Домой Удобрения Влияние азота на механические свойства стали. Азот в стали, растворимость азота в железе, влияние азота на свойства стали, способы удаления азота из металла, легирование стали азотом. Влияние азота на свойства стали

Влияние азота на механические свойства стали. Азот в стали, растворимость азота в железе, влияние азота на свойства стали, способы удаления азота из металла, легирование стали азотом. Влияние азота на свойства стали

Изобретение относится к области металлургии, а именно к легированию сталей азотом. Способ включает выплавку металла в сталеплавильном агрегате, окисление примесей, рафинирование, раскисление и легирование, в т.ч. азотом в виде азотированного феррохрома с содержанием азота 8-12%, плотностью 4-6,5 г/см 3 и с содержанием кислорода не более 0,5%. Азотированный феррохром вводят в печь за 5-15 минут до выпуска стали в количестве 0,1-5 кг/т. Использование изобретения позволяет получать необходимую концентрацию азота в стали при минимальном расходе азотсодержащих ферросплавов без дополнительного введения в расплав алюминия и титана. 3 з.п. ф-лы, 1 табл.

Изобретение относится к металлургии, а именно к производству азотсодержащих сталей и сплавов, и конкретно касается способа выплавки стали, легированной азотом.

Азот при повсеместной его доступности и низкой стоимости является сильным аустенитообразующим элементом и эффективно применяется в производстве экономно-легированных сталей различного назначения. В низколегированных сталях нитридного упрочнения обычно содержится от 0,010 до 0,040% азота, а в высоколегированном металле концентрация азота может превышать 1%.

Для легирования азотом может использоваться любой материал, содержащий азот в достаточном количестве и способный растворяться в жидком металле. Ввиду дешевизны и простоты известны методы легирования азотом, основанные на продувке расплава газообразным азотом.

Например, в патенте Великобритании GB1282161 «А method of making a high nitrogen steel», опубликованном 3.07.1969, предлагается во время внепечной обработки стали вдувать азот в металл через пористые пробки, установленные в днище ковша.

Указанный способ позволяет за 5-8 минут продувки увеличить содержание азота в стали на 0,001-0,002%, однако он не позволяет достигать стабильного усвоения азота и требует дополнительных энергетических затрат для поддержания необходимой температуры в ковше в течение длительной продувки.

В известном способе выплавки азотсодержащей стали (авторское свидетельство СССР № 2818485/22-02) насыщение металла азотом достигают во время окислительного рафинирования в печи путем вдувания в течение 10 минут азотокислородной смеси с концентрацией азота до 10-30%. В результате в расплаве содержится 0,015%-0,017% азота, а степень его усвоения составляет 0,6-0,7%. Недостатками такой технологии являются низкая производительность и малоэффективное использование газообразного азота. Кроме того, при совместном вдувании азота и кислорода в жидкий металл неизбежно выделение в атмосферу оксидов азота N x O y , которые оказывают негативное влияние на окружающую среду и здоровье человека.

Не нашли широкого применения в производстве азотсодержащих сталей способы (авторское свидетельство СССР 367156, авторское свидетельство СССР 899664) с использованием различных химикатов, таких как аммиачная селитра, цианамид кальция и др. Причиной тому является бурная реакция при взаимодействии с расплавом, зачастую сопровождающаяся выплеском металла из сталеплавильного агрегата с выделением токсичных веществ.

В настоящее же время наибольшее распространение получили способы выплавки азотированных сталей с применением азотсодержащих ферросплавов. В известном способе (авторское свидетельство СССР 1047965) для легирования азотом используется литой азотированный феррохром с содержанием азота 1-2%. Применение данного метода позволяет повысить качество отливок и снизить брак литья. Однако это достигается за счет ввода в сталь дорогостоящих редкоземельных металлов и повышенного расхода азотсодержащего сплава: 10 кг/т.

Наиболее близким по технической сущности является способ производства штамповой стали (авторское свидетельство СССР 1261964), включающий расплавление шихты, окисление примесей, диффузионное рафинирование, ковшевое раскисление алюминием и/или силикокальцием, легирование в печи литым азотированным феррохромом с содержанием азота 1-2% с, введением в металл феррованадия и модифицирование стали ферротитаном. Способ-прототип позволяет насыщать расплав азотом до 0,024% с расходом азотированного сплава 5-10 кг/т. Благодаря практически полному усвоению азота из литого ферросплава удается с высокой точностью прогнозировать получаемую концентрацию азота в стали. Однако высокая степень усвоения в данном способе достигается при условии ввода значительного количества нитридообразующих элементов: алюминия, ванадия и титана. При такой технологии сталь неизбежно загрязняется большим количеством крупных неметаллических включений в виде нитридов алюминия и нитридов титана, которые ухудшают эффект нитридванадиевого упрочнения и приводят к снижению ее механических свойств.

Опыт производства сталей, легированных азотом, показывает, что для наилучших технологических показателей расход азотсодержащей присадки должен быть минимальным. Однако этого не достигается в способе-прототипе, поскольку используется азотированный ферросплав с невысокой концентрацией азота: 1-2%.

Таким образом, в предлагаемом изобретении решается задача эффективной технологии легирования стали азотом с возможностью получения необходимой концентрации азота при минимальном расходе азотсодержащих ферросплавов без дополнительного введения в расплав алюминия и титана.

Поставленная задача решается тем, что в известном способе, включающем расплавление шихты в сталеплавильном агрегате, окисление примесей, рафинирование и легирование азотсодержащим сплавом, в качестве азотсодержащей добавки используют азотированный феррохром с содержанием азота 8-12% и включающий в составе не более 0,5% кислорода.

Решить задачу путем непосредственного использования в способе-прототипе азотсодержащего сплава с повышенным содержанием азота результатов не дали. Вследствие высокого содержания кислорода в литых азотсодержащих ферросплавах происходило интенсивное бурление металла и удаление значительного количества азота из стали в газовую фазу.

Исследования закономерностей растворения азота в стали с применением различных азотсодержащих ферросплавов привели к весьма неожиданному результату. Оказалось, что при использовании азотированного ферросплава с высокой концентрацией азота для исключения образования пузырей (молекулярного азота) и обеспечения высокой степени усвоения азота металлом, в его составе должно быть минимальное содержание кислорода. Этот подход позволил существенно сократить расход азотсодержащих добавок и отказаться от дополнительного ввода в сталь алюминия и титана. Положительным моментом стало также то, что уменьшение порции вводимых азотсодержащих ферросплавов позволило сократить продолжительность легирования стали и уменьшить расход раскислителей.

Известно, что при азотном легировании вводимое в расплав азотсодержащее соединение диссоциирует, а выделяющийся азот распределяется в объеме жидкой ванны. Однако при вводе большой порции азота в металл или в случае изменения растворимости азота в стали, существует риск образования крупных пузырей - молекулярного азота, которые стремительно всплывают на поверхность. В результате значительная часть азота теряется, а его распределение в объеме металла получается неравномерным.

Поэтому совсем неочевидно, что при использовании высокоазотистого ферросплава степень усвоения азота металлом будет не ниже, чем в случае применения низкоазотистого легирующего материала.

В результате многочисленных экспериментов по исследованию усвоения азота в металле удалось решить поставленную в изобретении задачу. Задача решается путем:

Выбора состава азотированного ферросплава;

Выбора оптимального размера кусков вводимого азотированного ферросплава;

Выбора оптимальных условий ввода азотированного ферросплава.

В качестве азотсодержащего ферросплава в предлагаемом изобретении используют азотированный феррохром. Нитриды хрома CrN и Cr 2 N, входящие в состав данного материала, являются устойчивыми химическими соединениями и диссоциируют при оптимальной температуре: 1100-1600°C. Проведенные исследования показали, что в отличие от других лигатур растворение азотированного феррохрома в металлическом расплаве происходит постепенно, а поступающий азот равномерно распределяется в объеме жидкой ванны. Также положительным аспектом является то, что данный ферросплав является наиболее универсальным для выплавки большинства марок азотсодержащих сталей, поскольку хром является эффективным легирующим элементом, повышающим растворимость азота в стали.

Главным фактором, влияющим на усвоение азота в стали, является содержание кислорода в металле, поэтому в предлагаемом изобретении перед азотным легированием проводится глубокое раскисление стали. В то же время сами же азотсодержащие ферросплавы могут вносить достаточное количество кислорода в расплав. Проведенные исследования показали, что содержание кислорода в литых азотсодержащих лигатурах может достигать 5%. Связано это с большой продолжительностью жидкофазного азотного насыщения ферросплавов в электропечах. Поскольку используемое оборудование не обеспечивает достаточной герметичности, за 4-16 часов обработки получаемый материал сильно окисляется. В ферросплавах твердофазного азотирования также возможно высокое содержание кислорода, т.к. в технологии производства используются мелкодисперсные порошки, которые в значительной степени сильнее окисляются, а также склонны адсорбировать влагу при открытом хранении (Гасик М.И., Игнатьев B.C., Каблуковский А.Ф. и др. Газы и примеси в ферросплавах. - М.: Металлургия, 1970. - 152 с.).

Для того чтобы внести минимальное количество кислорода в металл, в предлагаемом способе используют менее склонный к окислению азотированный феррохром. Проведенные исследования показали, что предельное содержание кислорода в данном материале составляет 0,5%. При превышении этого показателя парциальное давление в пузырьках азота значительно увеличивается и способствует их быстрому всплыванию на поверхность. Таким образом, металл «закипает», а степень эффективного использования азота из ферросплава снижается.

Известно, что ряд элементов, таких как марганец, хром, молибден, ванадий и др., растворенные в железе, повышают в нем растворимость азота. Поэтому их содержание перед азотным легированием должно быть максимальным в пределах марочного регламента. Исходя из этого, азотированный феррохром целесообразно вводить в печь в заключительный период плавки, после рафинирования, обезуглероживания, глубокого раскисления и ввода легирующих добавок, повышающих растворимость азота. На основе результатов опытных плавок было определено, что наиболее эффективно вводить азотированный феррохром за 5-15 минут до выпуска металла. Выдержка расплава в печи более 15 минут приводит к его переокислению, а менее 5 минут - не обеспечивает полного растворения азотсодержащего сплава.

Исследования показали, что для достижения наилучших результатов целесообразно применять азотсодержащий сплав с оптимальной плотностью в пределах 4,5-6,5 г/см 3 . При низкой плотности лигатуры - менее 4,5 г/см 3 - ее растворение происходит на поверхности металла, в результате чего значительная часть азота переходит в шлак и не усваивается расплавом. При использовании сплава с высокой плотностью более 6,5 г/см 3 увеличивается продолжительность плавки вследствие замедления его растворения в металле.

На степень усвоения азота влияет его интенсивность поступления из азотированных ферросплавов. Проведенные исследования выявили зависимость значения скорости выделения азота из сплава от его размера. При использовании кусков размером менее 20 мм интенсивность выделения азота высокая и происходит локальное перенасыщение металла азотом в точке ввода лигатуры. В результате степень усвоения азота снижается. В то же время куски азотированного феррохрома размером более 99 мм не растворяются в металле в течение длительного времени. Поэтому, как показали опытные плавки, оптимальный размер кусков азотированного ферросплава находится в пределах 20-99 мм.

Для получения концентрации азота в стали в узких пределах ±0,001% иногда возникает необходимость корректировки ее состава. Осуществлять данную технологическую операцию целесообразно путем введения азотированного ферросплава в ковш, поскольку во время доводки расплава в печи до заданной температуры, а также при выпуске стали, существует возможность дополнительного насыщения металла азотом из атмосферы. При проведении опытных плавок был определен максимальный расход корректировочной присадки - 0,5 кг. Для растворения большего количества азотсодержащего сплава необходим дополнительный нагрев металла в ковше, требующий существенных энергетических затрат. Введение азотсодержащей лигатуры в количестве менее 0,1 кг/т не обеспечивает необходимой корректировки содержания азота в стали.

При выплавке азотсодержащей стали даже без использования в технологии алюминия и титана, существует риск ее загрязнения крупными оксинитридными и карбонитридными неметаллическими включениями. Наличие таких примесей в структуре стали является причиной снижения ее механических свойств. В то же время при выделении в объеме металла мелкодисперсных нитридов ванадия, которые играют роль дополнительных центров кристаллизации, существенно уменьшается размер зерна. В результате показатели механических свойств стали увеличиваются. Поэтому для равномерного распределения в объеме жидкой ванны азота, ванадия и других легирующих, а также удаления неметаллических включений в ряде случаев целесообразна обработка стали инертным газом (аргоном и/или азотом) в ковше. Как показали исследования, оптимальная продолжительность продувки стали инертным газом с расходом 0,5-1 м 3 /т составляет 3-5 минут. Продувка длительностью менее трех минут не обеспечивает достаточную степень удаления неметаллических включений, а при длительности более 5 минут происходит нежелательное окисление и переохлаждение расплава.

На примере получения конструкционной азотсодержащей стали марки 35Х2АФ рассмотрим подробнее предлагаемый способ выплавки стали, легированной азотом. В соответствии с техническими условиями содержание азота и других легирующих элементов должно находиться в следующих пределах: 0,030-0,035%N, 0,32-0,37%C, 0,22-0,37%Si, 0,15-0,30%Mn, 1,4-1,8%Cr, 0,12-0,018%V, остальное железо и неизбежные примеси.

Сталь выплавляли в дуговой сталеплавильной печи вместимостью 80 т. После рафинирования и раскисления расплава провели предварительное легирование хромом до его содержания =1,4% и легирование ванадием до его содержания [V]=0,16. Затем в печь ввели азотированный феррохром в количестве 2 кг/т в виде кусков, размером 50-150 мм, плотностью 4,2 г/см 3 и с содержанием азота и кислорода соответственно: 11,8% и 0,20%. Такой расход азотсодержащих ферросплавов обеспечил увеличение концентрации азота в стальном расплаве с 0,010%N до 0,032%N. После выдержки метала в печи в течение 5 минут и подогрева его до заданной температуры произвели выпуск стали в ковш. Таким образом, предлагаемый способ выплавки конструкционной стали, легированной азотом, позволяет получать марочное содержание азота. При этом по сравнению со способом-прототипом расход легирующего материала снизился в 5 раз, а для стабильного усвоения азота не потребовалось вводить алюминий и титан.

Также с использованием предложенного способа были проведены плавки рельсовой стали Э83Ф, штамповой стали 5ХНМАФ и аустенитной стали 8Х20Г6АН6Ф. Результаты опытных плавок в сравнении с существующим способом представлены в таблице.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ выплавки азотсодержащей стали, включающий расплавление шихты в сталеплавильной печи, окисление примесей, рафинирование, раскисление и легирование азотом в виде азотированного сплава, отличающийся тем, что в качестве азотированного сплава используют азотированный феррохром с содержанием азота 8-12%, плотностью 4-6,5 г/см 3 и с содержанием кислорода не более 0,5%, который вводят в печь за 5-15 мин до выпуска в количестве 0,1-5 кг/т.

2. Способ по п.1, отличающийся тем, что азотированный феррохром используют в виде кусков размером 20-99 мм.

3. Способ по п.1, отличающийся тем, что производят корректировку состава стали путем дополнительного введения в ковш азотированного феррохрома в количестве 0,1-0,5 кг/т.

4. Способ по п.1, отличающийся тем, что осуществляют усреднительную продувку металла в ковше аргоном и/или азотом в течение 3-5 мин с удельным расходом газа 0,5-1 м 3 /т.

Вредное влияние азота (N) заключается в том, что образуемые им довольно крупные, хрупкие неметаллические включения – нитриды – ухудшают свойства стали. Положительным свойством азота считают то, что он способен расширять аустенитную область диаграммы состояния сталей. Азот стабилизируетаустенитную структуруи частично заменяет никель в аустенитных сталях. В низколегированные стали добавляют нитридообразующие элементы ванадий, ниобий и титан. При контролируемой горячей обработке и охлаждении они образуют мелкие нитриды и карбонитриды, которые значительно повышают прочность стали.

Cr- улучшает механические свойства, повышает жаропрочность, жаростойкость, коррозионоустойчивость, твердость.

Ni хладностойкость, увеличивает пластичность и вязкость, электросопротивление

Марганец- повышает предел текучести

Si- (до2%) повышает предел текучести

Вольфрам и молибден – повышают твердость и прочность

23. Характеристика основных структурных классов сталей. Основные способы повышения качества стали

Структурный класс:

Ферритный Фе2О3 (структура феррит) образуется при низком содержании углерода и большом количестве легирующего элемента. Ферритообразующие элементы Cr, Si, Mo, V, W, Zr. это твердый раствор внедрения углерода альфа железа

Используют для неответственных деталей

Перлитный (структура перлит) – механическая смесь пластин феррита и цементита

Аустенитный (структура аустенит) – это твердый раствор внедрения углерода гамма железа

Мартенситный (структура мартенсит)- наблюдается в закаленных сплавах, перенасыщенный твердый раствор углерода в альфа- железе

Карбидная или Ледебуритная (структура состоит из карбидов различных Ме) – эвтектическая смесь аустенита и цементита, в интервале 727-1147с

Улучшить качество металла можно уменьшением в нем вредных примесей, газов, неметаллических включений. Для повышения качества металла используют обработку синтетическим шлаком, вакуумную дегазацию металла, электрошлаковый переплав, вакуумно-дуговой переплав, переплав металла в электронно-дуговых и плазменных печах.

Вакуумная дегазация проводится для уменьшения содержания в металле газов в следствии снижения их растворимости в жидкой стал при пониженном давлении и неметалических включений.

24. Электрошлаковый переплав и Вакуумно-дуговой переплав

Электрошлаковый переплав (ЭШП ) применяют для выплавки высококачественных сталей для подшипников, жаропрочных сталей. Переплаву подвергается выплавленный в дуговой печи и прокатанный на пруток металл. Источником теплоты является шлаковая ванна, нагреваемая электрическим током. Электрический ток подводится к переплавляемому электроду 1 , погруженному в шлаковую ванну 2 , и к поддону 9 , установленному в слегка конусном водоохлаждаемом кристаллизаторе 7 , в котором находится затравка 8 . Выделяющаяся теплота нагревает ванну 2 до температуры свыше 1700 ºC и вызывает оплавление конца электрода. Капли жидкого металла 3 проходят через шлак и образуют под шлаковым слоем металлическую ванну 4 . Перенос капель металла через основной шлак способствует удалению из металла серы, неметаллических включений и газов. Металлическая ванна пополняется путём расплавления электрода, и под воздействием кристаллизатора она постепенно формируется в слиток 6. По мере формирования слитка либо опускают поддон, либо поднимают электрод. Содержание кислорода уменьшается в 1,5…2 раза, серы в 2…3 раза. Слиток отличается плотностью, однородностью, хорошим качеством поверхности, высокими механическими и эксплуатационными свойствами. Слитки получают круглого, квадратного и прямоугольного сечения массой до 110 т.

Вакуумно-дуговой переплав (ВДП) применяют в целях удаления из металла газов и неметаллических включений.

Процесс осуществляется в вакуумно-дуговых печах с расходуемым электродом. Катод изготовляют механической обработкой слитка, выплавляемого в электропечах или установках ЭШП.

Расходуемый электрод 3 закрепляют на водоохлаждаемом штоке 2 и помещают в корпус печи 1 и далее в медную водоохлаждаемую изложницу 6 . Из корпуса печи откачивают воздух до остаточного давления 0,00133 кПа. При подаче напряжения между расходуемым электродом 3 (катодом) и затравкой 8 (анодом) возникает дуга. Выделяющаяся теплота расплавляет конец электрода. Капли жидкого металла 4 , проходя зону дугового разряда, дегазируются, заполняют изложницу и затвердевают, образуя слиток 7 . Дуга горит между электродом и жидким металлом 5 в верхней части слитка на протяжении всей плавки. Охлаждение слитка и разогрев жидкого металла создают условия для направленного затвердевания слитка. Следовательно, неметаллические включения сосредоточиваются в верхней части слитка, усадочная раковина мала. Слиток характеризуется высокой равномерностью химического состава, повышенными механическими свойствами. Применяется для изготовления деталей турбин, двигателей, авиационных конструкций. Масса слитков достигает 50 т.

Атомарный азот и растворяется, и образует химические соединения в стали.

Повышенной растворимостью обладают диссоциированный азот.

Образуемые химические соединения - нитриды . В сталях азот образует нитриды как с железом, так и с большинством примесей.

С железом азот дает два типа нитридов (химические соединения): Fe 4 N содержит 5,88% N 2 , Fe 2 N - 11,1% N 2 . Нитриды ионного типа получаются при взаимодействии металлов с азотом при температурах 700-1200 °C. Нитриды образуются в плазме в дуговых , высокочастотных и сверхвысокочастотных плазмотронах. В последнем случае нитриды образуются как ультрадисперсные порошки с размером частиц 10-100 нм.

С легирующими элементами стали азот также образует нитриды , часто значительно более стойкие, чем нитриды железа. Особенно стойкими в области высоких температур являются нитриды кремния и титана.

Для сварки большее значение имеет Fe 4 N. Ультрадисперсные тугоплавкиенитриды с размером частиц 10-100 нм застывают в сварочной ванне быстрее, чем железо, поэтому при повышенной скорости охлаждения металла нитриды железа могут не успеть выпасть из раствора ά-Fe, и последний окажется пересыщенным азотом.

Сварочный нагрев вносит отклонения от равновесного состояния растворимости N в Fe. Общее количество растворенного в металле азота из-за нагрева металла может быть увеличенным.

Растворимость азота в железе значительно зависит от температуры (рис. 113). По мере роста температуры растворимость азота увеличивается, претерпевая скачкообразные изменения в моменты полиморфных превращений железа и при переходе его из твердого состояния в жидкое. Скачкообразные изменения растворимости ведут к образованию газовых пузырьков .

Исследования процесса насыщения металла азотом показали, что возможны такие пути его протекания:

1) диссоциированный азот непосредственно растворяется в жидком металле капель . При последующем охлажденииметалла в условиях соответствующих температур образуются нитриды железа;

2) диссоциированный азот образует в области высоких температур стойкие нитриды , которые, растворяясь в каплях жидкого металла , насыщают его азотом.

3) диссоциированный азот образует в высокотемпературной области окись азота NO, которая растворяется в каплях. При температурах металла ниже 1000 °С окись азота выпадает из твердого раствора и диссоциирует; при этом атомарный азот образует нитриды железа, а кислород - оксиды.

Итак: при сварке азот одновременно растворяется в металле и образует химические соединения (нитриды железа) и в конечном итоге насыщает железо азотом и его химическими соединениями.

Находясь в металле в том или ином состоянии, азот весьма сильно влияет на его свойства. Из рис. 114 видно, что с увеличением содержания азота увеличиваются пределы прочности и текучести металла.

Вместе с тем снижаются пластические свойства и особенно резко - ударная вязкость стали . Наряду с этим появляется склонность металла к старению, повышается склонность к хладноломкости и синеломкости, увеличивается способность к закалке , понижается

магнитная проницаемость, увеличивается электрическое сопротивление металла.

Таким образом, в общем случае азот - нежелательная примесь в металле шва, особенно при действии на такой металл динамической нагрузки.

Однако в условиях сварки высоколегированных сталей аустенитного класса азот повышает устойчивость аустенита и выступает как легирующая добавка, способная заменить некоторое количество никеля.

4.1. Кислород в стали

4.2. Водород в стали

4. 3. Азот в стали

4.4. Неметаллические включения

В любой стали в некоторых количествах содержатся газы: кислород, водород, азот. Газы содержатся в металлах в виде газовых пузырей, соединений (оксидов, гидридов, нитридов) и жидких или твердых растворов, т.е. в виде атомов или ионов, распределенных между атомами и ионами жидкого металла или внедренных в кристаллическую решетку металла. Газы (даже при содержании их в сотых и тысячных долях процента) оказывают существенное влияние на свойства металла, поэтому вопросам удаления газов из металла всегда уделяют особое внимание.

Растворимость газов в стали в сильной степени зависит от температуры (рис. 4.1).


Рис. 4.1. Изменение растворимости в стали кислорода (а), водорода (6) и азота (в)

4.1. Кислород в стали

Атмосфера сталеплавильных агрегатов-окислительная . При этом какое-то количество кислорода всегда переходит из газовой фазы в металл. Источником кислорода могут быть также добавочные материалы, содержащие оксиды железа (например, ржавчина на поверхности металлического лома).

Растворимость кислорода в железе, находящемся под шлаком, с повышением температуры растет. Но если металл содержит примеси, сродство которых к кислороду выше, чем у железа, то происходит окисление этих примесей и концентрация кислорода в металле уменьшается. Если эти примеси вводят в ванну специально для того, чтобы уменьшить содержание кислорода, то их называют раскислителями. В качестве таких элементов-раскислителей используют марганец, кремний, алюминий, кальций, редкоземельные элементы .

Раскислителем является также углерод (рис. 4.2). Кислород, растворенный в металле, реагирует с углеродом, и в результате реакции происходит кипение металла
.Если уменьшить давление (например, при помещении ковша с жидким металлом в вакуумную камеру), то равновесие этой реакции сместится вправо, металл, содержащий углерод, вскипит, содержание кислорода уменьшится.

Рис. 4.2. Влияние углерода на содержание кислорода, растворенного в стали:

I - равновесная кривая [С] [О]; ІІ - область концентраций фактически наблюдаемых при кипении металла

4.2. Водород в стали

Атмосфера почти любого сталеплавильного агрегата содержит какое-то количество водорода или паров Н 2 О. Некоторое количество влаги может попасть вместе с шихтой и добавочными материалами. Из атмосферы агрегата водород переходит в металл по реакции

Растворимость водорода в твердом металле для различных модификаций железа различна (рис. 4.1, б). Скачкообразное изменение растворимости при переходе металла из одного аллотропического состояния в другое вызывает интенсивное выделение из него водорода, сплошность металла нарушается, образуются такие дефекты, например, как флокены (особой формы газовые пузыри). Оставшийся в твердом растворе водород искажает кристаллическую решетку металла, в результате чего его хрупкость возрастает, а пластичность уменьшается, качество металла ухудшается. Для снижения содержания водорода в металле и ослабления его вредного влияния на качество применяют следующие методы:

Обработка металла вакуумом . При помещении металла в вакуумную камеру давление водорода в газовой фазе уменьшается, и он начинает удаляться из металла. Вакуум является очень эффективным средством уменьшения содержания водорода в металле.

Организация кипения ванны. При протекании реакций окисления углерода образуется оксид углерода. Пузырьки СО, проходя через ванну, создают эффект кипения. Парциальное давление водорода в пузырьке, состоящем из СО, равно нулю, поэтому пузырьки СО по отношению к водороду (а также к азоту) являются как бы маленькими вакуумными камерами, и эти газы уходят из металла в пузырьки СО и вместе с ним покидают ванну. Таким образом, при кипении металл очищается от растворенных в нем газов.

Продувка инертными газами. При продувке металла инертными газами (обычно для этой цели используется самый дешевый и доступный инертный газ - аргон) парциальное давление водорода в пузырьках равно нулю, поэтому они очищают металл от водорода. Одновременно с удалением газов продувка аргоном обеспечивает перемешивание металла, выравнивание его состава, температуры и т.д.

Выдержка закристаллизовавшегося мегалла при повышенных температурах . Размеры атомов водорода очень малы, они свободно диффундируют через кристаллическую решетку закристаллизовавшейся стали, особенно при повышенных температурах. Из образцов сравнительно небольшого сечения, охлаждаемых медленно в печи или на воздухе, растворенный при высоких температурах водород удаляется почти полностью. Принято содержание водорода в металле выражать в кубических сантиметрах на 100 г массы пробы. Обычно содержание водорода в жидкой стали в зависимости от метода работы колеблется от 4 до 10 см 3 на 100 г металла. Чем больше масса изделия, тем затруднительнее организовать удаление водорода из затвердевшего металла. Поэтому все слитки качественного металла (или заготовки из них) длительное время выдерживают при относительно высоких температурах, для чего в цехах существуют специальные пролеты. Для очень больших слитков (30 т), такой способ уже не дает должного эффекта, и такие слитки отливают под вакуумом.

Добавки гидридообразующих элементов. Некоторые металлы (например, редкоземельные) способны вступать с водородом во взаимодействие, образуя гидриды. При введении этих элементов в металл развитие таких дефектов, как флокены, уменьшается.

Наложение электрического поля. Водород, растворенный в жидком металле, находится там в виде катионаа в шлаке-в видеПри наложении достаточно сильного электрического поля на катоде выделяется атомарный водород атомы которого ассоциируются в молекулы .На аноде из шлака выделяются парыи В промышленных условиях этот способ удаления водорода применения не нашел.

Азот является одним из наиболее распространенных элементов: его содержание в нижних слоях атмосферы составляет 78,11% а в земной коре - 0,04%. В нормальных условиях (Т=20 °С и P =1атм) азот представляет собой 2-х атомный газ. Атомный номер - 7, атомный вес - 14,008, плотность молекулярного азота - 1,649× 10 -3 г/см 3 . Температура плавления - 209,9 °С, а температура кипения - 195,7 °С.

Исследования взаимодействия азота со сталью проводились в течении всего 20 века. Они были начаты Н.П.Чижевским и И.И.Жуковым. Однако только после 40-х годов стали рассматривать возможность использования азота как легирующего элемента. Вопросам влияния азота на свойства сталей, его растворимости и поведения в металле уделялось много внимания, как в нашей стране, так и за рубежом . В настоящее время в промышленности используется более 200марок сталей, легированных азотом.

Стали, легированные азотом, принято подразделять на две категории:

Первые получают в условиях выплавки и кристаллизации при атмосферном давлении азота. Вторые - приповышенном давлении азота, позволяющем сохранить большее его содержаниев металле, чем при открытой выплавке.

В последние годы в качестве перспективных сталей с различным уровнем легирования азота для разнообразных сфер применения были отмечены [ 10] :

Дисперсионно-твердеющие стали, легированные ванадием, ниобием и титаном;

Высокопрочные коррозионно-стойкие, аустенитные стали;

Стали со структурой азотистого феррита и мартенсита.

Легирование азотом дисперсионно-твердеющих сталей приводит к образованию мелкодисперсных нитридов по границам зерен, препятствующих их росту, позволяет повысить предел текучести и ударную вязкость металла [ 8] .

Легирование азотом нержавеющих сталей, позволяет уменьшить в них содержание никеля и марганца в полтора - два раза, а в некоторых случаях вообще исключить эти элементы. Нержавеющие стали, легированные азотом, превосходят по прочности, вязкостии коррозионной стойкости традиционные нержавеющие стали.

Легированные азотом безникелевыестали, применяемыев медицине для изготовления хирургического инструмента и имплантатов обладают повышенной прочностью, износостойкостью и не вызывают негативных явлений и аллергических реакций в человеческом организме.

Нержавеющие мартенситные и ферритные стали, легированные азотом, при соответствующей термической и термопластической обработке обладают повышенной прочностью,коррозионной стойкостью и улучшенной технологической пластичностью при высоких и низких температурах.

Подробное аналитическое обобщение данных о структуре и свойствах нержавеющих сталей, легированных азотом; растворимости азота в них; термодинамике этих растворов, в том числе, в зависимости от концентрации примесей и легирующих элементов; от температур и давлений реакций, протекающих в жидком металле; параметров диффузии и других факторов, связанных с особенностями выплавки, по состоянию на 60-е годы было сделано М.В. Приданцевым, Н.П. Таловым и Ф.Л. Левиным .

На основе анализа многочисленных публикаций было показано, что азот:

Образует твердые растворы внедрения в аустените и феррите;

Увеличивает количество аустенита и стабилизирует аустенит по отношению к γ → α и γ→ε превращениям при охлаждении и пластической деформации;

Изменяет предельную растворимость легирующих элементов в γ и α - твердых растворах и влияет на распределение хрома, никеляи других легирующих элементов между аустенитом и ферритом;

Изменяет кинетику образования карбидных и других избыточных фаз при термической обработке;

Снижает энергию дефектов упаковки и, в связи с этим увеличивает деформационную способность аустенита.

Введение азота в сплавы позволяет:

Уменьшить в сплавах содержание никеля, марганца и других аустенитообразующих элементов при сохранении заданнойаустенитной или иной структуры и, соответственно, уровня ферромагнитности сплава;

Увеличить содержание в сплавах элементов ферритообразователей, положительно влияющих на механические и коррозионные характеристики сплавов;

Улучшить характеристики технологической пластичности в результате расширения интервала существования аустенита в высокотемпературной области;

Повысить термическую стабильность аустенита и снизить вероятностьего распада при нагреве с образованием нитридов и других фаз;

Увеличить коррозионную стойкость (сопротивление питтинговой и ножевой коррозии, коррозионному растрескиванию под напряжением, интеркристаллитной коррозии);

Повысить прочность сплавов путем использования деформационного упрочнения при наклепе [ 1] .

Растворимость азота в железе подчиняется закону Сивертса (закону квадратного корня):

1/2N 2 = ; = K N (1.1)

где - растворимость азота в железе при данном парциальном давлении P N 2 ;

K N константа реакции, численное значение которой зависит от температуры и способов выражения концентрации.

Выполняемость закона Сивертса указывает на идеальность образующегося раствора .

lg = (-850/T ) - 0,905 +0,5 lg P N 2 (1.2)

Из которого следует, что при Т = 1873 °К и P N 2 = 1 атм = 0,044%.

Анализ результатов многих исследований, выполненных различными авторами методом отбора проб, показал хорошую согласованность данных, уровень отклонения которых от расчетной величины составляет 0,002%.

На рис.1.1 представлена температурная зависимость растворимости азота в жидком железе. Диаграмма состояния системы железо-азот приведена на рис. 1.2 .

Рис. 1. 1. Температурная зависимость растворимости азота в жидком железе

Рис.1.2. Диаграмма состояния Fe -N

Концентрация азота, находящегося в равновесии с газообразным азотом растет с увеличением температуры. В точке перехода α→γ (906 °С) скачкообразно изменяется, при дальнейшем росте температуры до перехода γ→ δ (1402 °С) она уменьшается.

Азот может образовыватьс железом два соединения Fe 4 N (9,9% N ) и Fe 2 N (11,5% N ). Fe 2 N начинает разлагается при температуре ~ 550 °С. При дальнейшем повышении температуры начинает диссоциировать и Fe 4 N .

Энтальпия растворения азота в жидком железе ΔH N представляет собой разность двух противоположных по знаку величин: энтальпии диссоциации молекулярного азота на атомы (ΔH дис) и энтальпии растворения атомарного азота в жидком железе (ΔH P ). Первый процесс является эндотермическим, а второй - экзотермическим. Так как ΔH дис > ΔH P , то процесс, описанный уравнением (1), протекает с поглощением тепла. Если данные по растворимости азота показывают хорошую согласованность у различных исследователей, то данные по энтальпии имеют значительный разброс.

Результаты статистической обработки большого массива экспериментальных данных позволили авторам работы описать растворимость азота в жидком железе двумя уравнениями:

при Т < 1973K :lg = -560/T - 1,06 (1.3)

при Т > 1973K :lg = -1100/T - 0,79 (1.4)

Таким образом, энтальпия растворения азота в жидком железе до1973 °K - 10700 Дж/моль, а выше 1973 °K - 21000 Дж/моль.

А.М. Самарин, первым обративший на это внимание, связывал изменение ΔH при изменении температуры со структурными превращениями. Известно, что при растворении кислорода оксидная фаза проявляется при очень низком парциальном давлении кислорода в газовой фазе (P O 2 = 10 -8 атм). В отличие от этого, при растворении азота даже приP N 2 > 1атм самостоятельная нитридная фаза не образуется. Образование нитридов типа Fe 2 N и Fe 4 N наблюдали лишь в твердом металле в температурном интервале существования аустенита.

Влияние парциального давления над расплавом железа на его растворимость в зависимости от времени выдержки при T = 1560 °C представлено на рис. 1.3.

Данные по кинетике азотирования свидетельствуют о том, что для выхода на стационарную концентрацию в чистом железе требуется около 40 мин., причем время практически не зависит отдавления азота над расплавом.

Рис. 1.3. Изменение растворимости азота в железе в зависимости от его давления и времени выдержки при температуре 1560 °С .

Рис.1.4. Зависимость растворимости азота в жидком железе при температуре 1560 °С от парциального давления азота над расплавом

Присутствиепримесей влияет на скорость растворения азота в металле. Так, при увеличении концентрации кислорода в металле от 0,067 до 0,144% время достижения равновесной концентрации увеличивается с 1,5 до 3,0 часов. Отмечено и аналогичное влияние серы: при ее концентрациях 0,49 и 0,87% и давлении азота 0,1МПа время достижения равновесной концентрации возрастает до 3,0 и 6,0 часов соответственно.

В работе представлены данные, характеризующие изменение растворимости азота в жидком железе при температуре 1560 °С в зависимости от давления (до 4 атм.).

Список использованой литературы

1. Костина М.В. Развитие принципов легирования Сr- N сталей и создание коррозионно-стойких сталей нового поколения со структурой азотистого мартенсита и аустенита для высоконагруженных изделий современной техники. - Дис. … д-р тех. наук. - М.: ИМЕТ РАН, 2003.- 231 с.
2. Самарин А.М. Замена никеля азотом в жароупорной стали. // Известия АН СССР. ОТН - 1944.- № 1-2.
3. Просвирин В.И., Агапова Н.П. Влияние азота на свойства стали с высоким содержанием хрома. Сб. трудов /ЦНИИТМАШ "Азот в стали" -М.: Машгиз, № 1950.-№29.
4. Рашев Ц.В. Высокоазотистые стали. Металлургия под давлением.- София:- Издательство Болгарской академии наук "Проф. Марин Дринов",1995. -218с.
5. Poschitz I.N., Kolesov V.A. Use of High-Nitrogen non magnetic steel for production of steel-aluminum conductor. 5-th Int. Conf. High Nitrogen Steels. Espoo - Finland. may 27-28. 1998 (Далее HNS-98). Book of Abstracts. -Р. 19.
6. Банных О.А. Блинов В.М. Костина М.В., Лякишев Н.П., Ригина Л.Г., Горынин И.В., Рыбин В.В., Малышевский В.А., Калинин Г.Ю., Ямпольский В.Д., Буцкий Е.В., Римкевич В.С., Сидорина Т.Н. «Высокопрочная немагнитная коррозионно-стойкая свариваемая сталь». Патент РФ № 2205889, 2002.
7. Банных О.А. Блинов В.М. Костина М.В., Малышевский В.А., Рашев Ц.В., Ригина Л.Г., Дымов А.В., Устиновщиков Ю.И. «Высокопрочная коррозионно и износостойкая немагнитная сталь». Патент РФ № 2158319, 2000.
8. Чижевский Н.П. Железо и азот. Томск. -1914.
9. Банных О.А., Блинов В.М. Дисперсионно-твердеющие немагнитные ванадий содержащие стали. -М.: Наука. 1980. -192с.
10. Berns H. Alloy development and processing. Int. Conf. High Nitrogen Steels. HNS-2004. Book of abstracts. -P. 271-281.
11. Гаврилюк В.Г., Ефименко С.П. Влияние азота на структуру и свойства  и  -железа и перспективные направления разработки высокоазотистых сталей. Труды Iой Всесоюзной конференции "Высокоазотистые стали". Киев 18-20 апреля 1990. -С. 5-26.
12. Ефименко С.П., Пановко В.М., Лещинская Е.М., Сокол И.Я., Ригина Л.Г., Мишина Е.Г., Гаврилюк В.Г., Марков Б.П. «Коррозионно-стойкая немагнитная износостойкая сталь ». Патент РФ № 2116374, 1996.
13. Приданцев М.В., Талов Н.П., Левин Ф.М. Высокопрочные аустенитные стали. -М.: Металлургия, 1969.- 247с.
14. Рашев Ц. Производство легированной стали. -М.: Металлургия, 1981. - 246 с.
15. Костина М.В., Банных О.А., Блинов В.М. Особенности сталей легированных азотом. // Металловедение и термообработка.- 2000. -№12.- С. 3-6.
16. Nakamura N., Tsuchiyma T., Takaki S. Effect of structural factors of the mecanical properties of the high nitrogen austenitic steels. HNS-98. Book of Abstracts. -P. 209-214.
17. Блинов В.М., Елистратов А.В., Колесников А.Г. и др. Влияние термической обработки на структурные превращения и свойства высокоазотистых сталей. //Металловедение и термообработка.- 2000.- № 6. -С. 19-24.
18. Григорян В.А., Белянчиков Л.Н., Стомахин А.Я. Теоретические основы электросталеплавильных процессов. -М.: Металлургия, -1987.-136с.
19. Свяжин А.Г., Чурсин Г.М., Вишкарев А.Ф., Явойский В.И. //Металлы.- 1974.- № 5.- С.23-35.
20. Аверин В.В., Ревякин А.В., Федорченко В.И., Козина Л.Н. Азот в металлах. -М.: Металлургия,- 1976.- 221с.
21. Martin E. // Arhiv Eisenhuttenw. -1929/30.- Bd.3. -S.314.
22. Sieverts A. //Z. Phys. Chem. -1938.- Bd. A 155.- S. 229.
23. Sieverts A., Zapf G. // Z. Phys. Chem.- 1938. Bd. 178. -S. 314.
24. Pelke R.D.,Elliot I.F. The Solubiliny of Nitrogen in Liquid Iron Alloys.// Trаnsaction of the Metallurgical Society of AIMЕ. -1963.- V. 227. -№5. -P.849-855.
25. Морозов А.И. Водород и азот в стали.- М.: Металлургиздат, 1968. -280с.
26. Наnsen M., Anderko K. Constitution of binary alloys. -1959.- P. 539-541.
27. Юрин В.В., Котельников Г.И., Стомахин А.Я., Григорян В.А. Температурная зависимость растворимости азота в жидком железе. // Известия вузов. Черная металлургия. -1986.- № 11. -С.40-45.
28. Shenck H., Frohberg M.,Heineman H. Untersuchungen zur stickstoff aufnahme in flussigen Druckbericht lis zu vier Atmosfiran. // Eisenlegirungen in Archiv fur Eisenhuttenw. 1962.-B.33. №9. S. 503-602.

Новое на сайте

>

Самое популярное