Домой Заготовки на зиму Схема подключения трансформатора 12 вольт. Бестрансформаторное электропитание.Конденсатор вместо резистора. Принцип работы трансформатора: общие сведения

Схема подключения трансформатора 12 вольт. Бестрансформаторное электропитание.Конденсатор вместо резистора. Принцип работы трансформатора: общие сведения

Прежде чем приступить к изучению таймера определимся с базовым понятием «частота». Простым языком, это количество повторений, в секунду. Это значит, что если вы за секунду хлопнете в ладошки 2 раза, то частота хлопков будет равна 2Гц. Если за 3 раза, значит 3Гц.

Каждый микроконтроллер работает на определенной частоте. Большинство инструкций выполняется за один такт, поэтому чем выше частота, тем быстрее работает микроконтроллер. Если нет источника тактирования, соответственно ничего работать не будет. На случай отсутствия внешнего источника тактирования, в большинстве микроконтроллеров имеется свой внутренний генератор. Обычно на него «с завода» настроены.

Частота внутреннего источника может изменяться («плавать») из за температуры и т.п., поэтому считается непригодным для серьезных проектов, а у нас ведь именно такие 🙂 Поэтому применяется стабильный источник внешней частоты — кварцевый резонатор (кварц). Один из вариантов исполнения кварцевого резонатора:

Теперь, кое что о таймере. Таймер работает на той же частоте, что и микроконтроллер. Иногда это может быть слишком быстро, поэтому используют предделитель который уменьшает количество тиков в 8/64/256/1024… раз. Включается это все программно.

Допустим, мы выбрали предделитель 1024, частота микроконтроллера 8 МГц, значит после предделителя частота таймера станет:
8 000 000 / 1024 = 7813 Гц — это частота, на которой работает наш таймер. По простому говоря, за одну секунду таймер тикнет 7813 раз.

К количеству тиков можно привязать выполнение кода. Эта фича есть не для всех таймеров, читайте документацию на свой камень. Допустим, нам нужно, чтобы раз в 0,5 секунды выполнялся наш код. За одну секунду 7813 тиков, за пол секунды в 2 раза меньше — 3906. Это значение вносится в регистр сравнения, и с каждым тиком проверяется достаточно ли оттикало или нет, как в будильнике, только очень быстро.

Но вот у нас совпали эти 2 значения и что дальше? Для этого существует такая полезная штука как прерывание по совпадению. Это значит, что при совпадении таймера и регистра сравнения, ваша текущая программа остановится. После этого выполнится участок кода, который абсолютно не связан с основной программой. Внутри этого участка вы можете писать что угодно и не беспокоиться о том, что он как то повлияет на программу, выполнится он только когда значение таймера совпадет с регистром сравнения.

После того как код внутри прерывания выполнится, программа продолжит работу с того места, где была остановлена. Таким образом, можно периодически сканировать кнопки, считать длительность нажатия кнопки, отмерять точные временные промежутки. Любимый вопрос начинающих, как мне делать мигать светодиодом и делать еще что то. Так вот, в этом вам помогут таймеры и прерывания.

Вот теперь мы готовы написать нашу программу. Поэтому создаем проект с помощью мастера проектов. Сразу прицепим LCD, мы же уже это умеем).

Переходим на вкладку Timers и тут остановимся поподробнее:

Выбираем частоту 7813 и устанавливаем галочку напротив пункта Interrupt on: Compare A Match. Таким образом мы указали, что при совпадении значения выполнять прерывание (то о чем было написано выше). Прерывание будем выполнять 1 раз в секунду, т.е. нам нужно тикнуть 7813 раз, поэтому переводим число 7813 в шестнадцатеричную систему и получим 1e85. Именно его и записываем в регистр сравнения Comp A. Регистр сравнения Comp A 16 битный, поэтому число больше 2^16=65536 мы записать не можем.

Генерим, сохраняем, вычищаем наш код. Появится новый непонятный кусок кода

// Timer 1 output compare A interrupt service routine
interrupt void timer1_compa_isr(void)
{

Это то самое прерывание. Именно внутри этих скобок мы можем писать тот код, который мы хотели бы выполнять через определенные промежутки времени. У нас это одна секунда. Итак логично создать переменную, которую мы будем увеличивать 1 раз в секунду, т.е. 1 раз за прерывание. Поэтому проинициализируем переменную int s =0; а в прерывании будем ее увеличивать от 0 до 59. Значение переменной выведем на жк дисплей. Никаких хитростей, все очень просто.
Получившийся код.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 #include #asm .equ __lcd_port= 0x18 ; PORTB #endasm #include int s = 0 ; // переменная для хранения секунд // Обработка прерывания по совпадению interrupt [ TIM1_COMPA] void timer1_compa_isr(void ) { s++; // увеличиваем переменную каждую секунду if (s> 59 ) // обнуляем секунды после 59 { s= 0 ; } TCNT1= 0 ; //обнуляем таймер } void main(void ) { TCCR1A= 0x00 ; //настройка таймера TCCR1B= 0x05 ; TCNT1= 0x00 ; //здесь увеличиваются тики OCR1A= 0x1E85 ; //записываем число в регистр сравнения TIMSK= 0x10 ; //запускаем таймер lcd_init(8 ) ; #asm("sei") while (1 ) { lcd_gotoxy(0 , 0 ) ; //вывод в 0 координате X и Y lcd_putchar(s/ 10 + 0x30 ) ; //вывод десятков секунд lcd_putchar(s% 10 + 0x30 ) ; //вывод секунд } ; }

#include #asm .equ __lcd_port=0x18 ;PORTB #endasm #include int s = 0; // переменная для хранения секунд // Обработка прерывания по совпадению interrupt void timer1_compa_isr(void) { s++; // увеличиваем переменную каждую секунду if(s>59) // обнуляем секунды после 59 { s=0; } TCNT1=0; //обнуляем таймер } void main(void) { TCCR1A=0x00; //настройка таймера TCCR1B=0x05; TCNT1=0x00; //здесь увеличиваются тики OCR1A=0x1E85; //записываем число в регистр сравнения TIMSK=0x10; //запускаем таймер lcd_init(8); #asm("sei") while (1) { lcd_gotoxy(0,0); //вывод в 0 координате X и Y lcd_putchar(s/10+0x30); //вывод десятков секунд lcd_putchar(s%10+0x30); //вывод секунд }; }

Таймеры — еще один классический модуль, присутствующий практически во всех МК. Он позволяет решать множество задач, самая распространная из которых — задание стабильных временных интервалов. Второе по популярности применение — генерация ШИМ (о нем далее) на выводе МК. Несмотря на то, что, как уже было сказано, применение таймеров отнюдь не ограничивается этими задачами, здесь будут рассмотрены только эти две как наиболее распространенные.

Сам по себе таймер представляет собой двоичный счетчик, подключенный к системе тактирования микроконтроллера через дополнительный делитель. К нему, в свою очередь, подключены блоки сравнения (их может быть много), которые способны выполнять разные полезные функции и генерировать прерывания — в зависимости от настроек. Упрощенно устройство таймера можно представить следующим образом:

Настройка таймера, как и всей остальной периферии, производится через его регистры.

Генерация временных интервалов с помощью таймера.

Прерывания.

Из названия явствует, что главным назначением блоков сравнения является постоянное сравнение текущего значения таймера со значением, заданным в регистре OCRnX. Уже упоминалось, что имена регистров часто несут в себе глубокий сакральный смысл — и регистры сравнения не являются исключением. Так, n обозначает номер таймера, X — букву (тоже способ нумерации, блоков сравнения может быть много) регистра сравнения. Таким образом, OCR1A можно понять как O utput C ompare R egister of 1 st timer, unit A . К слову, искушенному эмбеддеру это даcт возможность предположить, что, возможно, существует таймер 0 и регистр сравнения B…

Итак, блоки сравнения могут генерировать прерывания при каждом совпадении значения таймера (к слову, оно находится в регистре TCNTn T imer/C ouNT er #n ) с заданым числом. Читателю уже должно быть знакомо понятие прерывания, однако на всякий случай освежим его в памяти, а заодно и поговорим о том, как его описать на С. Так вот, вышесказанное значит, что, как только случится описанное событие, процессор сохранит номер текущей команды в стеке и перейдет к выполению специально определенного кода, а после вернется обратно. Все происходит почти так же, как и при вызове обычной функции, только вызывается она на аппаратном уровне. Объявляются такие функции с помощью макроса, объявленного в avr/interrupt.h (ISR — «I nterrupt S ervice R outine», «обработчик прерывания»):

ISR (< имя вектора прерывания> ) { /*код обработчка прерывания*/ }

Каждому прерыванию (естесственно, их много) соответствует т.н. вектор прерывания — константа, также объявленная в avr/interrupt. Например, обработчик прерывания по совпадению значения таймера со значением регистра OCR1A будет иметь следующий вид:

ISR (TIMER1_COMPA_vect) { /*код обработчика*/ }

Несомненно, проницательный читатель уже догадался, каким образом формируются имена векторов. Тем не менее, полный список этих констант можно посмотреть в документации на avr-libc (библиотека стандартных функций для AVR-GCC).

Даташит (от англ. datasheet) — файл технической документации, описание конкретного прибора (микросхемы, транзистора и т.д.). Содержит всю информацию о характеристиках и применении компонента. Почти всегда имеет формат PDF. Обычно гуглится как «<название компонента> pdf».

Последние три бита управляют предделителем, упомянутым в самом начале (остальные же нас пока не интересуют):

Сконфигурируем таймер так, чтобы прерывания происходили два раза в секунду. Выберем предделитель 64; для этого установим биты CS11 и CS10:

TCCR1B= (1 < < CS11) | (1 < < CS10) ;

Тогда частота счета составит 8МГц/64=125КГц, т.е. каждые 8мкС к значению TCNT1 будет прибавляться единица. Мы хотим, чтобы прерывания происходили с периодом 500мС. Очевидно, что за это время таймер досчитает до значения 500мС/8мкС=62500, или 0xF424. Таймер 1 — шестнадцатибитный, так что все в порядке.

OCR1A= 0xF424 ;

Ясно, что в случае, если расчетное значение превышает разрядность таймера, требуется выбор большего предделителя. Вывод несложной формулы для расчета числа, которое необходимо загрузить в таймер для получения нужной частоты прерываний при заданной частоте процессора и предделителе, автор оставляет читателю.

Осталось только разрешить прерывание по совпадению — за него отвечает бит в регистре TIMSK1:

Про него написано следующее:

Итак, устанавливаем нужное значение:

TIMSK1= (1 < < OCIE1A) ;

Кроме того, следует помнить, что перед использованием прерываний необходимо их глобально разрешить вызовом функции sei() . Для глобального запрета прерываний служит функция cli() . Эти функции устанавливают/очищают бит I в регистре SREG , управляя самой возможностью использования такого механизма, как прерывания. Регистры же вроде TIMSKn — не более чем локальные настройки конкретного модуля.

Как уже упоминалось, прерывание может возникнуть в любой момент, прервав программу в любом месте. Однако существуют случаи, когда это нежелательно. Механизм глобального запрета/разрешения прерываний позволяет решить эту проблему.

Итак, программу, мигающую светодиодом, с использованием прерываний можно переписать следующим образом:

# include < avr/io.h > # include < avr/interrupt.h > ISR (TIMER1_COMPA_vect) { TCNT1= 0 ; if (PORTB & (1 < < PB0) ) PORTB& = ~ (1 < < PB0) ; else PORTB| = (1 < < PB0) ; } void main (void ) { DDRB= 0xFF ; PORTB= 0 ; OCR1A= 0xF424 ; TIMSK1= (1 < < OCIE1A) ; TCCR1B= (1 < < CS11) | (1 < < CS10) ; sei() ; while (1 ) ; }

Видно, что теперь в промежутках между переключениями светодиодов процессор абсолютно свободен для выполнения других задач, в то время как в первом примере он был занят бесполезным подсчетом тактов (функции _delay_xx() работают именно так). Таким образом, прерывания позволяют организовать примитивную многозадачность.

Генерация ШИМ с помощью таймера.

При определеных настройках блоки сравнения позволяют организовать аппаратную генерацию ШИМ-сигнала на ножках МК, обозначенных как OСnX:

ШИМ (PWM) — Ш иротно-И мпульсная М одуляция (P ulse W idth M odulation). ШИМ-сигнал представляет собой последовательность прямоугольных импульсов с изменяющейся длительностью:

Для ШИМ вводятся две родственные характеристики — коэффициент заполнения (duty cycle, D) и скважность — величина, обратная коэффицинту заполнения. Коэффициент заполнения представляет собой отношение времени импульса к длительности периода:

Коэффициент заполнения часто выражается в процентах, но так же распространена запись в десятичных дробях.

Значение ШИМ для народного хозяйства заключается в том, что действующее значение напряжения такого сигнала прямо пропоционально коэффициенту заполнения:

— с этим интегралом пособие смотрится солиднее; зависимость же выражается следующей формулой:

U avg — среднее значение напряжения (тут — оно же действующее);
D — коэффициент заполнения;
U p-p — амплитуда импульса.

Таким образом, ШИМ является простым способом получить аналоговый сигнал с помощью микроконтроллера — для этого такую последовательность импульсов надо подать на фильтр низких частот (который, кстати, и является физическим воплощением интеграла, записанного выше).

Наиболее употребительным режимом ШИМ является т.н. Fast PWM (об остальных режимах можно прочесть непосредственно в документации), поэтому рассмотрим его. В этом случае блоки сравнения работают следующим образом: с обнулением таймера на выход OCnX подается высокий уровень; как только таймер досчитает до числа, записанного в OCRnX, OCnX переводится в состояние низкого уровня. Все это повторяется с периодом переполнения счетчика. Получается, что ширина выходного импульса зависит от значения OCRnX, а выходная частота равна тактовой частоте таймера, поделенной на его максимальное значение. Рисунок из даташита поясняет сказанное:

Возможен также инверсный режим, в котором изменение состояния OCnX производится в обратной последовательности, что бывает удобно на практике.

Настройка блока сравнения для генерации ШИМ.

Здесь нам опять поможет документация. Итак, сначала надо перевести блок сравнения в режим генерации ШИМ и выбрать интересующий выход из доступных. Эти настройки доступны в регистре TCCR0A:

Нас интересуют биты WGMxx и COMnXn. Про них сказано следующее:

Т.е., нас интересуют биты WGM00 и WGM01 — Fast PWM mode,

а также COM0A1 — non-inverting PWM на выводе OC0A. Настраиваем:

TCCR0A= (1 < < COM0A1) | (1 < < WGM01) | (1 < < WGM00) ;

Естесственно, кроме этого выбранная ножка должна быть настроена на выход с помощью регистра DDR соответствующего порта.

OCR0A= 128 ;

И, наконец, включить таймер, выбрав делитель. Тут все так же:


Обычно для ШИМ выбирается максимально возможная частота (для того, чтобы получить максимальное качество выходного сигнала). Т.е., целесообразно установить минимальное значение делителя:

TCCR0B= (1 < < CS00) ;

На этом этапе настройка ШИМ завершается, и на выбранной ножке можно увидеть сигнал.

Как упомянуто выше, ШИМ — простой способ получения аналогового сигнала с помощью МК. Например, можно организовать плавное мигание светодиода (в этом случае роль интегратора-ФНЧ выполняет глаз наблюдателя, так что светодиод можно подключить к ножке МК через обычный резистор).

Некоторые моменты в предлагаемом примере требуют пояснения.

В списке включаемых файлов присутствует загадочный stdint.h — в этом файле объявлены типы с явно указанной разрядностью, например

uint8_t u nsigned 8 -bit int eger t ype
uint16_t u nsigned 16 -bit int eger t ype
uint32_t u nsigned 32 -bit int eger t ype
int8_t — signed 8 -bit int eger t ype

и так далее. Такие типы способствуют единообразию и удобочитаемости программы. Кроме того, гарантируется, что при портировании кода разрядность данных останется указанной. И, кстати, uint8_t писать гораздо быстрее, чем unsigned char.

Модификатор volatile означает, что компилятору запрещается оптимизировать данную переменную. Например, если скомпилировать следующий пример:

void main (void ) { unsigned char i= 0 ; while (1 ) { i+ + ; } }

после чего изучить дизассемблированный код, можно обнаружить, что на самом деле никакой переменной создано не было, и программа представляет собой пустой цикл. Это произошло потому, что оптимизатор посчитал переменную неиспользуемой, и не включил ее в результирующий код. Если бы подобным образом объявленная переменная использовалась, например, в прерывании, такая вольность оптимизатора вызвала бы некорректную работу программы. Применение volatile исключает такое поведение.

#include #include #include volatile uint8_t pwm_value= 0 , dn_count= 0 ; ISR (TIMER1_COMPA_vect) { TCNT1= 0 ; if (dn_count) //плавно меняем яркость диода, по шагу за раз pwm_value--; else pwm_value++; if (pwm_value== 0 ) //проверка границ, переключение разгорание/затухание dn_count= 0 ; if (pwm_value== 0xFF ) dn_count= 1 ; OCR0A= pwm_value; //устанавливаем новый коэфф. заполнения } void main(void ) { DDRD= 0xFF ; //настройка порта на выход PORTD= 0 ; OCR1A= 0xF424 ; //константа, определяющая частоту прерываний TIMSK1= (1 << OCIE1A) ; //разрешаем прерывание по совпадению канала А TCCR1B= (1 << CS11) | (1 << CS10) ; //запускаем таймер 1 TCCR0A= (1 << COM0A1) | (1 << WGM01) | (1 << WGM00) ; //таймер 0 будет генерировать ШИМ OCR0A= 128 ; //начальное значение ШИМ TCCR0B= (1 << CS00) ; //запускаем таймер 0 sei() ; //разрешаем прерывания while (1 ) ; //все, дальше процесс идет на прерываниях и аппаратном ШИМе }

Самостоятельно сделать трансформатор с 220 на 12 Вольт сможет даже начинающий радиолюбитель. Это устройство относится к машинам переменного тока, принцип работы отдаленно напоминает асинхронный мотор. Конечно, можно купить готовый трансформатор, но зачем тратить деньги, особенно в тех случаях, когда под рукой имеется достаточное количество стали для сердечника и провода для катушек? Остается только изучить немного теории и можно приступать к изготовлению устройства.

Как подобрать материалы

При изготовлении понижающего трансформатора с 220 на 12 Вольт важно использовать качественные материалы - это обеспечит высокую надежность устройства, которое впоследствии соберете на нем. Нужно отметить тот факт, что трансформатор позволяет сделать развязку с сетью, поэтому его допускается устанавливать для питания ламп накаливания и прочих приборов, которые находятся в помещениях с высокой влажностью (душевые, подвалы, и т. д.). При самостоятельном изготовлении каркаса катушки нужно использовать прочный картон или текстолит.

Рекомендуется использовать провода отечественного производства, они намного прочнее китайских аналогов, у них лучше изоляция. Можно использовать провод со старых трансформаторов, главное, чтобы не было повреждений изоляции. Чтобы слои изолировать друг от друга, можно использовать как простую бумагу (желательно тонкую), так и ФУМ-ленту, которая используется в сантехнике. А вот для изоляции обмоток рекомендуется применять ткань, пропитанную лаком. Поверх обмоток обязательно нужно нанести изоляцию - лаковую ткань или кабельную бумагу.

Как проводить расчет?

Теперь, когда все материалы готовы, можно произвести расчет трансформатора с 220 на 12 Вольт (для лампы или любого другого бытового прибора). Для того чтобы вычислить число витков первичной обмотки, нужно использовать формулу:

N = (40..60) / S.

S - это площадь сечения магнитопровода, единица измерения - кв. см. В числителе константа - она зависит от того, какое у металла сердечника качество. Ее значение может лежать в диапазоне от 40 до 60.

Расчет на примере

Допустим, у нас такие параметры:

  1. Окно в высоту 53 мм, в ширину - 19 мм.
  2. Каркас изготавливается из текстолита.
  3. Верхние и нижние щеки: 50 мм, каркас 17,5 мм, следовательно, окно имеет размер 50 х 17,5 мм.

Далее, нужно произвести расчет диаметра проводов. Допустим, нужно, чтобы мощность была равной 170 Вт. При этом на сетевой обмотке ток будет равен 0,78 А (мощность делим на напряжение). В конструкции плотность тока оказывается равной 2 А/кв. мм. Имея эти данные, можно вычислить, что нужно применять провод диаметром 0,72 мм. Допускается использовать и 0,5 мм, 0,35 мм, но ток при этом будет меньше.

Отсюда можно сделать вывод, что для питания радиоаппаратуры на лампах, например, нужно намотать 950-1000 витков для высоковольтной обмотки. Для накала - 11-15 витков (провод только нужно использовать большего диаметра, зависит от числа ламп). Но все эти параметры можно найти и опытным путем, о котором будет рассказано дальше.

Расчет первичной обмотки

При изготовлении своими руками трансформатора с 220 на 12 Вольт нужно правильно произвести расчет первичной (сетевой) обмотки. И только после этого можно начинать делать остальные. Если неверно сделаете расчет первичной, то устройство начнет греться, сильно гудеть, пользоваться им будет неудобно, да и опасно. Допустим, используется для намотки провод сечением 0,35 мм. На одном слое уместится 115 витков (50/(0,9 х 0,39)). Число слоев посчитать тоже несложно. Для этого достаточно общее количество витков разделить на то, сколько умещается в одном слое: 1000/115=8,69.

Теперь можно произвести расчет высоты каркаса вместе с обмотками. Первичная имеет восемь полных слоев, плюс к ней еще изоляция (толщина 0,1 мм): 8 х (0,1 + 0,74) = 6,7 мм. Чтобы не появились высокочастотные помехи, сетевая обмотка экранируется от остальных. Для экрана можно использовать простой провод - наматываете один слой, изолируете его и концы соединяете с корпусом. Допускается использовать и фольгу (конечно, она должна быть прочной). В общем, первичная обмотка нашего трансформатора займет 7,22 мм.

Простой способ расчета вторичных обмоток

А теперь о том, как произвести расчет вторичных обмоток, если первичная уже имеется или готова. Использовать можно такой трансформатор 220 на 12 Вольт для светодиодных лент, только обязательно установите стабилизатор напряжения. В противном случае яркость будет непостоянной. Итак, что нужно для расчета? Несколько метров провода и только, наматываете определенное количество витков поверх первичной обмотки. Допустим, вы намотали 10 (а больше и не нужно, этого предостаточно).

Дальше необходимо собрать трансформатор и подключить первичную обмотку к сети через автоматический выключатель (для подстраховки). Ко вторичной обмотке подключаете вольтметр и щелкаете автомат. Смотрите, какое значение напряжения показывает прибор (например, он показал 5 В). Следовательно, каждый виток выдает ровно 0,5 В. А теперь просто ориентируетесь на то, какое напряжение вам нужно получить (в нашем случае это 12 В). Два витка - это 1 Вольт напряжения. А 12 В - это 24 витка. Но рекомендуется взять небольшой запас - около 25 % (а это 6 витков). Потери напряжения никто не отменял, поэтому вторичная обмотка на 12 В должна содержать 30 витков провода.

Как изготовить каркас катушек

Крайне важно при изготовлении каркаса добиться полного отсутствия острых углов, в противном случае провод может повредиться, появится межвитковое замыкание. На щечках нужно отвести места, к которым будут крепиться выводные контакты от обмоток. После окончательной сборки каркаса необходимо округлить при помощи надфиля все острые грани.

Пластины из трансформаторной стали должны входить в отверстия максимально плотно, не допускается наличие свободного хода. Для намотки тонких проводов можно использовать специальное устройство с ручным или электрическим приводом. А толстые провода нужно наматывать исключительно руками без дополнительных устройств.

Блок выпрямителя

Сам по себе выдавать постоянный ток трансформатор 220 на 12 Вольт не будет, нужно использовать дополнительные устройства. Это выпрямитель, фильтр и стабилизатор. Первый выполняется на одном или нескольких диодах. Самая популярная схема - мостовая. У нее масса преимуществ, в числе основных - минимальные потери напряжения и высокое качество тока на выходе. Но допускается использовать и иные схемы выпрямителей.

В качестве фильтров используется обычный электролитический конденсатор, который позволяет избавиться от остатков переменной составляющей выходного тока. Стабилитрон, установленный на выходе, позволяет удерживать напряжение на одном уровне. В этом случае даже при наличии пульсаций в сети 220 В и во вторичной обмотке на выходе выпрямителя напряжение будет иметь всегда одно и то же значение. Это хорошо сказывается на работе устройств, которые подключаются к нему.

По бытовым электросетям, как известно, проходит напряжение 220 или 380 В. Обычно это именно то, что требуется тому или иному оборудованию. Однако некоторые электроприборы не могут работать с такими высокими показателями, да и безопасность здесь не на последнем месте. В этом случае используется специальное устройство – понижающий трансформатор 220 на 12 вольт, которое позволяет обеспечить необходимое напряжение. Сегодня поговорим о видах таких устройств, принципе работы и предназначении. Стоит рассмотреть возможность самостоятельной сборки схемы понижающего трансформатора в домашних условиях.

Читайте в статье:

Понижающий трансформатор 220 на 12 вольт: области применения

Сегодня множество приборов, используемых в быту, требует пониженного напряжения. Это современные телевизоры, персональные компьютеры и ноутбуки, различные гаджеты. Однако эти прибору идут либо в комплекте с трансформатором, называемым блоком питания, либо он встроен в устройство. А вот освещение – отдельный вопрос. Галогенные или светодиодные лампы (особенно устанавливаемые в помещениях с повышенной влажностью) требуют наличия отдельного устройства понижения напряжения. Это обусловлено требованиями безопасности, хотя и экономичность играет не последнюю роль.

Важно! Приобретая трансформатор для светодиодных ламп 12 вольт для ванной комнаты, нужно обратить внимание на класс защиты IP. Устройство должно быть защищено от брызг во избежание короткого замыкания и выхода из строя. Для гостиной или спальни это требование несущественно.

Принцип работы трансформатора: общие сведения

Все подобные устройства, независимо от вида, выполняют схожую работу. На трансформатор подаётся напряжение, которое понижается при помощи катушек или определённых электронных составляющих до нужного показателя. Такие устройства могут быть понижающими (напряжение на выходе меньше, чем на входе) или повышающими (выходное напряжение выше, чем входное). Для бытовых нужд повышающие трансформаторы неактуальны, т.к. 220 В вполне достаточно для работы всех электроприборов.


Рассмотрим виды трансформаторов, используемых сегодня в быту.

Разделение устройств, понижающих напряжение, по видам

Трансформаторы разделяют по конструктивным особенностям на 2 вида:

  • Тороидальные, или электромагнитные – устаревший вариант, имеющий большие габариты и меньший коэффициент полезного действия (КПД). Этот вид для бытовых нужд уже практически не применяется;
  • электронные (импульсные) устройства – компактные, лёгкие, с высоким процентом КПД, стремящимся к 100%.

Несмотря на то, что первые постепенно вытесняются вторыми во всех областях, не рассмотреть их будет ошибкой.

Тороидальный трансформатор 220 на 12 вольт: устройство, схема

Довольно простое устройство, состоящее из двух катушек с различным количеством витков, установленных на одном стальном сердечнике. От разницы витков зависит изменение напряжения на выходе. Согласно законам физики, любой проводник, по которому протекает электрический ток, создаёт вокруг себя электромагнитное поле, которое усиливается при сматывании провода в катушку. Таким образом, ток, протекая по первичной катушке (на которую подаётся напряжение), создаёт сильное электромагнитное поле, передающееся через стальной сердечник на вторичную катушку, с которой напряжение снимается.


Важно! Без стального сердечника такое устройство работать не будет, даже если намотать вторичную катушку непосредственно на первичную. Более того, подобная попытка приведёт к отгоранию провода первичной катушки.

Ниже представлена схема простейшего тороидального трансформатора.

Электронное устройство понижения напряжения бытовой сети

Схема электронного трансформатора 220 на 12 вольт более сложна,однако, принцип работы её тот же. В роли стального сердечника с большим количеством витков здесь выступает небольшое ферритовое кольцо с обмотками. Основная работа выполняется тиристорами (динисторами), различными ограничительными резисторами и транзисторами. С подробной схемой можно ознакомиться ниже.

Импульсные понижающие устройства имеют ряд преимуществ перед электромагнитными:

  • малые габариты и вес;
  • высокий КПД;
  • минимальный нагрев, который совершенно незаметен при правильном вентилировании;
  • долгий срок службы.

Важно! Несмотря на все преимущества импульсников, у них есть один недостаток – такой трансформатор нельзя включать в сеть без нагрузки. В случае подобного включения устройство быстро сгорает.

Технические характеристики: на что следует обратить внимание

Выделяют 3 основных параметра, на которые следует обратить внимание. Это:

  • величина входного напряжения (220 или 380 В). В случае с бытовым освещением следует выбрать устройство с показателем 220 В;
  • выходное напряжение – должно соответствовать 12 В;
  • мощность. Этот показатель рассчитывается из общей нагрузки, которую создадут светильники. К примеру, если планируется подключение 9 ламп по 15 Вт, то мощность трансформатора должна составить 150 Вт.

Мнение эксперта

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО "АСП Северо-Запад"

Спросить у специалиста

“Не стоит приобретать понижающее устройство с большим запасом мощности. Это приведёт не только к лишним затратам при покупке, но и к меньшему сроку службы. Оптимальным считается запас в 10−15%”.

Трансформатор для люстры: критерии выбора

Выбирая подобное оборудование, следует обратить внимание не только на технические характеристики, но и на возможность размещения. Если планируется монтаж натяжного или подвесного потолка, вопросов не возникнет. А вот при отсутствии таковых всё становится немного сложнее. Можно выбрать довольно компактное устройство, помещающееся в распределительной коробке, но стоит учитывать, что малые габариты означают и меньшую мощность, которой может не хватить, если потребителей окажется много. Если в люстре вышел из строя штатный трансформатор, то всё просто – демонтируем его и приобретаем идентичный. А что делать, если решено поменять лампы накаливания на галогеновые или светодиодные, сейчас разберём подробнее.

Рассмотрим вариант. Планируется установить 8 галогеновых ламп мощностью 30 Вт каждая. Производим расчёты: 8 × 30 + 10% = 264 Вт. Обратив внимание на линейку мощностей предлагаемых производителем, можно увидеть, что ближайший показатель в большую сторону – это трансформатор 12 вольт 300 ватт. Именно его и следует приобрести.Ниже можно увидеть схему электронного трансформатора для галогенных ламп 12 В.

Как подключить понижающий трансформатор 220/12В

Существует определённый порядок подключения понижающего трансформатора. Сначала к вторичной обмотке подключаются потребители, и только затем на первичную подаётся напряжение. Монтаж производится по схеме, которая содержится в технической документации. Заземление может подключаться различными способами. Если корпус устройства металлический, то он также может быть заземлён. Ниже представлены фото различных типов трансформаторов.

Очень важно! Все работы, связанные с электромонтажом, производятся исключительно при снятом напряжении. Помните, что поражение электрическим током опасно для жизни и здоровья.

Если планируется подключение светодиодных ламп, то необходимо приобретать трансформатор со встроенным выпрямителем либо отдельно включать в схему диодный мост, который обеспечит постоянное напряжение, необходимое для стабильной работы световых диодов.

Как проверить понижающий трансформатор 220 на 12В при помощи мультиметра

Если имеется понижающий трансформатор, и неизвестно работает ли он, и каково его выходное напряжение, можно воспользоваться мультиметром. Однако следует понимать, что неправильная проверка может вывести измерительный прибор из строя. Разберём алгоритм действий:

  1. Находим визуально первичную и вторичную и вторичную обмотки. Сделать это просто. Жилы первичной обмотки всегда тоньше.
  2. Выставляем переключателем мультиметра показатель переменного тока на минимальный (обычно это 200 В).
  3. Подаём напряжение на первичную обмотку.
  4. Снимаем показания со вторичной обмотки. Если контактов более двух, проверяем их попеременно. Возможно, что, помимо 12 В, трансформатор способен выдавать 24 и 36 В.

Как изготовить трансформатор 220 на 12В своими руками

Для самостоятельного изготовления понижающего трансформатора понадобится наличие следующих материалов:

  • сердечника, который можно взять из старого телевизора;
  • лакоткани;
  • толстого картона;
  • досок и деревянных брусков;
  • стального прута;
  • клея и пилы.

Сначала разберём вариант изготовления простейшей машинки для намотки провода.

Иллюстрация Выполняемое действие
Это наиболее простое приспособление для намотки провода на катушку. На схеме ясно видно, каким образом его можно собрать. Однако существуют и более удобные устройства, которые позволят ускорить процесс.
При помощи обычных тисков, стального прута и коловорота (ручной дрели) можно собрать приспособление для намотки, которое сэкономит силы и время.
Ещё одно устройство, без которого не обойтись. Часто для изготовления трансформатора используют старые катушки. Именно такой станок вместе с одним из предыдущих приспособлений позволит аккуратно перемотать провод с одной катушки на другую.

Теперь следует рассмотреть изготовление картонного каркаса, непосредственно на который будет наматываться провод.

Иллюстрация Выполняемое действие
Размеры каркаса вымеряются по сердечнику (он должен входить внутрь довольно плотно). Исходя из того, что сердечник может быть как из обычных пластин, так и с просечкой, предлагаем читателю ознакомиться с обоими вариантами.
По размерам делаем выкройку, которая склеивается. Для фиксации можно использовать любой клей, однако лучше отдать предпочтение водостойкому. Оптимальным вариантом станет эпоксидный.
А здесь можно увидеть соотношение размеров сборного каркаса, который сложнее в изготовлении, но более надёжен и не требует склейки. Помните, что несоблюдение параметров может привести к нестабильной работе трансформатора.

Когда всё необходимое готово, можно приступать к самой намотке. В этой работе тоже есть свои нюансы, которые следует учитывать.

Иллюстрация Выполняемое действие
Разматываться с катушки-«донора» провод должен сверху, а наматываться, наоборот, – снизу вверх. Расстояние между катушками не должно быть меньше метра. Провод придерживается правой рукой, а вращение производится левой.
Выводы на различные величины напряжений заделываются с применением изолирующих прокладок. Их можно сделать из наматываемого провода или припаять к нему гибкий вывод, что удобнее. Место спайки изолируется в обязательном порядке. Вывод пропускается через отверстие в щёчке и фиксируется. Чтобы не запутаться впоследствии (при наличии нескольких выводов), лучше его сразу промаркировать.
Фиксирующие изолирующие прокладки проклеиваются, однако, даже в этом случае необходима дополнительная фиксация.
На рисунке показано, каким образом зажимаются наматываемым проводом фиксирующие изолирующие прокладки. Важно делать всё по инструкции – только в этом случае можно надеяться на положительный результат. Помните, что витки провода должны плотно прилегать друг к другу – это обеспечит стабильное магнитное поле катушки.

Расчёт количества витков первичной и вторичной обмотки

Основной работой при изготовлении трансформатора можно назвать расчёт количества витков первичной и вторичной обмотки. В среднем для преобразователя в 90−150 Вт принимается за расчёт количество витков на 1 В, равное 50 Гц / 10 = 5. Общее же количество рассчитаем по формулам:

  • W1 = 220 × 5 = 1100 ;
  • W2 = 12 × 5 = 60.

Получаем необходимое количество витков первичной обмотки − 1100, а вторичной – 60.

Цены на трансформаторы 220 на 12 вольт

Рассмотрим, по какой цене можно купить трансформаторы 220 на 12 вольт на российском рынке. Стоимость указана по состоянию на апрель 2018 года.

Фото Марка Мощность, Вт Средняя стоимость (по состоянию на апрель 2018 г.), руб.
Feron 60 150
TRA54 200 500
TRA110 250 375
Pondtech 75 4200
Relco 250 4100

Как можно увидеть, разброс цен довольно велик. Он зависит от бренда и качества комплектующих, а значит, не стоит думать, что понижающий трансформатор за 150 руб. проработает долго.

Подведём итоги

Перед приобретением понижающего трансформатора для дома важно высчитать все параметры. Не стоит относиться к этому небрежно, ведь от правильности расчётов зависит долговечность работы преобразователя. Если же решено изготовить подобное устройство самостоятельно, то отнестись к вычислениям нужно ещё более внимательно. Если, конечно, домашний мастер рассчитывает использовать готовый преобразователь.

Автомобильный инвертор напряжения порой бывает невероятно полезен, но большинство изделий в магазинах либо грешат качеством, либо по мощности не устраивают, а стоят при этом недёшево. Но ведь схема инвертора состоит из простейших деталей, потому мы предлагаем инструкцию по сборке преобразователя напряжения своими руками.

Корпус для инвертора

Первое, что нужно учесть — потери преобразования электричества, выделяющиеся в виде тепла на ключах схемы. В среднем эта величина составляет 2-5% от номинальной мощности устройства, но показатель этот имеет свойство расти из-за неправильного подбора или старения комплектующих.

Отвод тепла от полупроводниковых элементов имеет ключевое значение: транзисторы очень чувствительны к перегреву и выражается это в быстрой деградации последних и, вероятно, их полному отказу. По этой причине основанием для корпуса должен служить теплоотвод — алюминиевый радиатор.

Из радиаторных профилей хорошо подойдёт обычная «расчёска» шириной 80-120 мм и длиной около 300-400 мм. к плоской части профиля винтами крепятся экраны полевых транзисторов — металлические пятачки на их задней поверхности. Но и с этим не всё просто: электрического контакта между экранами всех транзисторов схемы быть не должно, поэтому радиатор и крепления изолируются слюдяными плёнками и картонными шайбами, при этом по обе стороны диэлектрической прокладки металлсодержащей пастой наносится термоинтерфейс.

Определяем нагрузку и закупаем компоненты

Крайне важно понимать, почему инвертор — это не просто трансформатор напряжения, а также почему существует столь разнообразный перечень подобных устройств. Прежде всего помните, что подключив трансформатор к источнику постоянного тока, вы ничего не получите на выходе: ток в АКБ не меняет полярности, соответственно, явление электромагнитной индукции в трансформаторе отсутствует как таковое.

Первая часть схемы инвертора — входной мультивибратор, имитирующий колебания сети для совершения трансформации. Собирается он обычно на двух биполярных транзисторах, способных раскачать силовые ключи (например, IRFZ44, IRF1010NPBF или мощнее — IRF1404ZPBF), для которых важнейший параметр — предельно допустимый ток. Он может достигать нескольких сотен ампер, но в целом вам достаточно умножить значение тока на вольтаж аккумуляторной батареи, чтобы получить ориентировочное количество ватт выходной мощности без учёта потерь.

Простой преобразователь на основе мультивибратора и силовых полевых ключей IRFZ44

Частота работы мультивибратора непостоянна, рассчитывать и стабилизировать её — пустая трата времени. Вместо этого ток на выходе трансформатора снова превращается в постоянный с помощью диодного моста. Такой инвертор может быть пригоден для питания чисто активных нагрузок — ламп накаливания или электрических нагревателей , печек.

На основе полученной базы можно собирать и другие схемы, отличающиеся частотой и чистотой выходного сигнала. Подбор компонентов для высоковольтной части схемы сделать проще: токи здесь не такие высокие, в ряде случаев сборку выходного мультивибратора и фильтра можно заменить парой микросхем с соответствующей обвязкой. Конденсаторы для нагрузочной сети следует использовать электролитические, а для цепей с низким уровнем сигнала — слюдяные.

Вариант преобразователя с генератором частоты на микросхемах К561ТМ2 в первичном контуре

Стоит также заметить, что для увеличения итоговой мощности вовсе не обязательно закупать более мощные и стойкие к нагреву компоненты первичного мультивибратора. Задачу можно решить увеличением числа преобразовательных контуров, включенных параллельно, но для каждого из них потребуется собственный трансформатор.

Вариант с пареллельным подключением контуров

Борьба за синусоиду — разбираем типовые схемы

Инверторы напряжения сегодня используются повсеместно как автолюбителями, желающими пользоваться бытовой техникой вдалеке от дома, так и обитателями автономных жилищ, питающихся солнечной энергией . И в целом можно сказать, что от сложности устройства преобразователя напрямую зависит ширина спектра токоприёмников, которые можно к нему подключить.

К сожалению, чистый «синус» присутствует только в магистральной электросети, добиться преобразования постоянного тока в него очень и очень сложно. Но в большинстве случаев этого и не требуется. Чтобы подключать электрические двигатели (от дрели до кофемолки), достаточно пульсирующего тока с частотой от 50 до 100 герц без сглаживания.

ЭСЛ, светодиодные лампы и всевозможные генераторы тока (блоки питания, зарядные устройства)более критичны к выбору частоты, поскольку именно на 50 Гц основана схема их работы. В таких случаях следует включать во вторичный вибратор микросхемы, зовущиеся генератором импульсов. Они могут коммутировать небольшую нагрузку непосредственно, либо исполнять роль «дирижёра» для серии силовых ключей выходной цепи инвертора.

Но даже такой хитрый план не сработает, если вы планируете использовать инвертор для стабильного питания сетей с массой разнородных потребителей, включая асинхронные электрические машины. Здесь чистый «синус» очень важен и реализовать такое под силу лишь преобразователям частоты с цифровым управлением сигналом.

Трансформатор: подберём или сами

Для сборки инвертора нам не хватает всего одного элемента схемы, выполняющего трансформацию низкого напряжения в высокое. Вы можете использовать трансформаторы из блоков питания персональных компьютеров и старых ИБП, их обмотки как раз рассчитаны на трансформацию 12/24-250 В и обратно, остаётся лишь правильно определить выводы.

И всё же лучше намотать трансформатор своими руками, благо что ферритовые кольца дают возможность сделать это самому и с любыми параметрами. Феррит обладает отличной электромагнитной проводимостью, а значит, потери при трансформации будут минимальными даже если провод намотан вручную и не плотно. К тому же вы легко рассчитаете необходимое количество витков и толщину провода по имеющимся в сети калькуляторам.

Перед намоткой кольцо сердечника нужно подготовить — снять надфилем острые кромки и плотно обмотать изолятором — стеклотканью, пропитанной эпоксидным клеем. Далее следует намотка первичной обмотки из толстого медного провода расчётного сечения. После набора нужного количества витков их необходимо равномерно распределить по поверхности кольца с равным интервалом. Выводы обмотки соединяются согласно схеме и изолируются термоусадкой.

Первичная обмотка покрывается двумя слоями лавсановой изоленты, затем наматывается высоковольтная вторичная обмотка и ещё один слой изоляции. Важный момент — мотать «вторичку» нужно в обратном направлении, иначе трансформатор работать не будет. В завершение к одному из отводов нужно припаять в разрыв полупроводниковый термопредохранитель, ток и температура срабатывания которого определяются параметрами провода вторичной обмотки (корпус предохранителя нужно плотно примотать к трансформатору). Сверху трансформатор обматывается двумя слоями виниловой изоляции без клейкой основы, конец закрепляется стяжкой или цианакрилатным клеем.

Монтаж радиоэлементов

Осталось собрать устройство. Поскольку компонентов в схеме не так много, можно размещать их не на печатной плате, а навесным монтажом с креплением к радиатору, то есть к корпусу устройства. К штыревым ножкам подпаиваемся моножильным медным проводом достаточно большого сечения, затем место соединения укрепляется 5-7 витками тонкой трансформаторной проволоки и небольшим количеством припоя ПОС-61. После остывания соединения оно изолируется тонкой термоусадочной трубкой.

Схемы высокой мощности и со сложным вторичным контуром могут потребовать изготовления печатной платы, на краю которой в ряд размещены транзисторы для свободного крепления к теплоотводу. Для изготовления печатки пригоден стеклотекстолит с толщиной фольги не менее 50 мкм, если же покрытие более тонкое — усиливайте цепи низкого напряжения перемычками из медного провода.

Изготовить печатную плату в домашних условиях сегодня просто — программа Sprint-Layout позволяет рисовать обтравочные трафареты для схем любой сложности, в том числе и для двухсторонних плат. Полученное изображение распечатывается лазерным принтером на качественной фотобумаге. Затем трафарет прикладывается к очищенной и обезжиренной меди, проглаживается утюгом, бумага размывается водой. Технология получила название «лазерно-утюжной» (ЛУТ) и описана в сети достаточно подробно.

Вытравливать остатки меди можно хлорным железом, электролитом или даже поваренной солью, способов предостаточно. После вытравливания припекшийся тонер нужно смыть, просверлить монтажные отверстия сверлом в 1 мм и пройтись по всем дорожкам паяльником (под флюсом), чтобы залудить медь контактных площадок и улучшить проводимость каналов.

Новое на сайте

>

Самое популярное