Домой Цветы Энергетический центр человека где находится. Энергетические центры и каналы человека. Динамичны или статичны энергетические центры человека

Энергетический центр человека где находится. Энергетические центры и каналы человека. Динамичны или статичны энергетические центры человека

Пирокинез - термин парапсихологии, который обозначает способность вызывать огонь или значительное увеличение температуры на расстоянии силой мысли. Существо, способное к пирокинезу, называют пирокинетиком, способным оказывать влияние силой мысли на материю. Кроме этого, пирокинезом считают также случаи неожиданного и необъяснимого самовозгорания людей, когда живое тело в течении нескольких секунд превращается в горстку пепла.

Случаи в истории

Интересно, что легковоспламеняющийся материал находящийся рядом с жертвой (постельное белье, одежда или бумага) оказывался нетронутым.

Так, в XVIII веке произошла загадочная гибель графини Банди из Касены. От нее остались лишь голова, три пальца и обе ноги в кучке пепла, находившейся в 4-х футах от кровати. Ни на полу, ни на постели при этом не было следов огня.

Во второй половине XIX столетия о пирокинезе начали писать и медики. Один из них, доцент Абердинского университета, ознакомился с трудами коллег и убедился, что приблизительно половина докторов считают самовозгорание человека вполне возможным.


Так, в отчете некоего д-ра Бертхолла медико-хирургическому обществу имеется сообщение о женщине, которая 1 августа 1869 года сгорела в своей квартире. Со слов очевидца, тело выглядело так, словно побывало в плавильной печи. Однако кругом все было в целости, только пол немного прогорел - как раз в том месте, где находился труп. Жертва не издала ни одного крика, не звала на помощь, так как жильцы соседних квартир ничего не слышали.

Даже в середине XX века вера в то, что человек может сгореть от пьянства, была весьма сильной. Полковник О.Архипов в военно-историческом очерке «В брянских лесах» рассказывает о странном случае, очевидцем которого был сам лично. Во время Великой Отечественной на одном из полевых аэродромов в кузов старенькой полуторки погрузили больного солдата, для отправки в лазарет. Сказали, что он выпил нечто непотребное, именовавшееся «шасси» - жидкость, которая предназначалась для заполнения амортизаторов. А по пути, на глазах у сопровождавших солдат, тело пострадавшего неожиданно вспыхнуло синим пламенем. Когда водитель резко притормозил, все выпрыгнули из кузова и бросились врассыпную, а спустя какое-то время обнаружили в грузовике обугленный труп попутчика. Самым странным было то, что не загорелась шинель, на которой он лежал. Невероятный случай был списан на «самовозгорание при употреблении внутрь легковоспламеняющейся жидкости».

Типы возгорания

За последние три столетия пирокинез, в том числе в присутствии свидетелей, настигал сотни людей, в независимости от их пола и от того, были они при жизни пьяницами или трезвенниками. Вывести какую-то закономерность в избирательности объектов для самовозгорания довольно сложно. Пирокинез вездесущ и беспощаден в любой обстановке. Потому специалистам остается только регистрировать свежие факты и систематизировать, где он проявился в очередной раз. Американский научно-популярный журнал «Дискавэр» сообщает, что за последние 12 лет число случаев пирокинеза выросло почти в два раза. Отмечается два типа возгорания: превращение жертвы в пепел и спекание его в обугленную массу. В некоторых случаях какая-то часть тела оказывается не тронутой пламенем. Установлено, что во время самовозгорания человеческих тел температура огня достигала 3000 °C.

Самовозгорание людей. Случаи

1905 год, зима – в Англии произошли три странных пожара. В небольшой деревеньке Батлокс-Хет (графство Хемпшир) в одном из домов были обнаружены обугленные трупы супругов Кайли. Интересно, что ни мебель, ни занавески, ни ковер, на котором неожиданно загорелись пожилая супружеская пара, огонь не тронул. В Линкольншире при аналогичном пожаре погиб фермер, а вместе с ним около 300 гусей и кур. А спустя несколько дней неподалеку внезапно загорелась пожилая женщина.

Билли Питерсон (США) вдруг загорелся, когда парковал свой автомобиль на детройтской автостоянке. Когда спасатели извлекли его обугленное тело, то было обнаружено, что температура в машине была до такой степени высокой, что детали на приборном щитке полностью расплавились.

1956 год – 19-ти летняя Мэйбл Эндрюс танцевала со своим другом Билли Клиффордом на одной из танцевальных площадок Лондона и неожиданно загорелась. Хотя Клиффорд и находившиеся рядом люди, пытались ей помочь, она умерла по пути в больницу. По словам Билли, поблизости не было источников огня, и ему показалось, что огонь исходил наружу прямо из ее тела.

1969 год – Дора Метцель, сидевшая в своей машине на одной из улиц Люксембурга, вдруг воспламенившись, сгорела дотла за считанные секунды. Несколько человек попытались ей помочь, но безрезультатно. Но когда все закончилось, выяснилось, что внутренняя обшивка и сиденья машины, в отличие от случая с Питерсоном, не пострадали.

1996 год – из номера мотеля в городе Брисбейн (Австралия) с диким криком выскочила обнаженная девушка. После того как она пришла в себя, рассказала, что приехала сюда на выходные со своим парнем. Легла в кровать, ее бой-френд пошел принять ванну. А когда он вышел оттуда и лег рядом с ней, то внезапно загорелся и минуту спустя превратился в прах.

Еще, согласно одной любопытной версии, виновник пирокинеза - особая пиробактерия, «поедающая» сахар, который содержится в организме человека, и вырабатывающая летучие горючие вещества - к примеру, спирт. Тогда пирокинез возможно объяснить как сгорание «проспиртованного» организма от незаметной, случайной искры. Бактерия эта пока не обнаружена, а существует только в виде сложной компьютерной модели.

Харуги Ито из Японии, выдвинул версию, что причиной пирокинеза является изменение течения времени. В обычном состоянии тело человека вырабатывает и излучает в пространство определенное количество тепла, но если внутри по какой-то причине внезапно резко замедляются происходящие в природе физические процессы, а на поверхности кожи их скорость остается постоянной, то вырабатываемое тепло просто не успевает излучаться в пространство и испепеляет человека.

Кандидат технических наук А.Стехин предлагает свою версию. Как он считает, пирокинез - это холодноплазменное горение. «Человек на три четверти состоит из жидкостных образований, т. е. из воды. Свободные радикалы в ее молекулах способны «забирать» энергию. Это может быть или солнечная энергия, или биологическая. В исключительных случаях она высвобождается и потоком квантов вырывается наружу. Причем внешняя температура тела не превышает 36 °C, а внутренняя достигает 2000 °C, чем и объясняется парадокс, упомянутый в письменных источниках: тело сгорает дотла, а обувь, одежда, постель и т. д. остаются нетронуты.

Наконец, ряд ученых придерживаются весьма фантастической точки зрения, утверждая, что источником энергии в живой клетке служит термоядерная реакция. При определенных условиях в клетках организма появляются неизвестные энергетические процессы, аналогичные происходящим при взрыве атомной бомбы. Такие саморазрушительные процессы не выходят за рамки тела и не отражаются на молекулах соседней материи - к примеру, на одежде или обшивке машины.

Французский ученый Жак Миллон в течении долгих лет занимается разгадкой пирокинеза. Вначале он столкнулся с этим феноменом в психиатрических лечебницах, где содержали больных, обвиняемых в попытке свершить суицид путем самосожжения. Но, как выяснилось, пациенты полностью отрицали даже саму мысль о самоубийстве. Они твердили о неожиданном самовозгорании тела, описывали свои ощущения и .

Занявшись вплотную изучением данной проблемы, мсье Милон получил два дополнительных образования (физика и физика поля) и выдвинул свою собственную версию пирокинеза, основанную на существовании пирополя. Известно, что в природе существуют различные виды полей - электрическое, магнитное, гравитационное и, наконец, биополе. Причем все виды полей взаимодействуют друг с другом, а самым загадочным остается энергетическая оболочка живого существа. Ученые по сей день не могут объяснить, почему у здорового человека в течение суток температура тела колеблется на 0,5 °C или почему при нервном стрессе возникает внезапный жар.

Существует в природе еще один вид поля - так называемое пирополе, способное нагревать белковую материю. Но не любую, а только материю с мощным биополем, то есть тело человека. Тогда суточные колебания температуры - это результат колебаний пирополя вокруг своего среднего уровня. А жар при нервном стрессе, так называемый термоневроз, - результат взаимодействия пирополя с ослабленным биополем субъекта. Известно также, что электрическое и магнитное поле Земли время от времени необъяснимым образом выдает мощный всплеск своей энергии в ограниченном участке пространства.

Точно так же ведет себя и пирополе, которое во время вспышек выбрасывает узкие пучки энергии, подобные разрядам невидимой молнии. Такие экстремумы смертельно опасны для людей. Человек, попавший в невидимым пучок, вспыхивает и сгорает моментально. И чем мощней биополе, тем более лакомой приманкой становится индивидуум для сжигающих сил природы. В свою очередь, на неживые объекты (одежду, обувь, постель, машина и т. д.) пирополе не действует. Оно, как огонь, поднесенный к лужице спирта на столе, выжигает спирт, а участок стола при этом даже не нагревается.

Рассмотрев вопрос возникновения горения в результате нагрева горючей смеси до их температуры самонагревания стоит обратить внимание на то, что в природе существует большое количество горючих веществ и материалов, температура самонагревания которых равна или ниже обычной температуры в помещениях. Так, алюминевая пудра при соприкосновении с воздухом способна окисляться и при этом самонагреваться до возникновения пламенного горения даже при температуре окружающего воздуха 10 0 С. Такой процесс возгорания веществ и материалов получил название самовозгорание. Согласно стандартам ГОСТ и СЭВ самовозгорание – это: 1) резкое увеличение скорости экзотермических процессов в веществе, приводящее к возникновению очага горения; 2) возгорание в результате самоинициируемых экзотермических процессов.

Самовозгорание как начальная стадия горения принципиально не отличается от самовоспламенения (см. рис. 2.4). Склонность веществ и материалов к самовозгоранию можно охарактеризовать как функцию теплоты сгорания соединения, скорости реакции окисления, теплопроводности, теплоёмкости, влажности, наличия примесей, объёмной плотности, удельной поверхности, теплопотерь и т. д. Самовозгоранием считается, если процесс самонагревания веществ и материалов происходит в интервале температур от 273 К до 373 К, т. е. при более низких температурах, чем при самовоспламенении.

Рис. 2.4. Схема возникновения горения

Температурой самонагревания называется самую низкую температуру вещества, при которой возникает его самонагревание, заканчивающееся самовоспламенением. Самовозгорающиеся вещества делят на три группы: масла, жиры и другие продукты растительного происхождения; самовозгорающиеся химические вещества; ископаемые горючие материалы.

Причиной самонагревания, приводящей к воспламенению, может быть ряд факторов: микробиологический процесс, адсорбция, полимиризация, теплота химических реакций. Условно самовозгорание классифицируют по начальным причинам самонагревания и различают: тепловое самовозгорание, микробиологическое и химическое самовозгорания (см. рис. 2.5).

Рассмотрим более подробно каждый вид самовозгорания.

Тепловое самовозгорание. Тепловым называется самовозгорание, вызванное самонагреванием, возникшим под воздействием внешнего нагрева вещества, материала, смеси выше температуры самонагревания. Тепловое самовозгорание возникает при нагревании вещества до температуры, обеспечивающей его термическое разложение идальнейшее самоускоряющееся самонагревание за счет тепла экзотермических реакций в объеме горючего. При этом большую роль играют реакции окисления продуктов термического разло­жения. Сам процесс протекает в форме тления в глубине мате­риала, которое затем переходит в пламенное горение на поверх­ности. К тепловому самовозгоранию имеют склонность многие вещества и материалы, в частности масла и жиры, каменные угли и некоторые химические вещества. Самонагревание масел и жиров растительного, животного и минерального происхождения возникает в результате окислительных процессов под действием кислорода воздуха при развитой поверхности контакта с ними. Минеральные масла – машинное, трансформаторное, соляровое и другие, которые получают при переработке нефти. Они представляют собой главным образом смесь предельных углеводородов и окисляются на воздухе только при высоких температурах. Отработанные минеральные масла, подвергавшиеся нагреву до высокой температуры, могут содержать непредельные соединения, которые способны к саморазогреву, т. е. могут самовозгораться.

Рис. 2.5. Схема развития процесса самовозгорания твердых веществ и материалов. Импульсы самонагревания (самовозгорания): 1 – тепловой, 2 –химический, 3 – микробиологический

Растительные масла (хлопковое, льняное, подсолнечное и др.) и животные (сливочное, рыбий жир) по своему составу отличаются от минеральных. Они представляют собой смесь глицеридов жирных кислот: пальмитиновой С 15 Н 31 СООН, стеариновой C 17 Н 35 СООН, олеиновой С 17 Н 33 СООН, линолевой С 17 Н 31 СООН, линоленовой С 17 Н 29 СООН и др. Пальмитиновая и стеариновая кислоты являются предельными, олеиновая, линолевая и линоленовая – непредельными. Глицериды предельных кислот, а следовательно, масла и жиры, содержащие их в большом количестве, окисляются при температурах свыше 150 0 С, что означает следующее: они не способны самовозгораться (см. табл. 2.3). Масла, содержащие большое количество глицеридов непредельных кислот, начинают окисляться при температурах значительно ниже 100 0 С, следовательно, они способны самовозгораться.

Таблица 2.3.

Состав жиров и масел

Название жиров и масел

Глицериды кислот, % (масс.)

пальмитиновой и стеариновой

олеи-новой

лино-левой

линоле-новой

Подсолнечное

Хлопковое

Масла и жиры самовозгораются только при определённых условиях: а) при наличии в составе масел и жиров значительного количества глицеридов непредельных кислот; б) при наличии большой поверхности их окисления и малой теплоотдачи; в) если жирами и маслами пропитаны какие-либо волокнистые горючие материалы; г) промасленные материалы имеют определённую уплотнённость.

Различная способность растительных масел и животных жиров к самовозгоранию объясняется тем, что они содержат глицериды различного состава, строения и не в одинаковом количестве.

Глицериды непредельных кислот способны окисляться на воздухе при обычной температуре помещений за счёт наличия в их молекулах двойных связей:

Пероксиды легко разлагаются с образованием атомарного кислорода, который очень реакционноспособен:

Атомарный кислород взаимодействует даже с трудноокисляющимися компонентами масел. Одновременно с окислением протекает и реакция полимеризации непредельных соединений

Процесс идёт при низкой температуре с выделением тепла. Чем больше глицерид имеет двойных связей, тем больше он присоединяет молекул кислорода, тем больше выделяется тепла в процессе реакции, тем больше его способность к самовозгоранию.

О количестве глицеридов непредельных кислот в масле и жире судят по йодному числу масла, т. е. по количеству йода, поглощённому 100 г масла. Чем выше йодное число, тем большая способность этого жира или масла к самовозгоранию (см. табл. 2.4).

Самое большое йодное число имеет льняное масло. Волокнистые материалы, пропитанные льняным маслом, при всех прочих одинаковых условиях самовозгораются быстрее, чем материалы, пропитанные другими маслами. Олифы, приготовленные на основе растительных масел, имеют меньшее йодное число, чем основа, но способность к самовозгоранию у них выше. Это объясняется тем, что в олифу добавляется сиккатив, ускоряющий её высыхание, т. е. окисление и полимеризацию. Полунатуральные олифы, представляющие собой смеси окисленного льняного или других растительных масел с растворителями, имеют небольшие йодные числа и мало способны к самовозгоранию. Синтетические олифы совершенно не способны самовозгораться.

Таблица 2.4.

Иодные числа жиров и масел

Жиры рыб и морских животных имеют высокое йодное число, но обладают незначительной способностью к самовозгоранию. Это объясняется тем, что в их составе присутствуют продукты, замедляющие процесс окисления.

Способность промасленных материалов к самовозгоранию увеличивается с присутствием в них катализаторов, ускоряющих процесс окисления и полимеризацию масел. Повышение температуры окружающей среды также способствует ускорению этих процессов. Катализаторами для самовозгорания масел являются соли различных металлов: марганца, свинца, кобальта. Наиболее низкая температура, при которой на практике наблюдали самовозгорание масел и жиров, составляла 10-15 0 С.

Индукционный период самовозгорания промасленных материалов может составлять от нескольких часов до нескольких дней. Это зависит от объёма промасленного материала, степени его уплотнения, вида масла или жира и их количества, температуры воздуха и других факторов.

Ископаемые угли (каменный, бурый), которые хранятся в кучах или штабелях, способны самовозгораться при низких температурах. Основными причинами самовозгорания является способность углей окисляться и адсорбировать пары и газы при низких температурах. Процесс окисления в угле при низких температурах идёт достаточно медленно и тепла выделяется мало. Но в больших скоплениях угля теплоотдача затруднена, и самовозгорание угля всё же происходит. Самонагревание в штабеле угля первоначально происходит во всём объёме, исключая только поверхностный слой толщиной 0,3-0,5 м, но по мере повышения температуры оно приобретает очаговый характер. Рост температуры в очаге самовозгорания до 60 0 С идёт медленно и может прекратиться при проветривании штабеля. Начиная с 60 0 С, скорость самонагревания резко увеличивается, такая температура угля называется критической . Склонность углей к самовозгоранию в штабелях различна, она зависит от количества выхода из них летучих веществ, от степени измельчения, присутствия влаги и пирита. Согласно нормам хранения все ископаемые угли по их склонности к самовозгоранию делятся на две категории: А – опасные, Б – устойчивые.

К категории А относят бурые и каменные угли, за иск­лючением марки Т, а также смеси разных категорий. Наиболее опасны в отношении самовозгорания уг­ли марок ОС (кузнецкие), Ж (ткварчельские), Г (ткибульские), Д (печерские, кузнецкие и донецкие), Б (райчихинские, украинские, ленировские, ангренские и др.). Эти угли нельзя хранить долго. К категории Б относят антрацит и каменные угли мар­ки Т. Устойчивы при длительном хранении все антрациты и угольные брикеты, угли марок Т (донецкие, кузнецкие), Ж (печерские и сучанские), Г (сучанские), Д (чернеховские).

Для предотвращения самовозгорания углей при хранении нормами установлено: 1) ограничение высоты штабелей угля; 2) уплотнение угля в штабеле с целью ограничения доступа воздуха во внутренний объём штабеля.

Выполнение этих мероприятий сводит к минимуму скорость процессов окисления и адсорбции, рост температуры в штабеле, препятствует проникновению в штабель атмосферных осадков и естественно снижает возможность самовозгорания.

Также к тепловому самовозгоранию имеют склонность многие химические вещества . Сульфиды железа FeS, FeS 2 , Fe 2 S 3 способны самовозго­раться, поскольку могут реагировать с кислородом воздуха при обычной температуре с выделением большого количест­ва тепла:

FeS 2 + О 2 → FeS + SO 2 + 222,3 кДж.

Отмечены случаи самовозгорания пирита или серного колчедана (FeS 2) на складах сернокислотных заводов, а также в рудниках. Самовозгоранию пирита способствует влага. Предпо­лагается, что реакция в этом случае протекает по сле­дующему уравнению:

2FeS 2 + 7,5О 2 + Н 2 О → Fe 2 (SO 4) 3 + K 2 SO 4 + 2771 кДж.

При образовании железного купороса объем увеличива­ется и происходит растрескивание пирита и его измель­чение, что благоприятствует процессу самовозгорания.

Сульфиды FeS и Fe 2 S 3 образуются в емкостях для хранения нефтепродуктов, горючих газов и в аппарату­ре различных производств, где имеются примеси серо­водорода. В зависимости от температуры образование сульфидов железа протекает различно. Если температу­ра выше температуры диссоциации сероводорода, т. е. выше 310 0 С, сульфиды железа образуются при взаимо­действии железа с элементарной серой, получившейся в результате разложения сероводорода или других серни­стых соединений. Элементарная сера может также по­лучиться в результате окисления сероводорода, и тогда образование сернистого железа происходит по следую­щим реакциям:

2H 2 S + О 2 → 2Н 2 О + 2S,

При температурах ниже 310 0 С сульфиды железа в производственной аппаратуре образуются в результате воздей­ствия сероводорода не на железо, а на продукты его коррозии:

2Fe(OH) 3 + 3H 2 S → Fe 2 S 2 + 6Н 2 О.

Все пожары в производственной аппаратуре, возник­шие в результате самовозгорания сульфидов железа, происходили после освобождения аппаратуры от храни­мого или обрабатываемого в ней продукта.

Например, на нефтеперегонном заводе, перерабатывающем сернистую нефть, была поставлена на ремонт бензиновая ректификационная колонна. При вскрытии люка на стенках колонны и тарелках был обнаружен слой сульфида железа. Быстрая подача пара в колонну позволила предотвратить окисление и самовозгорание сульфида же­леза. Как видно, сульфид железа в колонне образовался уже давно, но из-за отсутствия воздуха окисление не протекало.

Самовозгорание сульфидов железа в производствен­ной аппаратуре предотвращают следующими методами: очисткой от сероводорода обрабатываемого или хранимого продукта, антикоррозийным покрытием внутренней поверхности аппаратуры, продуванием аппаратуры па­ром или продуктами сгорания для удаления горючих паров и газов, заполнением аппаратуры водой и медленным спуском ее, что ведет к окислению сульфида без ус­корения реакции.

Фосфор белый (желтый), фосфористый водород (фосфин), водородистый кремний (силан), цинковая пыль, алюминиевая пудра, карбиды щелочных металлов, суль­фиды металлов – рубидия и цезия, арсины, стибины, фосфины, сульфоуголь и другие вещества также способны окисляться на воздухе с выделением тепла, за счет ко­торого реакция ускоряется до горения. Некоторые из перечисленных веществ способны самовозгораться очень быстро после соприкосновения с воздухом, другие же – через длительный промежуток времени.

Например, фосфор белый (желтый) интенсивно окисляется при температуре помещений, поэтому быстро самонагревает­ся и загорается с образованием белого дыма:

4Р + 5О 2 → 2Р 2 О 5 + 3100,6 кДж.

При смачивании раствором фосфора в сероуглероде горючих веществ происходит испарение сероуглерода; остающийся на поверхности тонкий слой фосфора быстро окисляется и самовозгорается. В зависимости от кон­центрации раствора смоченные им вещества самовозго­раются через различные промежутки времени.

Хранить и резать фосфор следует под водой, так как на воздухе он может воспламениться от теплоты трения, причем белый фосфор очень ядовит.

Некоторые металлы, металлические порошки, пудры способны самовозгораться на воздухе за счет тепла, вы­деляющегося при реакции окисления. Из металлов в компактном состоянии этой способностью обладают ру­бидий и цезий, из металлических пудр – алюминиевая пудра и др. Для предотвращения самовозгорания алю­миниевой пудры ее приготовляют в среде инертного газа и затем перетирают с жирами, пленка которых предох­раняет пудры от окисления. Известны случаи, когда алюминиевая пудра под действием растворителя или на­гревания обезжиривалась и самовозгоралась.

Карбиды щелочных металлов К 2 С 2 , Na 2 C 2 , Li 2 С 2 са­мовозгораются не только на воздухе, но даже и в ат­мосфере СО 2 и SO 2 .

К самовозгоранию на воздухе способны также диэтиловый эфир и скипидар. Диэтиловый эфир при длитель­ном соприкосновении с воздухом на свету способен об­разовывать перекись диэтила (С 2 Н 5)О 2 , которая при ударе или нагревании до 75 0 С разлагается со взрывом и воспламеняет эфир. Скипидар также может самовозго­раться, если им смочены волокнистые материалы. При­чина самовозгорания – способность скипидара окислять­ся на воздухе при низких температурах. Известен случай самовозгорания ваты, смоченной скипидаром. Такой ва­той смывали масляную краску с декорации. Ночью вата, собранная в одном месте, самовозгорелась. Известны также случаи самовозгорания мха, смоченного скипида­ром.

Сульфоуголь, находясь в бумажных мешках, уложен­ных в штабель, способен самовозгораться. Были случаи его самовозгорания в первые 2-3 дня после укладки мешков в штабель.

Микробиологическое самовозгорание. Микробиологическим называется самовозгорание, возникающее в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества, материала, смеси. К таким веществам относятся торф (в основном, фрезерный), растительные материалы: сено, клевер, силосная масса, солод, зерновые культуры, хлопок, скопление древесных опилок и подобные им материалы.

Особенно подвержены самовозгоранию недосушенные материалы. Влага и тепло способствуют размножению микроорганизмов в массе этих материалов уже при 10-18 0 С. Вследствие плохой теплопроводности растительных материалов выделяющееся при гниении тепло идёт на разогрев гниющего материала, температура его повышается и может достичь 70 0 С. Микроорганизмы при такой температуре погибают, однако повышение температуры в материале не прекращается, так как некоторые органические соединения в это время уже обугливаются. Образующийся при этом пористый уголь имеет свойство адсорбировать пары и газы, что сопровождается выделением тепла. В случае малой теплоотдачи уголь нагревается до начала процесса окисления и температура растительных материалов повышается, достигая 200 0 С. Это приводит к разложению клетчатки и дальнейшему обугливанию массы. Процесс окисления пористого угля интенсифицируется, в результате чего температура растёт и возникает горение. При увлажнении растительного сырья как при нормальной, так и повышенной температурах выделяются газы, в том числе и горючие. Так, при промачивании растительного сырья водяным паром или водой, при тушении горящего продукта начинается выделение СО, СН 4 , Н 2 в количествах, значительно превышающих НКПРП для каждого из этих газов. Поэтому использование для подавления очагов горения растительного сырья в силосах и бункерах только воды или пара может привести к взрыву хранилищ.

Химическое самовозгорание. Химическим называется самовозгорание, возникающее в результате химического взаимодействия веществ. Химическое самовозгорание возникает в месте контакта взаимодействующих веществ, реагирующих с выделением тепла. В этом случае самовозгорание наблюдается обычно на поверхно­сти материала, а затем распространяется вглубь. Процесс самонагревания начинается при температурах ниже 50 0 С. Некоторые химические соединения склонны к самонагреванию в результате контакта с кислородом воздуха и другими окислителями, друг с другом и водой. Причиной самонагревания является их высокая реакционная способность.

Вещества, самовозгорающиеся при контакте с окис­ лителями . Многие вещества, в основном органические, при смешении или соприкосновении с окислителями спо­собны самовозгораться. К окислителям, вызывающим самовозгорание таких веществ, относятся: кислород воздуха, сжатый кисло­род, галогены, азотная кислота, перекись натрия и ба­рия, перманганат калия, хромовый ангидрид, двуокись свинца, селитры, хлораты, перхлораты, хлорная известь и др. Некоторые из смесей окислителей с горючими ве­ществами способны самовозгораться только при воздей­ствии на них серной или азотной кислоты или при ударе и слабом нагревании.

Самовозгорание на воздухе. Некоторые химические соединения склонны к самонагреванию в результате контакта с кислородом воздуха. Причиной самовозгорания служит их высокая реакционная способность в контакте с другими соединениями. Поскольку этот процесс происходит большей частью при комнатных температурах, его также относят к самовозгоранию. На самом деле, заметный процесс взаимодействия компонентов наблюдается при значительно более высоких температурах, и поэтому в качестве температурного показателя пожарной опасности таких веществ приводят их температуру самовоспламенения. Например, алюминиевая пудра самовозгорается на воздухе. Однако реакция образования окиси алюминия протекает при 913 К.

Сжатый кислород вызывает самовозгорание веществ (минерального масла), которые не самовозгораются в кислороде при нормальном давлении.

Хлор, бром, фтор и йод чрезвычайно активно соеди­няются с некоторыми горючими веществами, причем реакция сопровождается выделением большого количества тепла, что приводит к самовозгоранию веществ. Так, ацетилен, водород, метан и этилен в смеси с хлором самовозгораются на свету или от света горящего магния. Если указанные газы присутствуют в момент выделения хлора из любого вещества, самовозгорание их происходит даже в темноте:

С 2 Н 2 + С1 2 → 2НС1 +2С,

СН 4 + 2С1 2 → 4НС1 + С и т. д.

Нельзя хранить галогены вместе с легко воспламе­няющимися жидкостями. Известно, что скипидар, рас­пределенный в каком-либо пористом веществе (в бумаге, ткани, вате), самовозгорается в хлоре. Пары диэтилового эфира могут также самовозгораться в атмосфере хлора:

С 2 Н 5 ОС 2 Н 5 + 4С1 2 → Н 2 О + 8НС1 + 4С.

Красный фосфор моментально самовозгорается при соприкосновении с хлором или бромом.

Не только галогены в свободном состоянии, но и их соединения энергично вступают в реакцию с некоторыми металлами. Так, взаимодействие четыреххлористого эта­на C 2 H 2 CI 4 с металлическим калием происходит со взры­вом:

С 2 Н 2 С1 4 + 2К → 2КС1 + 2НС1 + 2С.

Смесь четыреххлористого углерода СС1 4 или четырех-бромистого углерода со щелочными металлами при на­гревании до 70 0 С взрывается.

Азотная кислота, разлагаясь, выделяет кислород, по­этому является сильным окислителем, способным выз­вать самовозгорание ряда веществ.

4HNO 8 → 4NO 2 + О 2 + 2Н 2 О.

При соприкосновении с азотной кислотой самовозго­раются скипидар и этиловый спирт.

Растительные материалы (солома, лен, хлопок, древесные опилки и стружки) самовозгораются, если на них попадет концентрированная азотная кислота.

При соприкосновении с перекисью натрия способны самовозгораться следующие горючие и легковоспламе­няющиеся жидкости: метиловый, этиловый, пропиловый, бутиловый, изоамиловый и бензиловый спирты, этиленгликоль, диэтиловый эфир, анилин, скипидар и уксусная кислота. Некоторые жидкости самовозгорались с перекисью натрия после введения в них небольшого количества воды. Так ведут себя уксусноэтиловый эфир (этилацетат), ацетон, глицерин и изобутиловый спирт. Началом реакции служит взаимодействие воды с пере­кисью натрия и выделение при этом атомарного кисло­рода и тепла:

Na 2 O 2 + Н 2 О → 2NaOH + О.

Атомарный кислород в момент выделения окисляет горючую жидкость, и она самовозгорается. Порошок алюминия, опилки, уголь, сера и другие вещества в смеси с перекисью натрия моментально самовозгораются от попадания на них капли воды.

Сильным окислителем является перманганат калия КМnО 4 . Его смеси с твердыми горючими веществами крайне опасны. Они самовозгораются от действия кон­центрированных серной и азотной кислот, а также от удара и трения. Глицерин С 3 Н 5 (ОН) 3 и этиленгликоль С 2 Н 4 (ОН) 2 самовозгораются в смеси с перманганатом калия через несколько секунд после смешения.

Сильным окислителем является также хромовый ангидрид. При попадании на хромовый ангидрид самовозгораются следующие жидкости: метиловый, этиловый, бутиловый, изобутиловый и изоамиловый спирты; уксус­ный, масляный, бензойный, пропионовый альдегиды и паральдегид; диэтиловый эфир, этилацетат, амилацетат, метилдиоксан, диметилдиоксан; уксусная, пеларгоновая, нитрилакриловая кислоты; ацетон.

Смеси селитр, хлоратов, перхлоратов способны само­возгораться при действии на них серной, а иногда азот­ной кислоты. Причиной самовозгорания является выде­ление кислорода под действием кислот. При действии серной кислоты на бертолетову соль происходит следу­ющая реакция:

H 2 SO 4 + 2КСlO 3 → K 2 SO 4 + 2НСlO 3 .

Хлорноватая кислота малоустойчива и при образова­нии распадается с выделением кислорода:

2НСlO 3 → 2НС1 + 3О 2 .

Карбиды щелочных металлов К 2 С 2, Na 2 C 2 , Li 2 C 2 самовозгораются не только на воздухе, но даже и в атмосфере СО 2, SO 2 .

Например, карбид кальция Са 2 С при контакте с водой выделяет горючий газ ацетилен С 2 Н 2, который в смеси с воздухом возгорается в результате того, что нагревается теплом, выделившимся в ходе реакции, Т св ацетилена равна 603 К.

Вещества, самовозгорающиеся при контакте с водой. К этой группе материалов относятся калий, натрий, ру­бидий, цезий, карбид кальция и карбиды щелочных ме­таллов, гидриды щелочных и щелочноземельных метал­лов, фосфиды кальция и натрия, силаны, негашеная из­весть, гидросульфид натрия и др.

Щелочные металлы – калий, натрий, рубидий и це­зий – взаимодействуют с водой с выделением водорода и значительного количества тепла:

2Na + 2Н 2 О → 2NaOH + Н 2 ,

2К + 2Н 2 О → 2КОН + Н 2 .

Выделяющийся водород самовоспламеняется и горит сов­местно с металлом только в том случае, если кусок ме­талла по объему больше горошины. Взаимодействие ука­занных металлов с водой иногда сопровождается взры­вом с разбрызгиванием расплавленного металла. Так же ведут себя гидриды щелочных и щелочноземельных металлов (КН, NaH, CaH 2) при взаимодействии с не­большим количеством воды:

NaH + Н 2 О → NaOH + Н 2 .

При взаимодействии карбида кальция с небольшим количеством воды выделяется столько тепла, что в при­сутствии воздуха образующийся ацетилен самовозгора­ется. При большом количестве воды этого не происходит. Карбиды щелочных металлов (например, Na 2 C 2 , K 2 C 2) при соприкосновении с водой взрываются, причем метал­лы сгорают, а углерод выделяется в свободном состоя­нии:

2Na 2 C 2 + 2Н 2 О + О 2 → 4NaOH + 4С.

Фосфид кальция Са 3 Р 2 при взаимодействии с водой об­разует фосфористый водород (фосфин):

Са 3 Р 2 + 6Н 2 О → 3Са(ОН) 2 + 2РН 3 .

Фосфин РН 3 является горючим газом, но самовозгорать­ся не способен. Совместно с РН 3 выделяется некоторое количество жидкого Р 2 Н 4 , который способен самовозго­раться на воздухе и может быть причиной воспламене­ния РН 3 .

Силаны, т. е. соединения кремния с различными ме­таллами, например Mg 2 Si, Fe 2 Si, при действии воды вы­деляют водородистый кремний, самовозгорающийся на воздухе:

Mg a Si + 4Н 2 О → 2Mg(OH) 2 + SiH 4 ,

SiH 4 + 2О 2 → SiO 2 + 2Н 2 О.

Перекись бария и перекись натрия хотя и взаимо­действуют с водой, но горючих газов при данной реакции не обра­зуется. Горение может возникнуть, если перекиси сме­шаны или соприкасаются с горючими веществами.

Оксид кальция (негашеная известь), реагируя с не­большим количеством воды, разогревается до свечения и может поджечь соприкасающиеся с ней горючие ма­териалы.

Гидросульфит натрия, являясь влажным, энергично окисляется с выделением тепла. В результате этого происходит самовозгорание серы, образующейся при распа­де гидросульфита.

Таким образом, самовозгорание и самонагревание горючих смесей, веществ и материалов, которые протекают при низких температурах, имеют ту же природу, что и самовоспламенение, но вследствие своей большей распространенности служат причиной пожаров гораздо чаще, чем самовоспламенение.

Взрывная способность горючих газов, паров и пыли в воздухе сохраняется в определенных интервалах их концентраций. Существуют нижние и верхние концентрационные и температурные пределы распространения пламени.

Нижний (верхний) концентрационный предел распространения пламени (НКПРП) − минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при которой возможно распространение пламени по смеси на любое расстояние от источника зажигания. Невозможность воспламенения горючей смеси при концентрации ниже НКПРП объясняется малым количеством горючего вещества и избытком воздуха. Чем меньше коэффициент избытка воздуха, тем больше скорость горения и выше давление паров при взрыве. Верхний концентрационный предел распространения пламени характеризуется избытком горючего и малым количеством воздуха. Чем ниже нижний концентрационный предел и больше концентрационная область распространения пламени, тем большую пожарную опасность представляют горючие вещества.

В первом случае взрыв не происходит из-за недостатка горючего вещества, во втором − из-за недостатка воздуха (кислорода), необходимого для окисления горючего вещества.

9. Виды самовозгорания

Самовозгорание присуще всем твердым горючим веществам и материалам.

Самовозгорание – это явление резкого увеличения скорости внутренних (экзотермических) реакций в веществе, приводящее к горению при отсутствии источника зажигания. Если при самовозгорании образуется пламя, то это явление называется самовоспламенением.

Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду. Начало самовозгорания характеризуется температурой самонагревания (Т сн ), представляющей собой минимальную температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определённой температуры, называемой температурой самовозгорания (Т своз. ), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Т своз. адекватна температуре самовоспламенения (Т св. ), под которым понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания должно учитываться при определении склонности твёрдых веществ к самовозгоранию.

Самовозгорание изучают путём термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате. Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке 3.1.

Рис. 3.1. Процессы самовозгорания

Возможность самовозгорания материала, находящегося в потенциально пожароопасной области, устанавливают с помощью уравнений:

lg T окр. = А 1 n 1 lg, (3.1)

lg T окр. = А 2 n 2 lgτ , (3.2)

где Т окр. − температура окружающей среды, °С; − определяющий размер (обычно толщина) материала; τ − время, в течение которого может произойти самовозгорание; А 1 , п 1 и А 2 , п 2 − коэффициенты, определяемые для каждого материала по опытным данным (см. табл. 3.1).

По уравнению (3.1) при заданном находят Т окр. , при которой может возникнуть самовозгорание данного материала, по уравнению (3.2) при известной Т окр . − величину τ .

При температуре, ниже вычисленной Т окр . , или при τ , меньшем, чем время, рассчитанное по уравнению (3.2), происходит самовозгорание.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений Т сн . , различают химическое , микробиологическое и тепловое самовозгорание .

Тепло обыкновенного трубопровода горячей воды или пара (Т = 100÷150 ºС) может явиться тем источником тепла, которого достаточно для самовозгорания изделий из ткани, бумаги или древесины. Поэтому трубопроводы горячей воды или пара необходимо ограждать только экранами из негорючих материалов. В общественных зданиях допускаются декоративные решетки, но и в первом и во втором случаях расстояние от трубопроводов до экранов, а равно и до любого сгораемого материала (занавески, например) должно быть не менее 100 мм. В производственных условиях самовозгораются каменный уголь, торф, опилки, некоторые горючие жидкости, обычно в виде тонких пленок, получающихся при нанесении жидкости на ворсистые поверхности (хлопок, вата и т. п.). К этим жидкостям относятся растительные масла, скипидар. На предприятиях имеются случаи самовозгорания обтирочных материалов, промасленной спецодежды, поэтому спецодежду необходимо развешивать так, чтобы обеспечить доступ воздуха, для отвода тепла промасленные обтирочные материалы собираются в несгораемую тару с крышками и ежесменно удаляются, сжигаются или уничтожаются. Известны случаи тления и горения угля в кучах, торфа и хлопка, неоднократно отмечены случаи самовозгорания толи в рулонах, целлофана и целлулоида, бумаги, а также материалов.

Общее требование пожарной безопасности для случаев теплового самовозгорания формулируется довольно просто: безопасной температурой длительного нагрева вещества считается температура, не превышающая 90 % температуры самонагревания.

Химическое самовозгорание связано со способностью веществ и материалов вступать в химическую реакцию с воздухом или другими окислителями при нормальных условиях с выделением теплоты, достаточной для их возгорания (например, при попадании кондиционированной азотной кислоты на бумагу, древесные опилки и др.). Наиболее характерными примерами являются случаи самовозгорания промасленной ветоши или фосфора на воздухе, легковоспламеняющихся жидкостей при контакте с марганцовкой, древесных опилок с кислотами и пр. Особенно опасны масла, содержащие соединения с ненасыщенными химическими связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т. д.).

Другой вид химических реакций веществ связан с взаимодействием воды или влаги. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочно-земельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода. Для предупреждения химического самовозгорания порядок совместного хранения горючих веществ и материалов строго регламентирован.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (например, силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что Т сн . не превышает обычных значений Т окр. и может быть отрицательной. Материалы, имеющие Т сн. выше комнатной температуры, способны к тепловому самовозгоранию.

Склонностью ко всем видам самовозгорания обладают многие твердые материалы с развитой поверхностью (например, волокнистые), а также некоторые жидкие и плавящиеся вещества, содержащие в своем составе непредельные соединения, нанесённые на развитую (в том числе негорючую) поверхность. Все виды самовозгорания имеют чисто условное деление и для большинства горючих веществ процесс самовозгорания представляет собой совокупность тепловой , химической и микробиологической реакции .


Самовозгорание является результатом самонагревания веществ, т.е. самопроизвольного процесса, заканчивающегося тлением или пламенным горением.
На возникновение самовозгорания оказывают влияние теплота сгорания, теплопроводность, удельная поверхность и объемная плотность вещества, а также условия теплообмена с внешней средой.
Самонагревание вещества может быть вызвано различными Причинами. Его могут инициировать микробиологические процессы, происходящие в питательной среде, воздействие высокой температуры, выделение теплоты в результате химических оеакций.
Для того чтобы процесс самонагревания закончился самовозгоранием, нужно, чтобы вещество обладало способностью окисляться и чтобы образовались условия, необходимые для накопления теплоты.
Физическая сущность процессов самовозгорания и самовоспламенения одинакова и условия самоускорения реакции одни и те же. Основное различие между ними заключается в том, что самовозгорание происходит при температуре окружающего воздуха, равной или большей температуры самовоспламенения, а самовоспламенение - при температуре окружающего воздуха менее температуры самовоспламенения, и для возникновения этого процесса необходимо нагревание горючего извне. Исходя из причин, вызывающих самовозгорание веществ, выделяют три механизма этого процесса - микробиологический, тепловой и химический, а также их различные комбинации.
Микробиологические процессы самовозгорания являются основной причиной самовозгорания веществ растительного происхождения, например, недосушенного сена, опилок, сухих листьев, хлопка.
Микробиолш ическими процессами объясняется и самовозгорание фрезерного торфа. Жизнедеятельность бактерий и грибков в горфе может начаться уже при 10 - 18 °С и заканчивается при 70 °С. Питательной средой для бактерий служат водорастворимые вещества, образующиеся в результате распада растений.
Особенно склонны к самовозгоранию недосушенные материалы, так как влага и тепло способствуют жизнедеятельности микроорганизмов. К разогреву приводит также низкая теплопроводность растительных материалов. При температуре, превышающей 75"С, микроорганизмы, как правило, погибают, но повышение температуры не прекращается, так как при 70 °С некоторые органические вещества способны обугливаться. Образующийся при этом пористый уголь адсорбирует газы и папы и процесс самонагревания продолжается. При 200 °С начинает разлагаться клетчатка, входящая в состав растительных масел, что ведет к дальнейшей интенсификации окисления и возникновению самовозгорания.
Тепловое самовозгорание присуще дисперсным веществам, обладающим сильно развитой поверхностью, способным адсооби- ровать кислород и вступать с ним в реакцию, при этом теплообмен веществ с внешней средой не является интенсивным.
Известно, что к самовозгоранию склонны ископаемые угли (бурый и каменный), хранящиеся в кучах или штабелях. Причина самовозгорания состоит в способности углей окисляться и адсорбировать пары и газы при низких температурах.

Самонагревание угля, возникающее в штабелях, происходит вначале по всему объему штабеля, исключая верхний слой (30 - 50 см). С повышением температуры процесс самонагревания приобретает гнездовой характер. До 60 °С температура растет очень медленно - интенсивное проветривание препятствует ее повышению. Однако начиная с 60 °С скорость самонагревания резко увеличивается. Эту температуру считают критической для угля.
Самовозгоранию углей способствует также повышение степени их измельчения и наличие примесей - пирита и влаги.
При химическом самовозгорании большое значение имеет увеличение скорости химической реакции с возрастанием температуры. Недостаточный теплоотвод способствует нагреву материала в результате протекания окислительных процессов и соответственно достижению критических условий возникновения горения или тления.
Самовозгорающиеся химические вещества можно разделить на три основные группы.

Еще по теме Самовозгорание:

  1. 5.4. Стоимость воспроизводства и плата за природные ресурсы
  2. 5.3. Сравнительная экономическая оценка природных ресурсов
  3. 4.3. Основные направления научно-технического прогресса и их влияние на охрану окружающей среды и рациональное природопользование

Горение – сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Приближенно можно описать природу горения как бурно идущее окисление.
Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому - детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.

Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса – скорость реакции, мощность тепловыделения, температура и состав продуктов – не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Различают следующие виды горения: самовоспламенение, самовозгорание, вспышка, воспламенение, взрыв.

Самовоспламенение – горение, возникающее от внешнего нагревания вещества до определенной температуры без не посредственного соприкосновения горючего вещества с пламенем внешнего источника горения.

Самовозгорание – горение твердых веществ, возникающее от нагревания их под влиянием процессов, происходящих внутри самого вещества. Происходящие физические или химические процессы внутри вещества связаны с образованием тёпла, которое ускоряет процесс окисления, переходящий в горение открытым огнем.

Вспышка – быстрое, но, сравнительно со взрывом, кратко временное сгорание смеси паров горючего вещества с воздухом или кислородом, возникающее от местного повышения темпера туры, которое может быть вызвано электрической искрой или прикосновением к смеси пламени или накаленного тела. Температура, при которой происходит вспышка, называется температурой вспышки. Явление вспышки схоже с явлением взрыва, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия.

Воспламенение – стойкое возгорание смеси паров и газов горючего вещества от местного повышения температуры, которое может быть вызвано прикосновением пламени или накаленного тела. Воспламенение может длиться до тех пор, пока не сгорит весь запас горючего вещества, причем парообразование при этом происходит за счет тепла, выделяющегося при сгорании.

Воспламенение отличается от вспышки своей продолжительностью. Кроме того, при вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении же парообразующее вещество бывает доведено до такой температуры, что теплоты сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси.

Взрыв – мгновенное сгорание или разложение вещества, сопровождающееся выделением огромного количества газов, которые мгновенно расширяются и вызывают резкое повышение давления в окружающей среде. При соприкосновении с воздухом: газообразные продукты разложения некоторых веществ обладают способностью воспламеняться, что не только приводит к разрушениям от действия взрывной волны, но и вызывает большие пожары.
Так же выделяют самораспространяющийся высокотемпературный синтез (СВС), – химический процесс, протекающий с выделением тепла в автоволновом режиме типа горения и приводящий к образованию твердых продуктов. СВС представляет собой режим протекания экзотермической реакции, в котором тепловыделение локализовано в слое и передается от слоя к слою путем теплопередачи.

Чтобы произошло возгорание, необходимы три фактора:

  1. тепло
  2. кислород
  3. горючее вещество (топливо)

Смысл вопроса в том, что только тогда, когда эти три составляющих налицо в надлежащей пропорции - может возникнуть пламя.

Существует так же беспламенное горение. В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Пожар - это неконтролируемое горение вне специального очага.

1. Горючее вещество (топливо)
Горючие вещества (материалы) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

    негорючие вещества и материалы не способные к самостоятельному горению на воздухе;

    трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания, но не способные самостоятельно гореть после его удаления;

    горючие вещества и материалы – способные самостоятельно гореть после воспламенения или самовоспламенения самовозгорания.

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.
Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).
Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.

2. Окислитель
Окислитель является второй стороной треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота и т.п.
Критическим показателем для кислорода воздуха как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12-14%. Ниже этой концентрации горение абсолютного большинства горючих веществ не происходит. Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.

3. Температура возгорания (тепло)
Есть много понятий, применяемых к температурам, при которых возможно возгорание. Главнейшие из них:
Температура вспышки - наименьшая температура, при которой вещество выделяет достаточно горючих для воспламенения паров, при воздействии открытым пламенем, но горение не продолжается.
Температура воспламенения - наименьшая температура, при которой вещество дает достаточно горючих испарений для возгорания и продолжения горения при приложении открытого пламени.
Примечание. Можно заметить, что разница между температурой вспышки и температурой горения в том, что в первом случае происходит мгновенная вспышка, а во втором температура должна быть достаточно высока, чтобы производить достаточно горючих паров для горения, независимо от источника возгорания.
Самовоспламенение - это быстрое самоускорение экзотермической химической реакции, приводящее к появлению яркого свечения - пламени. Самовоспламенение происходит в результате того, что при окислении материала кислородом воздуха образуется тепла больше, чем успевает отводиться за пределы реагирующей системы. Для жидких и газообразных горючих веществ это возникает при критических параметрах температуры и давления.

Важно полностью представлять, как обычно развивается пожар. Если исключить взрывы и вспышки, то процесс горения можно разделить на четыре следующих периода:

  1. период загорания
  2. развития пожара
  3. период горения
  4. период затухания

В этой связи показательно, что обычно пожар распространяется вверх очень быстро, в сторону - с относительно малой скоростью, а вниз - очень медленно.

Это можно проиллюстрировать так: Если горение возникло (треугольник замкнулся), действия по тушению пожара должны быть направлены на то, чтобы вывести показатели треугольника (хотя бы один) за переделы критических величин - разорвать треугольник горения. Это и есть теоретическая основа горения и тушения.

В зависимости от агрегатного состояния горючих компонентов (окислителя или горючего) различают три вида горения.

    Гомогенное горение – горение газов и парообразных горючих веществ в среде газообразного окислителя.

    Гетерогенное горение – горение жидких и твердых топлив (горючих веществ) в среде газообразного окислителя. Разновидностью гетерогенного горения является горение жидких капель топлива.

    Горение взрывчатых веществ и порохов .

По скорости распространения пламени горение подразделяется на дефлаграцию и детонацию. Дефлаграционное горение – это такой режим горения, при котором пламя распространяется с дозвуковой скоростью. При детонации пламя распространяется со сверхзвуковой скоростью, например, в воздухе – со скоростью более 300 м/с. Дозвуковое горение подразделяется на ламинарное и турбулентное. Скорость ламинарного горения зависит от состава смеси, начальных значений температуры и давления, а также от скорости химических превращений в пламени. Скорость распространения турбулентного пламени помимо указанных факторов зависит от скорости потока, степени и масштаба турбулентности.

Самовозгорание, возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермич. реакций. Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду.

Начало самовозгорания характеризуется температурой самонагревания (Tсн), представляющей собой минимальную в условиях опыта температуру, при которой обнаруживается тепловыделение.

При достижении в процессе самонагревания определенной температуры, называемой температурой самовозгорания (Tсвоз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Tсвоз адекватна температуре самовоспламенения (Tсв), под которым в пожарном деле понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. (см. Воспламенение в пожарном деле). В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.

В случае самовоспламенения самонагревание (предвзрывной разогрев) развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых веществ к самовозгоранию.

Самовозгорание изучают путем термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате.

Процессы, происходящие при самовозгорании образцов горючего материала, изображены на рисунке. При температурах до Tсн (напр., T1) материал нагревается без изменений (тепловыделение отсутствует). При достижении Tсн в материале происходят экзотермические реакции. Последние в зависимости от условий накопления теплоты (масса материала, плотность упаковки его атомов и молекул, продолжительность процесса и т. д.) могут после периода небольшого самонагревания по исчерпании способных саморазогреваться компонентов материала завершиться охлаждением образца до начальной температуры термостата (кривая 1) либо продолжать самонагреваться вплоть до Tсвоз (кривая 2). Область между Тсн и Tсвоз потенциально пожароопасна, ниже Tсн-безопасна.

Возможность самовозгорание материала, находящегося в потенциально пожароопасной области, устанавливают с помощью уравнений:

где Tокр-температура окружающей среды, °С; l-определяющий размер (обычно толщина) материала; т-время, в течение которого может произойти самовозгорание; A1, n1 и А2, n2-коэффициент, определяемые для каждого материала по опытным данным.

По уравнению (1) при заданном l находят Tокр, при которой может возникнуть самовозгорание данного материала, по уравнению (2)-при известной Токр величину т. При температуре, ниже вычисленной Tокр, или при т, меньшем, чем время, рассчитанное по уравнению (2), самовозгорание не произойдет.

В зависимости от природы первоначального процесса, вызвавшего самонагревание материала, и значений Tсн различают самовозгорание:

  • химическое
  • микробиологическое
  • тепловое

К химическому самовозгоранию относятся экзотермическое взаимодействие веществ (например, при попадании концентрированной HNО3 на бумагу, древесные опилки и др.). Наиболее типичный и распространенный пример такого процесса - самовозгорание промасленной ветоши или иных волокнистых материалов с развитой поверхностью. Особенно опасны масла, содержащие соединения с ненасыщенными химическими связями и характеризующиеся высоким йодным числом (хлопковое, подсолнечное, джутовое и т.д.). К явлениям химического самовозгорания относится также загорание ряда веществ (например, мелкораздробленный Аl и Fe, гидриды Si, В и некоторых металлов, металлоорганических соединений - алюминийорганические и др.) при контакте их с воздухом в отсутствие нагрева. Способность веществ к самовозгоранию в таких условиях называют пирофорностью. Особенность пирофорных веществ заключается в том, что их Tсвоз (или Tсв) ниже комнатной температуры: - 200°С для SiH4, - 80 °С для А1(С2Н5)3. Для предупреждения химического самовозгорание порядок совместного хранения горючих веществ и материалов строго регламентирован.

Существует так же вид химических реакций веществ, который связан с взаимодействием с водой или влагой. При этом также выделяется достаточная для самовозгорания веществ и материалов температура. Примерами могут служить такие вещества, как калий, натрий, карбид кальция, негашеная известь и др. Особенностью щелочноземельных металлов является их способность гореть и без доступа кислорода. Необходимый для реакции кислород они добывают сами, расщепляя под действием высокой температуры влагу воздуха на водород и кислород. Вот почему тушение водой таких веществ приводит к взрыву образующегося водорода.

Склонностью к микробиологическому самовозгоранию обладают горючие материалы, особенно увлажненные, служащие питательной средой для микроорганизмов, жизнедеятельность которых связана с выделением теплоты (торф, древесные опилки и др.). По этой причине большое число пожаров и взрывов происходит при хранении сельскохозяйственных продуктов (например, силос, увлажненное сено) в элеваторах. Для микробиологического и химического самовозгорания характерно то, что Tсн не превышает обычных значений Токр и может быть отрицательной. Материалы, имеющие Tсн выше комнатной температуры, способны к тепловому самовозгоранию.

Вообще склонностью ко всем видам самовозгорания обладают многие твердые материалы с развитой поверхностью (например, волокнистые), а также некоторые жидкие и плавящиеся вещества, содержащие в своем составе непредельные соединения, нанесенные на развитую (в том числе негорючую) поверхность. Расчет критических условий для химического, микробиологического и теплового самовозгорания осуществляется по уравнениям (1) и (2).

Из-за притяжения Земли при горении возникает конвекция (движение воздуха): нагретый воздух становится легче и устремляется вверх, а холодный снизу приходит ему на смену. Этот поток воздуха приводит к значительному градиенту температуры вдоль пламени.

Схематическое изображение пламени свечи с указанием температуры в его различных точках при горении в нормальных условиях

Поэтому пламя свечи в невесомости выглядит несколько иначе:

Жёлто-оранжевый цвет верхушки пламени в обычных условиях обусловлен свечением частичек сажи, уносимых вверх поднимающимся потоком горячего воздуха. Сажа – это микрочастицы, содержащие углерод, не успевший сгореть, т.е. превратиться в СО2. В невесомости пламя свечи меньше по размеру и не такое горячее, как обычно, т.к. нет достаточного притока свежего воздуха, содержащего кислород. Поэтому сажи очень мало, т.к. она не образуется при температуре ниже 1000 °С. Но, даже если бы её и было достаточно, и тогда из-за низкой температуры она светилась бы в инфракрасном диапазоне, а значит, цвет у пламени в невесомости всегда голубоватый.

Так же цвет пламени зависит от того, какие элементы «сгорают» в нём. Высокая температура пламени даёт возможность атомам перескакивать на некоторое время в более высокие энергетические состояния, а потом, возвращаясь в исходное состояние, излучать свет определённой частоты, которая соответствует структуре электронных оболочек данного элемента. Например, газовая горелка горит голубым пламенем из-за наличия CO, угарного газа, а жёлто-оранжевое пламя спички объясняют наличием солей натрия в древесине.

Список базовой литературы по этой тематике:

Основная литература
1. Я.Б. Зельдович, Г.И., Г.И. Баренблатт, В.Б. Либрович, Г.М. Махвиладзе. Математическая теория горения и взрыва. М.: Наука, 1980 – 478 с.
2. В.В. Померанцев, К.М. Арефьев, Д.Б. Ахмедов и др. Основы практической теории горения. Л.: Энергоатомиздат, Ленингр. отд-ие, 1986 – 309 с.
3. Гришин А.М. Математическое моделирование лесных пожаров и новые способы борьбы с ними. – Новосибирск: Наука, Сиб. Отд-ие, 1992. – 408 с.

Дополнительная литература
1. Концепция развития горения и взрыва как области научно-технического прогресса. Черноголовка: Территория, 2001.
2. Алексеев Б.В., Гришин А.М. Курс лекций по аэротермохимии. Часть 1. Элементы кинетической теории, термодинамики и химической кинетики. Часть 2. Элементы строгой теории коэффициентов переноса, теория переноса энергии излучением и основная система уравнений аэротермохимии. Томск: Изд-во Том. ун-та. 1971.
3. Волокитина А.В., Софронов М.А. Классификация и картографирование растительных горючих материалов. Новосибирск: Изд-во Наука, Сиб. отд-е РАН, 2002 – 306 с.

Новое на сайте

>

Самое популярное