Домой Удобрения Как построить линию пересечения двух. Пересечение двух плоскостей. Вращение вокруг заданной оси

Как построить линию пересечения двух. Пересечение двух плоскостей. Вращение вокруг заданной оси

Построение точки пересечения прямой с проецирующей плоскостью сводится к построе­нию второй проекции точки на эпюре, так как одна проекция точки всегда лежит на следе проецирующей плоскости, потому что все, что находится в проецирующей плоскости, проецируется на один из следов плоскости. На рис. 224, а показано построение точки пересе­чения прямой EF с фронтально-проецирующей плоскостью треугольника ABC (перпендику­лярной плоскости V) На плоскость V тре­угольник ABC проецируется в отрезок а"с" пря­мой линии, и точка к" будет также лежать на этой прямой и находиться в точке пересечения e"f с а"с". Горизонтальную проекцию строят с помощью линии проекционной связи. Види­мость прямой относительно плоскости тре­угольника АВС определяют по взаимному рас­положению проекций треугольника ABC и пря­мой EF на плоскости V. Направление взгляда на рис. 224, а указано стрелкой. Тот участок прямой, фронтальная проекция которого нахо­дится выше проекции треугольника, будет ви­димым. Левее точки к" проекция прямой нахо­дится над проекцией треугольника, следова­тельно, на плоскости Н этот участок види­мый.

На рис. 224, б прямая EF пересекает гори­зонтальную плоскость Р. Фронтальная проек­ция к" точки К - точки пересечения прямой EF с плоскостью Р - будет находиться в точке пересечения проекции е"f "со следом плоскости P v , так как горизонтальная плоскость является фронтально-проецирующей плоскостью. Гори­зонтальную проекцию k точки К находят с по­мощью линии проекционной связи.

Построение линии пересечения двух пло­скостей сводится к нахождению двух точек, общих для этих двух плоскостей. Для построе­ния линии пересечения этого достаточно, так как линия пересечения - прямая, а прямая задается двумя точками. При пересечении проецирующей плоскости с плоскостью общего положения одна из проекций линии пересече­ния совпадает со следом плоскости, находя­щимся в той плоскости проекций, к которой перпендикулярна проецирующая плоскость. На рис. 225, а фронтальная проекция т"п" линии пересечения MN совпадает со следом P v фрон­тально-проецирующей плоскости Р, а на рис. 225, б горизонтальная проекция kl совпа­дает со следом горизонтально-проецирующей плоскости R. Другие проекции линии пересе­чения строятся с помощью линий проекцион­ной связи.

Построение точки пересечения прямой с пло­скостью общего положения (рис. 226, а) вы­полняют с помощью вспомогательной проеци­рующей плоскости R, которую проводят через данную прямую EF. Строят линию пересечения 12 вспомогательной плоскости R . с заданной плоскостью треугольника ABC, получают в плоскости R две прямые: EF - заданная пря­мая и 12 - построенная линия пересечения, которые пересекаются в точке K .


Нахождение проекций точки К показано на рис. 226, б. Построения выполняют в следую­щей последовательности.

Через прямую EF проводят вспомогательную горизонтально-проецирующую плоскость R. Ее след совпадает с горизонтальной проекцией ef прямой EF.

Строят фронтальную проекцию 1׳2" линии пересечения 12 плоскости R с заданной пло­скостью треугольника ABC с помощью линий проекционной связи, так как горизонтальная проекция линии пересечения известна. Она совпадает с горизонтальным следом R H пло­скости R.

Определяют фронтальную проекцию к" иско­мой точки К, которая находится в пересечении фронтальной проекции данной прямой с проек­цией 1"2" линии пересечения. Горизонтальная проекция точки строится с помощью линии проекционной связи.

Видимость прямой относительно плоскости треугольника ABC определяется способом кон­курирующих точек. Для определения види­мости прямой на фронтальной плоскости про­екций (рис. 226, б) сравним координаты Y точек 3 и 4, фронтальные проекции которых совпадают. Координата Y точки 3, лежащей на прямой ВС, меньше координаты Y точки 4, лежащей на прямой EF. Следовательно, точка 4 находится ближе к наблюдателю (направле­ние взгляда указано стрелкой) и проекция прямой изображается на плоскости V видимой. Прямая проходит перед треугольником. Левее точки К׳ прямая закрыта плоскостью треугольника ABC. Видимость на горизонтальной плоскости проекций показывают, сравнив координаты Z точек 1 и 5. Так как Z 1 > Z 5 , точка 1 видимая. Следова­тельно, правее точки 1 (до точки К) прямая EF невидимая.

Для построения линии пересечения двух плоскостей общего положения применяют вспо­могательные секущие плоскости. Это показано на рис. 227, а. Одна плоскость задана тре­угольником ABC, другая - параллельными прямыми EF и MN. Заданные плоскости (рис. 227, а) пересекают третьей вспомогатель­ной плоскостью. Для простоты построений в качестве вспомогательных плоскостей берут горизонтальные или фронтальные плоскости. В данном случае вспомогательная плоскость R является горизонтальной плоскостью. Она пе­ресекает заданные плоскости по прямым лини­ям 12 и 34, которые в пересечении дают точ­ку К , принадлежащую всем трем плоскостям, а следовательно, и двум заданным, т. е. лежа­щую на линии пересечения заданных плоскос­тей. Вторую точку находят с помощью второй вспомогательной плоскости Q . Найденные две точки К и L определяют линию пересечения двух плоскостей.

На рис. 227, б вспомогательная плоскость R задана фронтальным следом. Фронтальные проекции линий пересечения 1"2" и 3"4" пло­скости R с заданными плоскостями совпадают с фронтальным следом R v плоскости R, так как плоскость R перпендикулярна плоскости V, и все, что в ней находится (в том числе и ли­нии пересечения) проецируется на ее фрон­тальный след R v . Горизонтальные проекции этих линий построены с помощью линий про­екционной связи, проведенных от фронтальных проекций точек 1", 2", 3", 4" до пересечения с горизонтальными проекциями соответствую­щих прямых в точках 1, 2, 3, 4. Построенные горизонтальные проекции линий пересечения продлевают до пересечения друг с другом в точке k, которая является горизонтальной проекцией точки K , принадлежащей линии пе­ресечения двух плоскостей. Фронтальная проек­ция этой точки находится на следе R v .

В задаче необходимо найти линию пересечения двух плоскостей и определить натуральную величину одной из них методом плоскопараллельного перемещения.

Для решения такой классической задачи по начертательной геометрии необходимо знать следующий теоретический материал:

— нанесение проекций точек пространства на комплексный чертеж по заданным координатам;

— способы задания плоскости на комплексном чертеже, плоскости общего и частного положения;

— главные линии плоскости;

— определение точки пересечения прямой линии с плоскостью (нахождение «точки встречи» );

— метод плоскопараллельного перемещения для определения натуральной величины плоской фигуры;

— определение видимости на чертеже прямых линий и плоскостей с помощью конкурирующих точек.

Порядок решения Задачи

1. Согласно варианту Задания по координатам точек наносим на комплексный чертеж две плоскости, заданные в виде треугольников ABC (A’, B’, C’; A, B, C) и DKE (D’, K’, E’; D, K, Е) (рис.1.1 ).

Рис.1.1

2 . Для нахождения линии пересечения воспользуемся методом проецирующей плоскости . Суть его в том, что берется одна сторона (линия) первой плоскости (треугольника) и заключается в проецирующую плоскость. Определяется точка пересечения этой линии с плоскостью второго треугольника. Повторив эту задачу еще раз, но для прямой второго треугольника и плоскости первого треугольника, определим вторую точку пересечения. Так как полученные точки одновременно принадлежат обеим плоскостям, они должны находиться на линии пересечения этих плоскостей. Соединив эти точки прямой, будем иметь искомую линию пересечения плоскостей.

3. Задача решается следующим образом:

а) заключаем в проецирующую плоскость Ф(Ф’) сторону AB (A B ’) первого треугольника во фронтальной плоскости проекций V . Отмечаем точки пересечения проецирующей плоскости со сторонами DK и DE второго треугольника, получая точки 1(1’) и 2 (2’) . Переносим их по линиям связи на горизонтальную плоскость проекций H на соответствующие стороны треугольника, точка 1 (1) на стороне DE и точка 2(2) на стороне DK .

Рис.1.2

б) соединив проекции точек 1 и 2 , будем иметь проекцию проецирующей плоскости Ф . Тогда точка пересечения прямой АВ с плоскостью треугольника DKE определится (согласно правилу) вместе пересечения проекции проецирующей плоскости 1-2 и одноименной проекции прямой AB . Таким образом, получили горизонтальную проекцию первой точки пересечения плоскостей – M , по которой определяем (проецируем по линиям связи) её фронтальную проекцию – M на прямой A B (рис.1.2.а );

в) аналогичным путем находим вторую точку. Заключаем в проецирующую плоскость Г(Г) сторону второго треугольника DK (DK ) . Отмечаем точки пересечения проецирующей плоскости со сторонами первого треугольника AC и BC во горизонтальной проекции, получая проекции точек 3 и 4 . Проецируем их на соответствующие стороны в фронтальной плоскости, получаем 3’ и 4’ . Соединив их прямой, имеем проекцию проецирующей плоскости. Тогда вторая точка пересечения плоскостей будет в месте пересечения линии 3’-4’ со стороной треугольника D K , которую заключали в проецирующую плоскость. Таким образом, получили фронтальную проекцию второй точки пересечения – N , по линии связи находим горизонтальную проекцию – N (рис.1.2.б ).

г) соединив полученные точки MN (MN ) и (M N ’) на горизонтальной и фронтальной плоскостях, имеем искомую линию пересечения заданных плоскостей.

4. С помощью конкурирующих точек определяем видимость плоскостей. Возьмем пару конкурирующих точек, например, 1’=5’ во фронтальной проекции. Спроецируем их на соответствующие стороны в горизонтальную плоскость, получим 1 и 5 . Видим, что точка 1 , лежащая на стороне D Е имеет большую координату до оси x , чем точка 5 , лежащая на стороне A В . Следовательно, согласно правилу, большей координаты, точка 1 и сторона треугольника D ’Е ’ во фронтальной плоскости будут видимые. Таким образом, определяется видимость каждой стороны треугольника в горизонтальной и фронтальной плоскостях. Видимые линии на чертежах проводятся сплошной контурной линией, а не видимые — штриховой линией. Напомним, что в точках пересечения плоскостей (M N и M ’- N ) будет происходить смена видимости.

Рис.1.3

Р ис.1. 4 .

На эпюре дополнительно показано определение видимости в горизонтальной плоскости с использованием конкурирующих точек 3 и 6 на прямых DK и АВ .

5. Методом плоскопараллельного перемещения определяем натуральную величину плоскости треугольника ABC , для чего:

а) в указанной плоскости через точку С(С) проводим фронталь C F (С- F и C ’- F ’) ;

б) на свободном поле чертежа во горизонтальной проекции берем (отмечаем) произвольную точку С 1 , считая, что это одна из вершин треугольника (конкретно вершина C ). Из нее восстанавливаем перпендикуляр к фронтальной плоскости (через ось х );

Рис.1.5

в) плоскопараллельным перемещением переводим горизонтальную проекцию треугольника ABC , в новое положение A 1 B 1 C 1 таким образом, чтобы в фронтальной проекции он занял проецирующее положение (преобразовался в прямую линию). Для этого: на перпендикуляре от точки С 1 , откладываем фронтальную проекцию горизонтали C 1 F 1 (длина l CF ) получаем точку F 1 . Раствором циркуля из точки F 1 величиною F-A делаем дуговую засечку, а из точки C 1 — засечку величиной CA , тогда в пересечении дуговых линий получаем точку A 1 (вторая вершина треугольника);

— аналогично получаем точку B 1 (из точки C 1 делаем засечку величиной C B (57мм), а из точки F 1 величиной F B (90мм).Заметим, что при правильном решении три точки A 1 F ’ 1 и B ’ 1 должны лежать на одной прямой (сторона треугольника A 1 B 1 )две другие стороны С 1 A 1 и C 1 B 1 получаются путем соединения их вершин;

г) из метода вращения следует, что при перемещении или вращении точки в какой-то плоскости проекций — на сопряженной плоскости проекция этой точки должна двигаться по прямой линии, в нашем конкретном случае по прямой параллельной оси х . Тогда проводим из точек A B C фронтальной проекции эти прямые (их называют плоскостями вращения точек), а из фронтальных проекций перемещенных точек A 1 В 1 C 1 восстановим перпендикуляры (линии связи) (рис.1.6 ).

Рис.1.6

Пересечения указанных линий с соответствующими перпендикулярами дает новые положения фронтальной проекции треугольника ABC , конкретно A 1 В’ 1 C ’ 1 который должен стать проецирующим (прямой линией), поскольку горизонталь h 1 мы провели перпендикулярно фронтальной плоскости проекций (рис.1.6 );

5) тогда для получения натуральной величины треугольника достаточно его фронтальную проекцию развернуть до параллельности с горизонтальной плоскостью. Разворот осуществляем с помощью циркуля через точку А’ 1 , считая ее как центр вращения, ставим треугольник A 1 В’ 1 C ’ 1 параллельно оси х , получаем A 2 В’ 2 C ’ 2 . Как было сказано выше, при вращении точки, на сопряженной (теперь на горизонтальной) проекции они двигаются по прямым параллельным оси х . Опуская перпендикуляры (линии связи) из фронтальных проекций точек A 2 В’ 2 C ’ 2 пересечения их с соответствующими линиями находим горизонтальную проекцию треугольника ABC (A 2 В 2 C 2 ) в натуральную величину (рис.1.7 ).


Рис. 1.7

У меня есть все готовые решения задач с такими координатами, купить можно

Цена 55 руб , чертежи по начертательной геометрии из книжки Фролова Вы легко можете скачать сразу после оплаты или я вышлю Вам на почту. Они находятся в ZIP архиве в различных форматах:
*.jpg обычный цветной рисунок чертежа в масштабе 1 к 1 в хорошем разрешении 300 dpi;
*.cdw формат программы Компас 12 и выше или версии LT;
*.dwg и.dxf формат программы AUTOCAD, nanoCAD;

Раздел: Начертательная геометрия /

Две плоскости в пространстве могут быть параллельными или пересекающимися, частным случаем пересекающихся плоскостей являются взаимно перпендикулярные плоскости.

Построение линии пересечения плоскостей - одна из основных задач начертательной геометрии, имеющих большое практическое значение. Она относится к так называемым позиционными задачам.

Позиционными называются задачи на определение общих элементов различных сопрягаемых геометрических форм. К ним относятся задачи на принадлежность геометрических элементов и на пересечение геометрических объектов, например, пересечение прямой и плоскости с поверхностью, пересечение двух поверхностей и, в частности, задача на пересечение двух плоскостей.

Линия пересечения двух плоскостей является прямой, одновременно принадлежащей обеим пересекающимся плоскостям . Поэтому для построения линии пересечения плоскостей необходимо определить две точки этой прямой или одну точку и направление линии пересечения.

Рассмотрим частный случай пресечения плоскостей, когда одна из них проецирующая. На рис. 3.6 приведены плоскость общего положения, - заданная треугольником АВС и горизонтально-проецирующая Р. Двумя общими точками, принадлежащими обеим плоскостям, являются точки D и Е, которые и определяют линию пересечения.

Для определения этих точек были найдены точки пересечения сторон АВ и ВС с проецирующей плоскостью. Построение точек D и Е как на пространственном чертеже (рис. 3.6, а), так и на эпюре (рис. 3.6,б) не вызывает затруднений, т.к. основано на разобранном выше собирательном свойстве проецирующих следов плоскостей.

Соединяя одноименные проекции точек D и Е получим проекции линии пересечения плоскости треугольника АВС и плоскости Р. Таким образом, горизонтальная проекция D 1 Е 1 линии пересечения заданных плоскостей совпадает с горизонтальной проекцией проецирующей плоскости Р – с её горизонтальным следом.

Рассмотрим общий случай пересечения когда обе плоскости - общего положения. На рис. 3.7. показаны две плоскости общего положения, заданные треугольником и двумя параллельными прямыми. Для определения двух общих точек линии пересечения плоскостей проводим две вспомогательные (горизонтальные) плоскости уровня R и Т. Вспомогательная плоскость R пересекает заданные плоскости по двум горизонталям h и h 1 , которые в своем пересечении определяют точку 1, общую для плоскостей P и Q, так как они одновременно принадлежат вспомогательной секущей плоскости R. Вторая плоскость – посредник Т также пересекает каждую из заданных плоскостей по горизонталям h 2 и h 3 , которые параллельны первым двум горизонталям. В пересечении горизонталей получим вторую общую точку 2 заданных плоскостей. Соединяя на эпюре (рис. 3.8,б) одноименные проекции этих точек, получим проекции линии пересечения плоскостей.

На рис. 3.8 приведены две плоскости, заданные следами. Общими точками плоскостей являются точки пересечении М и N одноименных следов. Соединяя одноименные проекции этих точек прямой линией, получил проекции линии пересечения плоскостей.

Если точки пересечения одноименных следов находятся вне поля чертежа (см. пример 5), а также в тех случаях, когда плоскости заданы не следами, а другими геометрическими элементами, то для определения линии пересечения плоскостей следует использовать вспомогательные плоскости уровня – горизонтальные или фронтальные. Необходимо отметить, что при построении линии пересечения плоскостей, заданных следами, роль вспомогательных секущих плоскостей выполняют плоскости проекций П 1 и П 2 .

На рис. 3.9 показан случай пересечения двух плоскостей, когда известно направление линии пресечения, т.к. плоскость Р является плоскостью уровня (Р||П 1). Поэтому достаточно иметь лишь одну точку пересечения следов и далее провести через эту точку прямую, исходя из положения плоскостей и их следов. В нашем случае линия пересечения является общей горизонталью NА плоскостей Р и Т.

Одной из основополагающих задач начертательной геометрии является задача на на построение линии пересечения двух плоскостей общего положения. Случаи задания плоскостей бывают разные, но в любом случае вам встретится задача, в которой будет необходимо построить линию пересечения двух плоскостей заданных треугольниками (или другими плоскими геометрическими фигурами). Алгоритм решения такой задачи я и предлагаю рассмотреть сейчас.

Итак, даны две плоскости, заданные треугольниками АВС и DEF. Метод сводится к тому, что бы поочередно найти две точки пересечения двух ребер одного треугольника с плоскостью другого. Соединив эти точки мы получим линию пересечения двух плоскостей. Построение точки пересечения прямой с плоскостью более подробно было рассмотрено в предыдущем уроке, напомню только механические действия:

Заключим прямую АС во фронтально-проецирующую плоскость и перенесем по линиям связи на горизонтальную проекцию точки пересечения этой плоскости с прямыми DE и DF - точки 1 и 2

На горизонтальной проекции соединим проекции точек 1 и 2 и найдем точку пересечения получившейся линии с горизонтальной проекцией той прямой, которую мы заключали во фронтально-проецирующую плоскость, в этом случае - с прямой AC. Мы получили точку M.

Заключим прямую BС во фронтально-проецирующую плоскость и перенесем по линиям связи на горизонтальную проекцию точки пересечения этой плоскости с прямыми EF и DF - точки 3 и 4

Соединим их горизонтальные проекции и получим точку пересечения этой прямой с прямой ВС - точку N.

Соединив точки M и N мы получим линию пересечения плоскостей заданных треугольниками. По сути линия пересечения уже найдена. - Осталось лишь определить видимость ребер треугольников. Это делается методом конкурирующих точек.

При помощи наиболее внимательных посетителей сайта удалось найти неточность при определении видимости плоскостей. Ниже приведен чертеж, на котором исправлена видимость линий, ограничивающих плоскости на горизонтальной плоскости

17. Метод замены плоскостей проекций.

МЕТОД ЗАМЕНЫ ПЛОСКОСТЕЙ ПРОЕКЦИЙ

Изменение взаимного положения изучаемого объекта и плоскостей проекций достигается путем замены одной из плоскостей П 1 или П 2 новой плоскостями П 4 (рис. 148 ). Новая плоскость всегда выбирается перпендикулярно оставшейся плоскости проекций.

Для решения некоторых задач может потребоваться двойная замены плоскостей проекций (рис. 149 ). Последовательный переход от одной системы плоскостей проекций к другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемой проекции точки до заменяемой оси.

Задача 1 : Определить натуральную величину отрезка АВ прямой общего положений (рис. 148 ). Из свойства параллельного проецирования известно, что отрезок проецируется на плоскость в натуральную величину, если он параллелен этой плоскости.

Выберем новую плоскость проекций П 4 , параллельно отрезку АВ и перпендикулярно плоскости П 1 . Введением новой плоскости, переходим из системы плоскостей П 1 П 2 в систему П 1 П 4 , причем в новой системе плоскостей проекция отрезка А 4 В 4 будет натуральной величиной отрезка АВ .

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и, то есть как множество точек, удовлетворяющих системе двух линейных уравнений

(V.5)

Справедливо и обратное утверждение: система двух независимых линейных уравнений вида (V.5) определяет прямую как линию пересечения плоскостей (если они не параллельны). Уравнения системы (V.5) называются общим уравнением прямой в пространстве
.

Пример V .12 . Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей

Решение . Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz .

Точка пересечения прямой с плоскостью Oyz имеет абсциссу
. Поэтому, полагая в данной системе уравнений
, получим систему с двумя переменными:

Ее решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе уравнений
, получим систему

решение которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz .

Теперь запишем уравнения прямой, проходящей через точки
и
:
или
, где
будет направляющим векто-ром этой прямой.

Пример V .13. Прямая задана каноническим уравнением
. Составить общее уравнение этой прямой.

Решение. Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:


Получили общее уравнение прямой, которая теперь задана пересечением двух плоскостей, одна из которых
параллельна осиOz (
), а другая
– осиОу (
).

Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:


Замечание . Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).

Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором .

Пусть в трехмерном пространстве задана прямая l , проходящая через точку
, и ее направляющий вектор
.

Любой вектор
, где
, лежащий на прямой, коллинеарен с вектором, поэтому их координаты пропорциональны, то есть

. (V.6)

Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости

. (V.7)

Пример V .14. Найти уравнение прямой, проходящей через две точки
,
.

,

где
,
,
.

Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая

,

где t – параметр,
.

Расстояние от точки до прямой

Рассмотри двухмерное евклидовое пространство ﻉ с декартовой системой координат. Пусть точка
ﻉ и l ﻉ. Найдем расстояние от этой точки до прямой. Положим
, и прямая l задается уравнением
(рис.V.8).

Расстояние
, вектор
, где
– нормальный вектор прямой l ,
и – коллинеарны, поэтому их координаты пропорциональны, то есть
, следовательно,
,
.

Отсюда
или умножая эти уравнения наA и B соответственно и складывая их, находим
, отсюда

.

(V.8)

определяет расстояние от точки
до прямой
.

Пример V .15. Найти уравнение прямой, проходящей через точку
перпендикулярно прямойl :
и найти расстояние от
до прямойl .

Из рис. V.8 имеем
, а нормальный вектор прямойl
. Из условия перпендикулярности имеем

Так как
, то

. (V.9)

Это и есть уравнение прямой, проходящей через точку
,перпендикулярно прямой
.

Пусть имеем уравнение прямой (V.9), проходящей через точку
, перпендикулярна прямойl :
. Найдем расстояние от точки
до прямойl , используя формулу (V.8).

Для нахождения искомого расстояния достаточно найти уравнение прямой, проходящей через две точки
и точку
, лежащую на прямой в основании перпендикуляра. Пусть
, тогда

Так как
, а вектор
, то

. (V.11)

Поскольку точка
лежит на прямойl , то имеем еще одно равенство
или

Приведем систему к виду, удобному для применения метода Крамера

Ее решение имеет вид

,

. (V.12)

Подставляя (V.12) в (V.10), получаем исходное расстояние.

Пример V .16. В двухмерном пространстве задана точка
и прямая
. Найти расстояние от точки
до прямой; записать уравнение прямой, проходящей через точку
перпендикулярно заданной прямой и найти расстояние от точки
до основания перпендикуляра к исходной прямой.

По формуле (V.8) имеем

Уравнение прямой, содержащей перпендикуляр, найдем как прямую, проходящую через две точки
и
, воспользовавшись формулой (V.11). Так как
, то, с учетом того, что
, а
, имеем

.

Для нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой

Следовательно,
,
, отсюда.

Рассмотрим трехмерное евклидовое пространство ﻉ. Пусть точка
ﻉ и плоскость ﻉ. Найдем расстояние от этой точки
до плоскости, заданной уравнением (рис.V.9).

Аналогично двухмерному пространству имеем
и вектор
, а, отсюда

. (V.13)

Уравнение прямой, содержащей перпендикуляр к плоскости , запишем как уравнение прямой, проходящей через две точки
и
, лежащую в плоскости:

. (V.14)

Для нахождения координат точки
к двум любым равенствам формулы (V.14) добавим уравнение

Решая систему трех уравнений (V.14), (V.15), найдем ,,– координаты точки
. Тогда уравнение перпендикуляра запишется в виде

.

Для нахождения расстояния от точки
до плоскости вместо формулой (V.13) воспользуемся

Новое на сайте

>

Самое популярное