотные диапазоны, не конкурируют друг с другом. По этой причине в одной и той же позиции на орбите может находиться несколько спутников с разными рабочими частотами. На практике геостационарный спутник не стоит на месте, а выполняет движение по траектории, имеющей (при наблюдении с Земли) вид цифры 8. Угловой размер этой восьмерки должен укладываться в рабочую апертуру антенны, в противном случае антенна должна иметь сервопривод, обеспечивающий автоматическое слежение за спутником. Из-за энергетических проблем телекоммуникационный спутник не может обеспечить высокого уровня сигнала. По этой причине наземная антенна должна иметь большой диаметр , а приемное оборудование - низкий уровень шума. Это особенно важно для северных областей, в которых угловое положение спутника над горизонтом невысоко (настоящая проблема для широт более 70 0), а сигнал проходит довольно толстый слой атмосферы и заметно ослабляется. Спутниковые каналы могут быть рентабельны для областей, отстоящих друг от друга более чем на 400-500 км (при условии, что других средств не существует). Правильный выбор спутника (его долготы) может заметно снизить стоимость канала.

Число позиций для размещения геостационарных спутников ограничено. В последнее время для телекоммуникаций планируется применение так называемых низколетящих спутников (<1000 км; период обращения ~1 час ). Эти спутники движутся по эллиптическим орбитам, и каждый из них по отдельности не может гарантировать стационарный канал, но в совокупности эта система обеспечивает весь спектр услуг (каждый из спутников работает в режиме "запомнить и передать"). Из-за малой высоты полета наземные станции в этом случае могут иметь небольшие антенны и малую стоимость .

Существует несколько способов работы совокупности наземных терминалов со спутником. При этом может использоваться мультиплексирование по частоте ( FDM ), по времени ( TDM ), CDMA (Code Division Multiple Access ), ALOHA или метод запросов.

Схема запросов предполагает, что наземные станции образуют логическое кольцо , вдоль которого двигается маркер. Наземная станция может начать передачу на спутник, лишь получив этот маркер.

Простая система ALOHA (разработана группой Нормана Абрамсона из Гавайского университета в 70-х годах) позволяет каждой станции начинать передачу тогда, когда она этого захочет. Такая схема с неизбежностью приводит к столкновениям попыток. Связано это отчасти с тем, что передающая сторона узнает о столкновении лишь спустя ~270 мсек. Достаточно последнему биту пакета одной станции совпасть с первым битом другой станции, потеряны будут оба пакета и их придется послать повторно. После столкновения станция ожидает некоторое псевдослучайное время и совершает повторную попытку передачи еще раз. Такой алгоритм доступа обеспечивает эффективность использования канала на уровне 18%, что совершенно недопустимо для таких дорогостоящих каналов, как спутниковые. По этой причине чаще используется доменная версия системы ALOHA , которая удваивает эффективность (предложена в 1972 году Робертсом). Временная шкала делится на дискретные интервалы, соответствующие времени передачи одного кадра.

В этом методе машина не может посылать кадр , когда захочет. Одна наземная станция (эталонная) периодически посылает специальный сигнал, который используется всеми участниками для синхронизации. Если длина временного домена равна , тогда домен с номером начинается в момент времени по отношению к упомянутому выше сигналу. Так как часы разных станций работают по -разному, необходима периодическая ресинхронизация. Другой проблемой является разброс времени распространения сигнала для разных станций. Коэффициент использования канала для данного алгоритма доступа оказывается равным (где – основание натурального логарифма). Не слишком большая цифра, но все же в два раза выше, чем для обычного алгоритма ALOHA .

Метод мультиплексирования по частоте (FDM ) является старейшим и наиболее часто используемым. Типичный транспондер с полосой 36 Мбит/с может быть применен для получения 500 64кбит/с ИКМ-каналов (импульсно-кодовая модуляция ), каждый из которых работает со своей уникальной частотой. Чтобы исключить интерференцию, соседние каналы должны отстоять по частоте на достаточном расстоянии друг от друга. Кроме того, необходимо контролировать уровень передаваемого сигнала, так как при слишком большой выходной мощности могут возникнуть интерференционные помехи в соседнем канале. Если число станций невелико и постоянно, частотные каналы могут быть распределены стационарно. Но при переменном числе терминалов или при заметной флуктуации загрузки приходится переходить на динамическое распределение ресурсов .

Одним из механизмов такого распределения имеет название SPADE , он применялся в первых версиях систем связи на базе INTELSAT . Каждый транспондер системы SPADE содержит 794 симплексных ИКМ-каналов по 64-кбит/c и один сигнальный канал с полосой 128 кбит/c. ИКМ-каналы используются попарно для обеспечения полнодуплексной связи. При этом восходящий и нисходящий каналы имеют полосу по 50 Мбит/с. Сигнальный канал делится на 50 доменов по 1 мсек (128 бит ). Каждый домен принадлежит одной из наземных станций, число которых не превышает 50. Когда станция готова к передаче, она произвольным образом выбирает неиспользуемый канал и записывает номер этого канала в очередной свой 128-битный домен . Если один и тот же канал попытаются занять две или более станции, происходит столкновение, и они вынуждены будут повторить попытку позднее.

Метод мультиплексирования по времени сходен с FDM и довольно широко применяется на практике. Здесь также необходима синхронизация для доменов. Это делается, как и в доменной системе ALOHA , с помощью эталонной станции. Присвоение доменов наземным станциям может выполняться централизовано или децентрализовано . Рассмотрим систему ACTS ( Advanced Communication Technology Satellite ). Система имеет 4 независимых канала ( TDM ) по 110 Мбит/c (два восходящих и два нисходящих). Каждый из каналов структурирован в виде 1-милисекундных кадров, которые имеют по 1728 временных доменов. Все временные домены несут в себе 64-битовое поле данных, что позволяет реализовать голосовой канал с полосой 64 Кбит/c. Управление временными доменами с целью минимизации времени на перемещения вектора излучения спутника предполагает знание географического положения наземных станций. Управление временными доменами осуществляется одной из наземных станций (MCS - Master Control Station ). Работа системы ACTS представляет собой трехшаговый процесс. Каждый из шагов занимает 1 мсек. На первом шаге спутник получает кадр и запоминает его в 1728-ячеечном буфере. На втором - бортовая ЭВМ копирует каждую входную запись в выходной буфер (возможно для другой антенны). И, наконец, выходная запись передается наземной станции.

В исходный момент каждой наземной станции ставится в соответствие один временной домен . Для получения дополнительного домена, например, для организации еще одного телефонного канала, станция посылает запрос MCS . Для этих целей выделяется специальный управляющий канал емкостью 13 запросов в сек. Существуют и динамические методы распределения ресурсов в TDM (методы Кроузера , Биндера [ Binder ] и Робертса ).

Метод CDMA (Code Division Multiple Access ) является полностью децентрализованным. Как и другие методы, он не лишен недостатков. Во-первых, емкость канала CDMA в присутствии шума и отсутствии координации между станциями обычно ниже, чем в случае TDM . Во-вторых, система требует быстродействующего и дорогого оборудования.

Технология беспроводных сетей развивается довольно быстро. Эти сети удобны в первую очередь для подвижных средств. Наиболее перспективным представляется проект IEEE 802.11, который должен играть для радиосетей такую же интегрирующую роль, как 802.3 для сетей Ethernet и 802.5 для Token Ring. В протоколе 802.11 используется тот же алгоритм доступа и подавления столкновений, что и в 802.3, но здесь вместо соединительного кабеля используются радиоволны (Рис. 7.19.). Применяемые здесь модемы могут работать и в инфракрасном диапазоне, что бывает привлекательно, если все машины размещены в общем зале.


Рис. 7.19.

Стандарт 802.11 предполагает работу на частоте 2.4-2.4835 ГГц при использовании модуляции 4FSK/2FSK

Новое на сайте

>

Самое популярное