Домой Цветы Объектом изучения вирусологии является. Исследовательская работа "вирусология в будущем". Не так страшен грипп, как осложнения после него, - говорит одна женщина другой

Объектом изучения вирусологии является. Исследовательская работа "вирусология в будущем". Не так страшен грипп, как осложнения после него, - говорит одна женщина другой

«Звездопад» Астафьева

В середине 20-го столетия в советской литературе все заметнее набирает силу стремление к правдивому воссозданию жизни, писатели уделяют все больше внимания проблемам гуманизма, нравственности. Но это вовсе не означает, что авторы лишь скрупулезно отображали жизнь во всех ее проявлениях, напротив, именно для этого периода характерен расцвет лирической прозы. Мы можем вспомнить целый ряд замечательных произведений писателей-фронтовиков, проникнутых особенной лирической интонацией: «Батальоны просят огня» (1957 г.), «Последние залпы» (1959 г.) Ю. Бондарева, «Девять дней (Южнее главного удара)» (1958 г.), «Пядь земли» (1959 г.) Г. Бакланова, «Третья ракета» (1962 г.), «Фронтовая страница» (1963 г.) В. Быкова и др.

Что общего между всеми этими произведениями? На мой взгляд, роднит романы и повести писателей — представителей молодежной прозы — то, что главные герои являли собой воплощение авторского опыта, часто образ автора явственно проглядывался сквозь образ персонажа. Война в описании представителей молодежной прозы описана без малейших прикрас, со множеством жестоких подробностей. Но, возможно, в силу молодости авторов, военные картины все же овеяны некоей романтикой.

В моей работе я хотел бы остановиться на анализе повести Виктора Петровича Астафьева «Звездопад», написанной им в 1960 году. Это небольшое по объему произведение представляется очень емким, оно показывает читателю целую эпоху в жизни девятнадцатилетнего юноши. Те несколько месяцев, что он провел в краснодарском госпитале, отпечатались в его душе и памяти на всю жизнь.

В повести нет ни одного описания военных действий. Написанное спустя пятнадцать лет после войны, произведение, на мой взгляд, представляет собой некий итог размышлений автора о тех событиях. Астафьев здесь воздерживается от рассказов о боях, героических подвигах, великих бедствиях народа. История как будто совершенно будничная. Мы читаем о далеком от комфорта, но все же не лишенном приятных моментов быте обитателей госпиталя, о том, как они стараются «урвать», «ухватить» все возможные преимущества пребывания в больнице. Однако автор не позволяет нам ни на секунду усомниться в готовности этих солдат встать под ружье, как только это станет для них возможно.

В этой повести много автобиографического. Главный герой «Звездопада» Михаил тоже сибиряк, воспитывался в детском доме, учился на составителя поездов, как и сам Виктор Петрович Астафьев. Читая это произведение, невольно проникаешься "убеждением, что и эта романтическая история произошла с самим автором повести.

«Звездопад» — произведение, пронизанное глубоким лиризмом. Тема любви начинает звучать в провести с самых первых строк. Едва юноша открывает глаза, придя в себя после тяжелой операции, его взору предстает молодая медсестра, в которую солдатик влюбляется с первого взгляда. Автор далек от романтизма. Где-то между строк мы можем понять, что эта любовь вовсе не нечто уникальное, неземное. Девятнадцатилетний детдомовец Михаил ни разу не встречался с девушкой до той поры. Побывав на грани жизни и смерти, подсознательно Миша приходит к потребности встретить свою любовь. И первая увиденная им девушка — миловидная обаятельная медсестра Лидочка сразу покоряет его сердце.

Безусловно, есть в повести немало трагических моментов: умирают люди, и те, кто еще вчера разделяли с ними больничную палату, не сразу смиряются с утратой. Астафьев описывает и разоренный город, с разрушенными домами и развороченными улицами, народ, живущий в постоянной нужде. Но все же, в целом, «Звездопад», по моему мнению, одно из самых оптимистичных произведений Астафьева. Так много в повести никогда не унывающих героев, такая ощущается солидарность между ними, что невольно проникаешься уверенностью в том, что такой народ, такие люди не могли не выйти победителями из страшной кровопролитной войны. Это в немалой степени обусловлено тем, что мы видим город военных лет, госпиталь, полный раненных, глазами очень молодого человека. Юношеское жизнелюбие, стремление познать жизнь способны победить боль и ужас войны. И это мы видим не только в молодом солдате, но и в девушке, полюбившей его так глубоко и самоотверженно. Финальные страницы повести полны щемящей боли. И читатель сочувствует оставляемой в тылу девушке едва ли не больше, чем уходящему на фронт солдату. Глубоко трогает сцена прощания Михаила с Лидой. На память приходят строки из стихотворения Владимира Высоцкого:

Так случилось — мужчины ушли,

Побросали посевы до срока, —


Введение

Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний.

Вирусология решает фундаментальные и прикладные задачи и тесно связана с другими науками. Открытие и изучение вирусов, в частности бактериофагов, внесло огромный вклад в становление и развитие молекулярной биологии. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой. Вирусы не только предмет изучения, но и инструмент молекулярно-генетических исследований, что связывает вирусологию с генетической инженерией. Вирусы - возбудители большого количества инфекционных заболеваний человека, животных, растений, насекомых. С этой точки зрения вирусология тесно связана с медициной, ветеринарией, фитопатологией и другими науками.

Возникнув в конце XIX века как ветвь патологии человека и животных, с одной стороны, и фитопатологии - с другой, вирусология стала самостоятельной наукой, по праву занимающей одно из основных мест среди биологических наук.

Глава 1. История вирусологии

1.1. Открытие вирусов

Вирусология - молодая наука, ее история насчитывает немногим более 100 лет. Начав свой путь как наука о вирусах, вызывающих болезни человека, животных и растений, в настоящее время вирусология развивается в направлениях изучения основных законов современной биологии на молекулярном уровне, основываясь на том, что вирусы являются частью биосферы и важным фактором эволюции органического мира.

История вирусологии необычна тем, что один из ее предметов - вирусные болезни - стал изучаться задолго до того, как были открыты собственно вирусы. Начало истории вирусологии - это борьба с инфекционными заболеваниями и только впоследствии - постепенное раскрытие источников этих болезней. Подтверждением тому служат работы Эдуарда Дженнера (1749-1823 гг.) по предупреждению оспы и работы Луи Пастера (1822-1895 гг.) с возбудителем бешенства.

С незапамятных времен оспа была бичом человечества, унося тысячи жизней. Описания оспенной заразы встречаются в рукописях древнейших китайских и индийских текстов. Первые упоминания об эпидемиях оспы на европейском континенте датируются VI столетием нашей эры (эпидемия среди солдат эфиопской армии, осаждавшей Мекку), после чего наблюдался необъяснимый период времени, когда упоминания об эпидемиях оспы отсутствовали. Оспа снова начала гулять по континентам в XVII веке. Например, в Северной Америке (1617-1619 гг.) в штате Массачусетс погибло 9/10 населения, в Исландии (1707 г.) после эпидемии оспы от 57 тыс. человек осталось только 17 тыс., в г. Истхем (1763 г.) от 1331 жителя осталось 4 человека. В связи с этим, проблема борьбы с оспой стояла очень остро.

Методика предупреждения оспы через прививку, называемая вариоляцией, была известна с давних времен. Упоминания о применении вариоляции в Европе датируются серединой 17-го века со ссылками на более ранний опыт применения в Китае, на Дальнем Востоке, в Турции. Суть вариоляции заключалась в том, что содержимое пустул от пациентов, болевших легкой формой оспы, вносили в маленькую ранку на коже человека, что вызывало легкое заболевание и предупреждало острую форму. Однако при этом сохранялась большая опасность заболевания тяжелой формой оспы и смертность среди привитых достигала 10%. Дженнер совершил переворот в методике предупреждения оспы. Он первый обратил внимание на то, что люди, переболевшие коровьей оспой, которая протекала легко, впоследствии никогда не болели оспой. 14 мая 1796 г. Дженнер внес в ранку Джеймса Фипса, никогда не болевшего оспой, жидкость из пустул больной коровьей оспой доярки Сары Селмес. На месте искусственной инфекции у мальчика появились типичные пустулы, которые через 14 дней исчезли. Тогда Дженнер внес в ранку мальчика высокоинфекционный материал из пустул больного оспой. Мальчик не заболел. Так зародилась и подтвердилась идея вакцинации (от латинского слова vacca - корова). Во времена Дженнера вакцинация понималась как внесение инфекционного материала коровьей оспы в организм человека с целью предотвращения заболевания натуральной оспой. Термин вакцина применяли к веществу, предохранявшему от оспы. С 1840 г. противооспенную вакцину стали получать заражением телят. Вирус оспы человека был открыт только в 1904 г. Таким образом, оспа - это первая инфекция, против которой была применена вакцина, т. е. первая управляемая инфекция. Успехи в вакцинопрофилактике черной оспы привели к ее искоренению в мировом масштабе.

В наше время вакцинация и вакцина употребляются как общие термины, обозначающие прививку и прививочный материал.

Пастер, по существу не знавший ничего конкретного о причинах бешенства, кроме неоспоримого факта его инфекционной природы, использовал принцип ослабления (аттенуации) возбудителя. В целях ослабления болезнетворных свойств возбудителя бешенства был использован кролик, в мозг которого ввели мозговую ткань умершей от бешенства собаки. После смерти кролика мозговая ткань его была введена следующему кролику и т. д. Было проведено около 100 пассажей, прежде чем возбудитель адаптировался к ткани мозга кролика. Будучи введен подкожно в организм собаки, он проявлял лишь умеренные свойства патогенности. Такой «перевоспитанный» возбудитель Пастер назвал «фиксированным», в отличие от «дикого», которому свойственна высокая патогенность. Позднее Пастер разработал метод создания иммунитета, состоящий из серии инъекций с постепенно увеличивающимся содержанием фиксированного возбудителя. Собака, прошедшая полный курс инъекций, оказалась в полной мере устойчивой к инфекции. Пастер пришел к выводу, что процесс развития инфекционной болезни, по существу, является борьбой микробов с защитными силами организма. «Каждая болезнь должна иметь своего возбудителя, а мы должны способствовать развитию иммунитета к этой болезни в организме пациента», - говорил Пастер. Еще не понимая, каким образом организм вырабатывает иммунитет, Пастер сумел использовать его принципы и направить механизмы этого процесса на пользу человека. В июле 1885 г. Пастеру представился случай испытать свойства «фиксированного» возбудителя бешенства на ребенке, укушенном бешеной собакой. Мальчику была проведена серия инъекций все более ядовитого вещества, причем последняя инъекция содержала уже полностью патогенную форму возбудителя. Мальчик остался здоров. Вирус бешенства был открыт Ремленже в 1903 г.

Следует отметить, что ни вирус оспы, ни вирус бешенства не были первыми открытыми вирусами, поражающими животных и человека. Первое место по праву принадлежит вирусу ящура, открытому Леффлером и Фрошем в 1898 г. Эти исследователи, используя многократные разведения фильтрующегося агента, показали его ядовитость и сделали заключение о его корпускулярной природе.

К концу XIX-го столетия выяснилось, что целый ряд заболеваний человека, таких как бешенство, оспа, грипп, желтая лихорадка являются инфекционными, однако их возбудители не обнаруживались бактериологическими методами. Благодаря работам Роберта Коха (1843-1910 гг.), который впервые использовал технику чистых бактериальных культур, появилась возможность различать бактериальные и небактериальные заболевания. В 1890 г. на X конгрессе гигиенистов Кох вынужден был заявить, что «…при перечисленных болезнях мы имеем дело не с бактериями, а с организованными возбудителями, которые принадлежат к совсем другой группе микроорганизмов». Это высказывание Коха свидетельствует, что открытие вирусов не было случайным событием. Не только опыт работы с непонятными по своей природе возбудителями, но и понимание сущности происходящего способствовали тому, что была сформулирована мысль о существовании оригинальной группы возбудителей инфекционных заболеваний небактериальной природы. Оставалось экспериментально доказать ее существование.

Первое экспериментальное доказательство существования новой группы возбудителей инфекционных заболеваний было получено нашим соотечественником - физиологом растений Дмитрием Иосифовичем Ивановским (1864-1920 гг.) при изучении мозаичных заболеваний табака. Это неудивительно, так как инфекционные заболевания эпидемического характера часто наблюдались и у растений. Еще в 1883-84 гг. голландский ботаник и генетик де Фриз наблюдал эпидемию позеленения цветов и предположил инфекционную природу заболевания. В 1886 г. немецкий ученый Майер, работавший в Голландии, показал, что сок растений, больных мозаичной болезнью, при инокуляции вызывает у растений такое же заболевание. Майер был уверен, что виновником болезни является микроорганизм, и безуспешно искал его. В 19 веке заболевания табака наносили огромный вред сельскому хозяйству и в нашей стране. В связи с этим, для изучения заболеваний табака на Украину была направлена группа исследователей, в которую, будучи студентом Петербургского университета, входил Д.И. Ивановский. В результате изучения заболевания, описанного в 1886 г. Майером как мозаичная болезнь табака, Д.И. Ивановский и В.В. Половцев пришли к выводу, что оно представляет собой два различных заболевания. Одно из них - «рябуха» - вызывается грибком, а другое - неизвестного происхождения. Изучение мозаичной болезни табака было продолжено Ивановским в Никитском ботаническом саду под руководством академика А.С. Фамицина. Используя сок пораженного болезнью листа табака, профильтрованный через свечу Шамберлана, задерживающую самые мелкие бактерии, Ивановский вызвал заболевание листьев табака. Культивирование зараженного сока на искусственных питательных средах не дало результатов и Ивановский приходит к выводу, что возбудитель болезни имеет необычную природу - он фильтруется через бактериальные фильтры и не способен расти на искусственных питательных средах. Прогревание сока при 60-70 °C лишало его инфекционности, что свидетельствовало о живой природе возбудителя. Ивановский сначала назвал новый тип возбудителя «фильтрующиеся бактерии». Результаты работы Д.И. Ивановского были положены в основу его диссертации, представленной в 1888 г., и опубликованы в книге «О двух болезнях табака» в 1892 году. Этот год и считается годом открытия вирусов.

Определенный период времени в зарубежных публикациях открытие вирусов связывали с именем голландского ученого Бейеринка (1851-1931 гг.), который также занимался изучением мозаичной болезни табака и опубликовал свои опыты в 1898 г. Профильтрованный сок зараженного растения Бейеринк поместил на поверхность агара, проинкубировал и получил на его поверхности бактериальные колонии. После этого верхний слой агара с колониями бактерий был удален, а внутренний слой был использован для заражения здорового растения. Растение заболело. Из этого Бейеринк сделал вывод, что причиной заболевания являются не бактерии, а некая жидкая субстанция, которая могла проникнуть внутрь агара, и назвал возбудителя «жидкий живой контагий». В связи с тем, что Ивановский только подробно описал свои опыты, но не уделил должного внимания небактериальной природе возбудителя, возникло недопонимание ситуации. Известность работы Ивановского приобрели только после того, как Бейеринк повторил и расширил его опыты и подчеркнул, что Ивановский впервые доказал именно небактериальный характер возбудителя самой типичной вирусной болезни табака. Сам Бейеринк признал первенство Ивановского и в настоящее время приоритет открытия вирусов Д.И. Ивановским признан во всем мире.

Слово ВИРУС означает яд. Этот термин применял еще Пастер для обозначения заразного начала. Следует отметить, что в начале 19 века все болезнетворные агенты назывались словом вирус. Только после того, как стала понятна природа бактерий, ядов и токсинов терминами «ультравирус», а затем просто «вирус» стали обозначать «новый тип фильтрующегося возбудителя». Широко термин «вирус» укоренился в 30-е годы нашего столетия.

В настоящее время ясно, что вирусы характеризуются убиквитарностью, то есть повсеместностью распространения. Вирусы поражают представителей всех царств живого: человека, позвоночных и беспозвоночных животных, растения, грибы, бактерии.

Первое сообщение, имеющее отношение к вирусам бактерий было сделано Ханкин в 1896 г. В Летописи Института Пастера он заявил, что «... вода некоторых рек Индии обладает бактерицидным действием...», что без сомнения связано с вирусами бактерий. В 1915 г. Туорт в Лондоне, изучая причины лизиса бактериальных колоний, описал принцип передачи «лизиса» новым культурам в ряду поколений. Его работы, как это часто бывает, фактически оказались не замеченными, и два года спустя, в 1917 г., канадец де Эрелль повторно обнаружил явление лизиса бактерий, связанного с фильтрующимся агентом. Он назвал этот агент бактериофагом. Де Эрелль предполагал, что бактериофаг один. Однако исследования Барнета, работавшего в Мельбурне в 1924-34 гг., показали широкое разнообразие бактериальных вирусов по физическим и биологическим свойствам. Открытие многообразия бактериофагов вызвало большой научный интерес. В конце 30-х годов трое исследователей - физик Дельбрюк, бактериологи Лурия и Херши, работавшие в США, создали так называемую «Фаговую группу», исследования которой в области генетики бактериофагов в конечном итоге привели к рождению новой науки - молекулярной биологии.

Изучение вирусов насекомых существенно отстало от вирусологии позвоночных животных и человека. В настоящее время ясно, что вирусы, поражающие насекомых, условно можно разделить на 3 группы: собственно вирусы насекомых, вирусы животных и человека, для которых насекомые являются промежуточными хозяевами, и вирусы растений, которые также поражают насекомых.

Первый вирус насекомых, который был идентифицирован - вирус желтухи шелковичного червя (вирус полиэдроза тутового шелкопряда, названный Bollea stilpotiae). Еще в 1907 г. Провачек показал, что фильтрованный гомогенат больных личинок является инфекционным для здоровых личинок тутового шелкопряда, но только в 1947 г. немецкий ученый Бергольд обнаружил палочковидные вирусные частицы.

Одним из наиболее плодотворных исследований в области вирусологии является изучение Ридом природы желтой лихорадки на волонтерах армии США в 1900-1901 гг. Убедительно было продемонстрировано, что желтая лихорадка вызывается фильтрующимся вирусом, который передавался комарами и москитами. Было также установлено, что москиты после впитывания инфекционной крови в течение двух недель остаются неинфекционными. Таким образом, был определен внешний инкубационный период заболевания (время, необходимое для репродукции вируса в насекомом) и установлены основные принципы эпидемиологии арбовирусных инфекций (вирусных инфекций, передаваемых кровососущими членистоногими).

Способность размножения вирусов растений в своем переносчике - насекомом была показана в 1952 г. Мараморошу. Исследователь, используя технику инъекций насекомым, убедительно показал способность вируса желтухи астр размножаться в своем переносчике - шеститочечной цикаде.

1.2. Этапы развития вирусологии

История достижений вирусологии напрямую связана с успехами развития методической базы исследований.

^ Конец XIX - начало XX-го века. Основным методом идентификации вирусов в этот период был метод фильтрации через бактериологические фильтры (свечи Шамберлана), которые использовались как средство разделения возбудителей на бактерии и небактерии. С использованием фильтруемости через бактериологические фильтры были открыты следующие вирусы:

1892 г. - вирус табачной мозаики;

1898 г. - вирус ящура;

1899 г. - вирус чумы рогатого скота;

1900 г. - вирус желтой лихорадки;

1902 г. - вирус оспы птиц и овец;

1903 г. - вирус бешенства и вирус чумы свиней;

1904 г. - вирус оспы человека;

1905 г. - вирус чумы собак и вирус вакцины;

1907 г. - вирус денге;

1908 г. - вирус оспы и трахомы;

1909 г. - вирус полиомиелита;

1911 г. - вирус саркомы Рауса;

1915 г. - бактериофаги;

1916 г. - вирус кори;

1917 г. - вирус герпеса;

1926 г. - вирус везикулярного стоматита.

30-е годы - основным вирусологическим методом, используемым для выделения вирусов и их дальнейшей идентификации, являются лабораторные животные (белые мыши - для вирусов гриппа, новорожденные мыши - для вирусов Коксаки, шимпанзе - для вируса гепатита B, куры, голуби - для онкогенных вирусов, поросята-гнотобионты - для кишечных вирусов и т. д.). Первым, кто начал систематически использовать лабораторных животных при изучении вирусов, был Пастер, который еще в 1881 г. проводил исследования по инокуляции материала от больных бешенством в мозг кролика. Другая веха - работы по изучению желтой лихорадки, следствием которых явилось использование в вирусологической практике новорожденных мышей. Кульминацией этого цикла работ стало выделение Сайклзом в 1948 г. на мышах-сосунках группы вирусов эпидемической миалгии.

1931 г. - в качестве экспериментальной модели для выделения вирусов стали использоваться куриные эмбрионы, которые обладают высокой чувствительностью к вирусам гриппа, оспы, лейкоза, саркомы кур и некоторым другим вирусам. И в настоящее время куриные эмбрионы широко используются для выделения вирусов гриппа.

1932 г. - английский химик Элфорд создает искусственные мелкопористые коллоидные мембраны - основу для метода ультрафильтрации, с помощью которого стало возможным проводить определение размера вирусных частиц и дифференцировать вирусы по этому признаку.

1935 г. - применение метода центрифугирования дало возможность кристаллизации вируса табачной мозаики. В настоящее время методы центрифугирования и ультрацентрифугирования (ускорение на дне пробирки превышает 200000 g) широко используются для выделения и очистки вирусов.

В 1939 г. для изучения вирусов впервые был применен электронный микроскоп, обладающий разрешающей способностью 0,2-0,3 нм. Использование ультратонких срезов тканей и метода негативного контрастирования водных суспензий позволило проводить изучение взаимодействия вирусов с клеткой и исследовать структуру (архитектуру) вирионов. Сведения, полученные с помощью электронного микроскопа, были значительно расширены с помощью рентгеноструктурного анализа кристаллов и псевдокристаллов вирусов. Совершенствование электронных микроскопов завершилось созданием сканирующих микроскопов, позволяющих получать объемные изображения. С использованием метода электронной микроскопии изучена архитектура вирионов, особенности их проникновения в клетку хозяина.

В этот период была открыта основная масса вирусов. В качестве примера могут быть приведены следующие:

1931 г. - вирус гриппа свиней и вирус западного энцефаломиелита лошадей;

1933 г. - вирус гриппа человека и вирус восточного энцефаломиелита лошадей;

1934 г. - вирус паротита;

1936г. - вирус рака молочной железы мышей;

1937г. - вирус клещевого энцефалита.

40-е годы. В 1940 г. Хогланд с коллегами установили, что вирус осповакцины содержит ДНК, но не РНК. Стало очевидным, что вирусы отличаются от бактерий не только размерами и неспособностью расти без клеток, но и тем, что они содержат только один вид нуклеиновой кислоты - ДНК или РНК.

1941 г. - американский ученый Херст на модели вируса гриппа открыл феномен гемагглютинации (склеивания эритроцитов). Это открытие легло в основу разработки методов выявления и идентификации вирусов и способствовало изучению взаимодействия вируса с клеткой. Принцип гемагглютинации положен в основу ряда методов:

^ РГА - реакция гемагглютинации - применяется для обнаружения и титрования вирусов;

РТГА - реакция торможения гемагглютинации - применяется для идентификации и титрования вирусов.

1942 г. - Херст устанавливает наличие у вируса гриппа фермента, который позднее идентифицирован как нейраминидаза.

1949 г. - открытие возможности культивирования клеток животных тканей в искусственных условиях. В 1952 г. Эндерс, Уэллер и Роббинс получили Нобелевскую премию за разработку метода культуры клеток.

Введение в вирусологию метода культуры клеток явилось важным событием, давшим возможность получения культуральных вакцин. Из широко применяемых в настоящее время культуральных живых и убитых вакцин, созданных на основе аттенуированных штаммов вирусов, следует отметить вакцины против полиомиелита, паротита, кори и краснухи.

Создателями вакцин против полиомиелита являются американские вирусологи Сэбин (трехвалентная живая вакцина на основе аттенуированных штаммов полиовирусов трех серотипов) и Солк (убитая трехвалентная вакцина). В нашей стране советскими вирусологами М.П. Чумаковым и А.А. Смородинцевым разработана технология производства живой и убитой вакцин против полиомиелита. В 1988 г. Всемирная ассамблея здравоохранения поставила перед ВОЗ задачу ликвидации полиомиелита во всем мире с полным прекращением циркуляции дикого полиовируса. К настоящему времени достигнут огромный прогресс в этом направлении. Применение глобальной вакцинации против полиомиелита с применением «туровых» схем вакцинации позволило не только кардинально снизить заболеваемость, но и создать территории, свободные от циркуляции дикого полиовируса.

Открыты вирусы:

1945 г. - вирус Крымской геморрагической лихорадки;

1948 г. - вирусы Коксаки.

50-е годы. В 1952 г. Дульбекко разрабатывает метод титрования бляшек в монослое клеток эмбриона цыпленка, что позволило ввести в вирусологию количественный аспект. 1956-62 гг. Уотсон, Каспар (США) и Клуг (Великобритания) разрабатывают общую теорию симметрии вирусных частиц. Структура вирусной частицы стала одним из критериев в системе классификации вирусов.

Этот период характеризовался значительными достижениями в области бактериофагов:

Установлена индукция профага лизогенизирующих фагов (Львов и др., 1950г.);

Доказано, что инфекционность присуща фаговой ДНК, а не белковой оболочке (Херши, Чейз, 1952 г.);

Открыто явление общей трансдукции (Циндер, Ледерберг, 1952 г.).

Реконструирован инфекционный вирус табачной мозаики (Френкель-Конрад, Вильяме, Сингер, 1955-57 гг.), в 1955 г. получен в кристаллическом виде вирус полиомиелита (Шаффер, Шверд, 1955 г.).

Открыты вирусы:

1951 г. - вирусы лейкоза мышей и ECHO;

1953 г. - аденовирусы;

1954 г. - вирус краснухи;

1956 г. - вирусы парагриппа, цитомегаловирус, респираторно-синцитиальный вирус;

1957 г. - вирус полиомы;

1959 г. - вирус аргентинской геморрагической лихорадки.

60-е и последующие годы характеризуются расцветом молекулярно-биологических методов исследования. Достижения в области химии, физики, молекулярной биологии и генетики легли в основу методической базы научных исследований, которые стали применяться не только на уровне методик, но и целых технологий, где вирусы выступают не только как объект исследований, но и как инструмент. Ни одно открытие молекулярной биологии не обходится без вирусной модели.

1967 г. - Катес и МакАуслан демонстрируют присутствие в вирионе осповакцины ДНК-зависимой РНК-полимеразы. В следующем году обнаруживается РНК-зависимая РНК-полимераза у реовирусов, а затем у парамиксо- и рабдовирусов. В 1968 г. Якобсон и Балтимор устанавливают наличие у полиовирусов геномного белка, соединенного с РНК, Балтимор и Бостон устанавливают, что геномная РНК полиовируса транслируется в полипротеин.

Открыты вирусы:

1960 г. - риновирусы;

1963 г. - австралийский антиген (HBsAg).

70-е годы. Балтимор одновременно с Темином и Мизутани сообщают об открытии в составе РНК-содержащих онкогенных вирусов фермента обратной транскриптазы (ревертазы). Становится реальным изучение генома РНК содержащих вирусов.

Изучение экспрессии генов у вирусов эукариот дало фундаментальную информацию о молекулярной биологии самих эукариот - существование кэп-структуры мРНК и ее роль в трансляции РНК, наличие полиадениловой последовательности на 3"-конце мРНК, сплайсинг и роль энхансеров в транскрипции впервые выявлены при изучении вирусов животных.

1972 г. - Берг публикует сообщение о создании рекомбинантной молекулы ДНК. Возникает новый раздел молекулярной биологии - генная инженерия. Применение технологии рекомбинантных ДНК позволяет получать белки, имеющие важное значение в медицине (инсулин, интерферон, вакцины). 1975 г. - Келер и Мильштейн получают первые линии гибридов, продуцирующих моноклональные антитела (МКА). На основе МКА разрабатываются самые специфичные тест-системы для диагностики вирусных инфекций. 1976 г. - Бламберг за открытие HBsAg получает Нобелевскую премию. Установлено, что гепатит A и гепатит B вызываются разными вирусами.

Открыты вирусы:

1970 г. - вирус гепатита B;

1973 г. - ротавирусы, вирус гепатита A;

1977 г. - вирус гепатита дельта.

80-е годы. Развитие заложенных отечественным ученым Л.А. Зильбером представлений о том, что возникновение опухолей может быть связано с вирусами. Компоненты вирусов, ответственные за развитие опухолей, назвали онкогенами. Вирусные онкогены оказались в числе лучших модельных систем, помогающих изучению механизмов онкогенетической трансформации клеток млекопитающих.

1985 г. - Мюллис получает Нобелевскую премию за открытие полимеразной цепной реакции (ПЦР). Это - молекулярно-генетический метод диагностики, позволивший, кроме того, усовершенствовать технологию получения рекомбинантных ДНК и открыть новые вирусы.

Открыты вирусы:

1983 г. - вирус иммунодефицита человека;

1989 г. - вирус гепатита C;

1995 г. - с использованием ПЦР открыт вирус гепатита G.

1.3. Развитие концепции о природе вирусов

Ответы на вопросы «Что такое вирусы?» и «Какова их природа?» составляли предмет дискуссии многие годы со времени их открытия. В 20-30 гг. никто не сомневался, что вирусы являются живой материей. В 30-40 гг. считалось, что вирусы - это микроорганизмы, так как способны размножаться, обладают наследственностью, изменчивостью и приспособляемостью к меняющимся условиям среды обитания, и, наконец, подвержены биологической эволюции, которая обеспечивается естественным и искусственным отбором. В 60-е годы первые успехи молекулярной биологии определили закат концепции о вирусах как организмах. В онтогенетическом цикле вируса выделены две формы - внеклеточная и внутриклеточная. Для обозначения внеклеточной формы вируса введен термин ВИРИОН. Установлены отличия его организации от строения клеток. Обобщены факты, указывающие на совершенно отличный от клеток тип размножения, названный дисъюнктивная репродукция. Дисъюнктивная репродукция - это временная и территориальная разобщенность синтеза вирусных компонентов - генетического материала и белков - от последующей сборки и формирования вирионов. Показано, что генетический материал вирусов представлен одним из двух типов нуклеиновой кислоты (РНК или ДНК). Сформулировано, что основным и абсолютным критерием отличия вирусов от всех других форм жизни является отсутствие у них собственных белоксинтезирующих систем.

Накопившиеся данные позволили прийти к выводу, что вирусы не являются организмами, пусть даже мельчайшими, так как любые, даже минимальные организмы типа микоплазм, риккетсий и хламидий имеют собственные белоксинтезирующие системы. Согласно определению, сформулированному академиком В.М. Ждановым, вирусы являются автономными генетическими структурами, способными функционировать только в клетках с разной степенью зависимости от клеточных систем синтеза нуклеиновых кислот и полной зависимостью от клеточных белоксинтезирующих и энергетических систем, и подвергающимися самостоятельной эволюции.

Таким образом, вирусы представляют собой многообразную и многочисленную группу неклеточных форм жизни, не являющихся микроорганизмами, и объединенных в царство Vira, Вирусы изучаются в рамках вирусологии, которая представляет собой самостоятельную научную дисциплину, имеющую свой объект и методы исследования.

Вирусологию разделяют на общую и частную, а вирусологические исследования - на фундаментальные и прикладные. Предметом фундаментальных исследований в вирусологии является архитектура вирионов, их состав, особенности взаимодействия вирусов с клеткой, способы переноса наследственной информации, молекулярные механизмы синтеза элементов и процесс их объединения в целое, молекулярные механизмы изменчивости вирусов и их эволюция. Прикладные исследования в вирусологии связаны с решением проблем медицины, ветеринарии и фитопатологии.

ГЛАВА 2

^ СТРУКТУРНАЯ И МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ ВИРУСОВ

В онтогенетическом цикле вируса выделены две стадии - внеклеточная и внутриклеточная и, соответственно, две формы его существования - вирион и вегетативная форма. Вирион - это целая вирусная частица, в основном состоящая из белка и нуклеиновой кислоты, часто устойчивая к воздействию факторов внешней среды и приспособленная для переноса генетической информации из клетки в клетку. Вегетативная форма вируса существует в едином комплексе вирус-клетка и только в их тесном взаимодействии.

2.1. Архитектура вирионов

Внеклеточная форма вируса - вирион, предназначенная для сохранения и переноса нуклеиновой кислоты вируса, характеризуется собственной архитектурой, биохимическими и молекулярно-генетическими особенностями. Под архитектурой вирионов понимают ультратонкую структурную организацию этих надмолекулярных образований, различающихся размерами, формой и сложностью строения. Для описания архитектуры вирусных структур разработана номенклатура терминов:

Белковая субъединица - единая, уложенная определенным образом полипептидная цепь.

Структурная единица (структурный элемент) - белковый ансамбль более высокого порядка, образованный несколькими химически связанными идентичными или неидентичными субъединицами.

Морфологическая единица - группа выступов (кластер) на поверхности капсида, видимая в электронном микроскопе. Часто наблюдаются кластеры, состоящие из пяти (пентамер) и шести (гексамер) выступов. Это явление получило название пентамерно-гексамерной кластеризации. Если морфологическая единица соответствует химически значимому образованию (сохраняет свою организацию в условиях мягкой дезинтеграции), то применяют термин капсомер.

Капсид - внешний белковый чехол или футляр, образующий замкнутую сферу вокруг геномной нуклеиновой кислоты.

Кор (core) - внутренняя белковая оболочка, непосредственно примыкающая к нуклеиновой кислоте.

Нуклеокапсид - комплекс белка с нуклеиновой кислотой, представляющий собой упакованную форму генома.

Суперкапсид или пеплос - оболочка вириона, образованная липидной мембраной клеточного происхождения и вирусными белками.

Матрикс - белковый компонент, локализованный между суперкапсидом и капсидом.

Пепломеры и шипы - поверхностные выступы суперкапсида.

Как уже отмечалось, вирусы могут проходить через самые микроскопические поры, задерживающие бактерии, за что и были названы фильтрующимися агентами. Свойство фильтруемости вирусов обусловлено размерами, исчисляемыми нанометрами (нм), что на несколько порядков меньше, чем размеры самых мелких микроорганизмов. Размеры вирусных частиц, в свою очередь, колеблются в относительно широких пределах. Самые мелкие просто устроенные вирусы имеют диаметр чуть больше 20 нм (парвовирусы, пикорнавирусы, фаг Qβ), вирусы средних размеров - 100-150 нм (аденовирусы, коронавирусы). Наиболее крупными признаны вирусные частицы осповакцины, размеры которых достигают 170x450 нм. Длина нитевидных вирусов растений может составлять 2000 нм.

Представители царства Vira характеризуются разнообразием форм. По своей структуре вирусные частицы могут быть простыми образованиями, а могут представлять собой достаточно сложные ансамбли, включающие несколько структурных элементов. Условная модель гипотетического вириона, включающего все возможные структурные образования, представлена на рисунке 1.

Существует два типа вирусных частиц (ВЧ), принципиально отличающихся друг от друга:

1) ВЧ, лишенные оболочки (безоболочечные или непокрытые вирионы);

2) ВЧ, имеющие оболочку (оболочечные или покрытые вирионы).

Рис. 1. Строение гипотетического вириона

2.1.1. Строение вирионов, лишенных оболочки

Выделено три морфологических типа вирионов, лишенных оболочки: палочковидные (нитевидные), изометрические и булавовидные (рис. 2). Существование первых двух типов непокрытых вирионов определяется способом укладки нуклеиновой кислоты и ее взаимодействием с белками.

1. Белковые субъединицы связываются с нуклеиновой кислотой, располагаясь вдоль нее периодическим образом так, что она сворачивается в спираль и образует структуру под названием нуклеокапсид. Такой способ регулярного, периодического взаимодействия белка и нуклеиновой кислоты определяет образование палочковидных и нитевидных вирусных частиц.

2. Нуклеиновая кислота не связана с белковым чехлом (возможные нековалентные связи очень подвижны). Такой принцип взаимодействия определяет образование изометрических (сферических) вирусных частиц. Белковые оболочки вирусов, не связанные с нуклеиновой кислотой, называют капсидом.

3. Булавовидные вирионы обладают дифференцированной структурной организацией и состоят из ряда дискретных структур. Основными структурными элементами вириона являются изометрическая головка и хвостовой отросток. В зависимости от вируса в структуре вириона также могут присутствовать муфта, шейка, воротничок, хвостовой стержень, хвостовой чехол, базальная пластинка и фибриллы. Наиболее сложную дифференцированную структурную организацию имеют бактериофаги T-четной серии, вирион которых состоит из всех перечисленных структурных элементов.

Вирионам или их компонентам могут быть присущи два основных типа симметрии (свойство тел повторять свои части) - спиральный и икосаэдрический. В том случае, если компоненты вириона обладают разной симметрией, то говорят о комбинированном типе симметрии ВЧ. (схема 1).

Спиральная укладка макромолекул описывается следующими параметрами: числом субъединиц на виток спирали (u, число необязательно целое); расстоянием между субъединицами вдоль оси спирали (p); шагом спирали (P); P=pu. Классическим примером вируса со спиральным типом симметрии является вирус табачной мозаики (ВТМ). Нуклеокапсид этого палочковидного вируса размером 18x300 нм состоит из 2130 идентичных субъединиц, на виток спирали приходится 16 1/3 субъединиц, шаг спирали составляет 2,3 нм.

Икосаэдрическая симметрия - самая эффективная для конструирования замкнутог

Вирусология (от лат. vīrus - «яд» и греч. logos — слово, учение) - наука о вирусах , раздел биологии.

Вирусология выделилась в самостоятельную дисциплину в середине XX века. Она возникла как ветвь патологии - патологии человека и животных с одной стороны, и фитопатологии - с другой. Первоначально вирусология человека, животных и бактерий развивалась в рамках микробиологии. Последующие успехи вирусологии в значительной мере основаны на достижениях смежных естественных наук - биохимии и генетики . Объектом исследования вирусологии являются субклеточные структуры - вирусы. По своему строению и организации они относятся к макромолекулам, поэтому с того времени, когда оформилась новая дисциплина, молекулярная биология , объединившая различные подходы к изучению структуры, функций и организации макромолекул, определяющих биологическую специфичность, вирусология стала также составной частью молекулярной биологии. Молекулярная биология широко применяет вирусы как инструмент исследования, а вирусология для решения своих задач используют методы молекулярной биологии.

История вирусологии

Вирусные болезни, такие как оспа, полиомиелит, желтая лихорадка, пестролистность тюльпанов известны с давних времен, однако о причинах, их вызывающих долгое время никто ничего не знал. В конце XIX столетия, когда удалось установить микробную природу ряда инфекционных заболеваний, патологи пришли к заключению, что многие из распространенных болезней человека, животных и растений нельзя объяснить заражением бактериями.

Открытие вирусов связано с именами Д.И.Ивановского и М.Бейеринка . В 1892 г. Д.И.Ивановский показал, что заболевание табака - табачная мозаика - может быть перенесено от больных растений к здоровым, если их заразить соком больных растений, предварительно пропущенным через специальный фильтр, задерживающий бактерии. В 1898 году М.Бейеринк подтвердил данные Д.И.Ивановского и сформулировал мысль о том, что заболевание вызывается не бактерией, а принципиально новым, отличным от бактерий, инфекционным агентом. Он назвал его contagium vivum fluidum - живое жидкое заразное начало. В то время для обозначения инфекционного начала любой болезни употребляли термин «virus» - от латинского слова «яд», «ядовитое начало». Сontagium vivum fluidum стали называть фильтрующимся вирусом, а позже - просто «вирусом». В том же, 1898 году Ф.Лефлер и П.Фрошш показали, что через бактериальные фильтры проходит возбудитель ящура крупного рогатого скота. Вскоре после этого было установлено, что и другие болезни животных, растений, бактерий и грибов вызываются подобными агентами. В 1911 году П.Раус открыл вирус, вызывающий опухоли у кур. В 1915 году Ф.Туорт, а в 1917 году Ф.Д’Эрель независимо друг от друга открыли бактериофаги - вирусы, разрушающие бактерии.

Природа этих возбудителей болезней, оставалась непонятной более 30 лет - до начала 30-х годов. Это объяснялось тем, что к вирусам нельзя было применить традиционные микробиологические методы исследования: вирусы, как правило, не видны в световой микроскоп и не растут на искусственных питательных средах.

Категории:Детализирующие понятия:

Муниципальное казенное общеобразовательное учреждение

«Средняя общеобразовательная школа №3»

Ставропольский край, Степновский район,
с.Богдановка

МКОУ СОШ №3, учащийся 10 класса
Научный руководитель:

Тобоева Наталья Константиновна
учитель географии, биологии, МКОУ СОШ №3

I .Введение

II .Основная часть:

1. Открытие вирусов

2.Происхождение вирусов

3. Строение

4.Проникновение в клетку

5.Грипп

6 .Ветряная оспа 7.Клещевой энцефалит 8.Будущее вирусологии

III .Заключение

IV . Список литературы

V .Приложение

Объект исследования:

Неклеточные формы жизни – вирусы.

Предмет исследования:

Настоящее и будущее вирусологии.

Цель работы:

Выяснить значение вирусологии в настоящее время, определить ее будущее. Поставленная цель могла быть достигнута в результате решения следующих задач:

1) изучение литературы, освещающей строение вирусов как неклеточных форм жизни;

2) исследование причин вирусных заболеваний, а также их профилактики.

Это и определило тему моего исследования.

I . Введение.

Остросюжетная и увлекательная история вирусологии отличена триумфальными победами, но, к сожалению, и поражениями. Развитие вирусологии связано с блестящими успехами молекулярной генетики.

Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, к выявлению механизмов мутаций.

Вирусы широко применяются в работах генетической инженерии, в исследованиях.

Но их коварство и способность приспосабливаться не знают предела, их поведение в каждом случае непредсказуемо. Жертвы вирусов - миллионы людей, погибших от чёрной оспы, жёлтой лихорадки, СПИДа и других болезней. Многое ещё предстоит открыть и узнать. И всё-таки основные успехи в вирусологии достигнуты в борьбе с конкретными болезнями. Вот почему утверждают учёные, что вирусология в третьем тысячелетии займёт ведущее место.

Что же дала вирусология человечеству в борьбе с его грозным врагом- вирусом? Каково его строение, где и как он обитает, как размножается, какие ещё готовит «сюрпризы»? Эти вопросы я и рассмотрела в работе.

II .Основная часть:

1. Открытие вирусов.

Первооткрывателем мира вирусов был русский ботаник Д. И. Ивановский. В 1891- 1892 г.г. он настойчиво искал возбудителя мозаичной болезни табака. Ученый исследовал жидкость, полученную при растирании больных листьев табака. Процеживал её сквозь фильтры, которые не должны были пропустить ни одной бактерии. Терпеливо он накачивал литры сока, взятого из листьев табака, больного мозаикой, в полые бактериальные фильтры из мелкопористого фарфора, напоминающие длинные свечи. Стенки фильтра пропотевали прозрачными капельками, стекавшими в заранее простерилизованный сосуд. Лёгким втиранием учёный наносил на поверхность табачного листа капельку такого профильтрованного сока. Через 7-10 дней у здоровых до этого растений появились несомненные признаки мозаичной болезни. Капелька профильтрованного сока от зараженного растения поражала мозаичной болезнью любой другой куст табака. Заражение могло переходить от растения к растению без конца, как пламя огня с одной соломенной крыши на другую.

В дальнейшем удалось установить, что и многие другие вирусные возбудители заразных болезней человека, животных и растений способных проходить которые удалось разглядеть через самые усовершенствованные световые микроскопы. Частицы различных вирусов смогли увидеть только через окошечко всевидящего прибора - электронного микроскопа, дающего увеличение в сотни тысяч раз.

Сам Д.И. Ивановский не придал этому факту особого значения, хотя подробно описал свой опыт.

Известность его работы приобрели, после того как в 1899 г. Нидерландский ботаник и микробиолог Мартин Бейеринк подтвердил результаты исследований Д. И. Ивановского. М.Бейеринк доказал, что мозаику табака можно переносить от одного растения к другому, пользуясь фильтратами. Эти исследования положили начало изучению вирусов и возникновению вирусологии как науки.

2. Происхождение вирусов.

3. Строение.

Будучи совершенно примитивными существами, вирусы обладают всеми основными свойствами живых организмов. Они воспроизводят потомство, сходное с исходными родительскими формами, хотя способ их размножения своеобразен и во многом отличается оттого, что известно о размножении других существ. Обмен веществ у них тесно связан с обменом веществ, клеток- хозяев. Они обладают наследственностью, свойственной всем живым организмам. Наконец, им как и всем другим живым существам, присущи изменчивость и приспособляемость к меняющимся условиям окружающей среды.

Самые крупные вирусы (например, вирусы оспы) достигают величины 400-700 нм и приближаются по размерам к небольшим бактериям, самые мелкие (возбудители полиомиелита, энцефалита, ящура) измеряется всего десятками нанометров, т.е. близки к крупным белковым молекулам, в частности молекулам гемоглобина крови.

Вирусы имеют разнообразные формы – от сферической до нитевидной. Электронная микроскопия позволяет не только увидеть вирусы, определить их формы и размеры, но и изучить пространственное строение - молекулярную архитектонику.

Для вирусов типичен сравнительно простой состав: нуклеиновая кислота (РНК или ДНК), белок, более сложные по структуре содержат углеводы и липиды, иногда имеют и ряд собственных ферментов.

Как правило, нуклеиновая кислота расположена в центре вирусной частицы и защищена от неблагоприятных воздействий белковой оболочкой - капсомеров. Наблюдения в электронном микроскопе показали, что частица вирусов

(или вирионы) по форме бывают нескольких основных типов.

Некоторые вирусы (обычно самые простые) напоминают правильные геометрические тела. У них белковая оболочка почти всегда приближается к форме икосаэдра (правильного двадцатигранника) с гранями из равносторонних треугольников. Эти вирионы называют кубическими (таков, например, вирус полиомиелита). Нуклеиновая кислота подобного вируса часто скручена в клубок. Частицы других вирусов имеют форму продолговатых палочек. В этом случае их нуклеиновая кислота окружена цилиндрическим капсидом. Такие вирионы называются спиральными (например, вирус табачной мозаики).

Вирусы более сложного строения, помимо икосаэдрического или спирального капсида, имеют ещё внешнюю оболочку, которая состоит из разнообразных белков (многие из них ферменты), а также липидов и углеродов.

Физическая структура внешней оболочки очень разнообразна и не так компактна, как у капсида. Например, вирус герпеса - это спиральный вирион в оболочке. Существует вирусы с ещё более сложным строением. Так, вирус оспы не имеет видимого капсида (белковой оболочки), но его нуклеиновая кислота окружена несколькими оболочками.

4.Проникновение в клетку .

Как правило, проникновение вируса в цитоплазму клетки предшествуют связывание его с особым белком-рецептором, находящиеся на клеточной поверхности. Связывание с рецептором осуществляется благодаря наличию специальных белков на поверхности вирусной клетки. Участок поверхности клетки, к которому присоединился вирус, погружается в цитоплазму и превращается в вакуоль. Вакуоль- стенка, которой состоит из цитоплазматической мембраны, может сливаться с другими вакуолями или ядром. Так вирус доставляется в любой участок клетки.

Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность инфекционного процесса. Инфекционный процесс начинается, когда проникшие в клетку вирусы начинают размножаться, т.е. происходит редупликация вирусного генома и самосборка капсида. Для осуществления редупликации нуклеиновая кислота должна освободиться от капсида. После синтеза новой молекулы нуклеиновой кислоты она одевается синтезированными в цитоплазме клетки-хозяина вирусными белками - образуется капсид.

Накопление вирусных частиц приводит к выводу из клетки. Для некоторых вирусов это происходит путём «взрыва», при этом целостность клетки нарушается и она гибнет. Другие вирусы выделяются способом, напоминающим почкование. В этом случае клетки могут сохранять свою жизнеспособность.

Иной путь проникновения в клетку у вирусов бактерий-бактериофагов. Бактериофаг вводит полный стержень в клетку и выталкивает через него ДНК (или РНК), находящуюся в его головке. Геном бактериофага попадает в

цитоплазму, а капсид остается снаружи. В цитоплазме бактериальной начинается редупликация генома бактериофага, синтез его белков и формирование капсида. Через определенный промежуток времени бактериальная клетка гибнет, и зрелые частицы входят в окружающую среду.

5.Грипп.

Грипп - острое инфекционное заболевание, возбудителем которого является фильтрующий вирус, обусловливающий общую интоксикацию и поражение слизистой оболочки верхних дыхательных путей.

В настоящее время установлено, что вирус гриппа имеет несколько серологических типов, отличающихся своей антигенной структурой.

Различают такие разновидности гриппозного вируса: А, В, С, Д. Вирус А имеет 2 подвида, обозначаемые: A 1 и А2.

Вирус гриппа вне организма человека отличается неустойчивостью и быстро гибнет. Высушенный в вакууме вирус может сохраняться длительное время.

Дезинфицирующие средства быстро уничтожаются вирус, также губительно влияют на вирус ультрафиолетовые облучение и нагревание.

Допускают возможность заражения от вирусоносителя. Вирус передаётся от больного человека к здоровому воздушно-капельным путём. Кашель, чихание способствует распространению инфекции.

Эпидемии вирусного гриппа чаще всего возникают в холодное время года.

Больной гриппом заразен в течение 5-7 дней. Все люди, не болевшие гриппом, восприимчивы к этому заболеванию. После перенесенного гриппа остаётся иммунитет в течение 2-3 лет.

Инкубационный период короткий - от нескольких часов до 3 дней. Чаще всего 1-2 дня.

Обычно продромы отсутствуют, и характерным является внезапное начало. Появляется озноб, головная боль, общая слабость, температура повышается до 39-40 градусов. Больные жалуются на болезненность при вращении глаз, ломоту в суставах мышцах, нарушается сон, отличается потливость. Всё это свидетельствует об общей интоксикации с вовлечением в процесс нервной системы.

Особенно чувствительна к токсическому воздействию гриппозного вируса центральная нервная система, что клинически выражается в резкой адинамии, раздражительности, снижается обоняние и вкус.

Со стороны пищеварительного тракта также отличаются явления гриппозной интоксикации понижение аппетита, задержка стула, иногда, чаще у маленьких детей, понос.

Язык обложен налетом, слегка отечен, что приводит к появлению отпечатков зубов по краям. Температура остается повышенной в течение 3-5 дней и при отсутствии осложнений снижается до нормы постепенно или падает критически.

Спустя 1 -2 дня могут появиться насморк, явления ларингита, бронхита. Нередко наблюдается кровотечение из носа. Кашель вначале сухой, переходит в кашель с мокротой. Выражаются сосудистые нарушения в виде понижения кровяного давления, неустойчивости пульса и нарушения его ритма.

Не осложненный грипп обычно заканчивается в течение 3-5 дней, однако, полное восстановление через 1-2 недели.

Как и всякая инфекция, грипп может протекать в легкой, тяжелой, гипертоксической и молниеносной формах.

Наряду с этим вирусный грипп может протекать чрезвычайно легко и переносить на ногах, заканчиваясь в течение 1-2 дней. Эти формы гриппа называются стертыми.

Гриппозная инфекция может вызывать осложнения со стороны различных органов систем. Чаще всего у детей грипп осложняется пневмонией, отитом, который сопровождается повышением температуры, беспокойством, нарушением сна.

Осложнения со стороны периферической нервной системы выражаются в виде невралгий, невритов, радикулитов.

Лечение:

Больному необходимо обеспечить постельный режим и покой. Постельный режим необходимо сохранять некоторое время, и после падения температуры. Систематическое проветривание комнаты, ежедневные теплые или горячие ванны, полноценное питание- все это повышает сопротивляемость организма в борьбе с гриппом.

Специфическое лечение вирусного гриппа осуществляется применением противогриппозной поливалентной сыворотки, предложенной А.А. Смородинцевым.

Из симптоматических средств, обличающих головную боль, боль в мышцах и суставах, а также неврологические боли, назначают пирамидон, фенацетин, аспирин с кофеином.

При тяжелом токсикозе назначают внутривенное введение глюкозы. При не осложненном гриппе антибиотики не применяются, т.к. на вирус они уже не действуют. При сухом кашле полезно горячее молоко с содой или боржомом.

Профилактика:

Больные должны быть изолированы на дому или в больницы. Если больной оставлен дома, необходимо поместить его в отдельную комнату или отделить его кровать ширмой или простыней. Ухаживающие за больным должны носить марлевую маску, закрывающую нос и рот.

6.Ветряная оспа.

Ветряная оспа представляет собой острое инфекционное заболевание, вызываемое вирусом и характеризующееся высыпанием на коже и слизистых оболочках пятнисто - везикулезной сыпи.

Возбудитель ветряной оспы относится к фильтрующим вирусам и находится в ветряночных пузырьках, а также в крови. Вирус отличается неустойчивостью и разнообразным воздействиям внешней среды и быстро гибнет.

Источником инфекции является больной, который заразен в период высыпания и в конце инкубации. Инфекция распространяется воздушно-капельным путем. Через предметы заболевание не передается.

Иммунитет, после перенесенный ветряной оспы остается на всю жизнь. Инкубационный период длится от 11 до 21 дня, в среднем 14 дней.

В большинстве случаев заболевание начинается сразу, и только иногда наблюдается предвестники в виде умеренного повышения температуры при явлениях общего недомогания. Продромы могут сопровождаться высыпанием, напоминающим скарлатину или корь.

При умеренном подъеме температуры на разных участках тела появляется пятнистая сыпь разной величины - от булавочной головки до чечевицы. В течение ближайших часов на месте пятнышек образуется пузырек с прозрачным содержимым, окруженным красным ободком. Ветряночные пузырьки (везикулы) расположены на неизмененной коже, нежны и мягки на ощупь. Содержимое пузырька вскоре становится мутным, а сам пузырек лопается (2-3 дня) и превращается в корочку, которая отпадает через 2-3 недели, не оставляя обычно рубца. Высыпания и последующее образование пузырьков могут быть обильными, захватывая всю волосистую часть головы, туловище, конечности, при этом на лице дистальных частях конечностей они менее обильны.

Течение ветряной оспы сопровождается обычно незначительным нарушением общего состояния больного. Каждое новое высыпание вызывает повышение температуры до 38° и выше. При этом снижается аппетит.

Помимо кожи, ветряная сыпь может поражать слизистые оболочки полости рта, конъюнктивы, половых органов, гортани и др.

Лечение:

Постельное носильное белье должно быть всегда чистым. Принимать теплые ванны (35°-37°) из слабых растворов марганцовокислого калия. Руки больного должны быть чистыми с коротко подстриженными ногтями.

Отдельные пузырьки смазывают йодом или раствором калия, 1% спиртовым раствором бриллиантовой зелени.

При гнойных осложнениях, вызываемых вторичной инфекцией, лечение проводится антибиотиками (пенициллин, стрептомицин, биомицин)

Профилактика:

Человек, зараженный ветряной оспой подлежит изоляции в домашних условиях. Дезинфекция не проводится, помещение проветривается и подвергается влажной уборке.

7.Клещевой энцефалит.

Острая вирусная болезнь, характеризующаяся поражением серого вещества головного и спинного мозга. Резервуаром к источникам инфекции являются дикие животные (преимущественно грызуны) и иксодовые клещи. Возможно инфицирование не только при присасывании клеща, но и при употреблении молока инфицированных коз. Возбудитель относится к арбовирусам. Ворота инфекции - кожные покровы (при присасывании клещей) или слизистая оболочка пищеварительного тракта (при алиментарном заражении). Вирус гематогенно проникает в ЦНС, вызывает наиболее выраженные изменения в нервных клетках передних рогов шейного отдела спинного мозга и в ядрах продолговатого мозга.

Инкубационный период - от 8 до 23 дней (чаще 7-14 дней). Заболевание начинается остро: появляются озноб, сильная головная боль, слабость. После перенесенного энцефалита могут остаться стойкие последствия в виде вялых параличей мышц шеи, плечевого пояса.

Лечение:

Строгий постельный режим:

при легких формах-7-10 дней,

при среднетяжелых-2-3 недели,

при тяжелых - еще дольше.

Профилактика:

При присасывании клеща в неблагополучной по энцефалиту местности необходимо вводить противоэнцефалитный гамма-глобулин. По показаниям проводят профилактическую вакцинацию.

8.Будущее вирусологии.

Каковы же перспективы развития вирусологии XXI века? Во второй половине XX века столетия прогресс в вирусологии был связан с классическими открытиями в биохимии, генетике и молекулярной биологии. В современной вирусологии переплетаются успехи фундаментальных прикладных наук, поэтому дальнейшее её развитие будет идти по пути углубленного изучения молекулярных основ патогенности вирусов новых ранее неизвестных патогенов (прионов и вирионов), природы и механизмов персистенции вирусов, их экологии, разработки новых и совершенствования существующих методов диагностики и специфической профилактики вирусных болезней.

Пока нет более важного аспекта в вирусологии, чем профилактика инфекций. За 100 лет существование науки о вирусах и вирусных болезнях, вакцины претерпели большие изменения, пройдя путь от аттенцированных и убитых вакцин времен Пастера до современных генно-инженерных и синтетических вакцинных препаратов. Это направление будет развиваться и далее, базируясь на физико-химических генно-инженерных и синтетических экспериментах с целью создания поливалентных вакцин, требующих минимальных прививок в возможно ранние сроки после рождения. Будет развиваться химиотерапия, подход относительно новый для вирусологии. Эти препараты пока полезны лишь в отдельных случаях.

III . Заключение.

Перед человечеством стоит множество сложных нерешенных вирусологических проблем: скрытые вирусные инфекции, вирусы и опухоли и др. Уровень развития сегодняшний вирусологии, однако таков, что средства борьбы с инфекциями обязательно будут найдены. Очень важно понимать, что вирусы - не чужеродный для живой природы элемент-это необходимая составная часть биосферы, без которой, наверное, невозможны были бы адаптации, эволюция, иммунная защита и другие взаимодействия живых объектов со средой обитания. Понимая вирусные заболевания как патологии адаптации, борьбу с ними надо направлять на повышение статуса иммунной системы, а не на уничтожение вирусов.

Анализ различных литературных источников и статистические данные позволили сделать следующие выводы:

    вирусы – автономные генетические соединения структуры, неспособные развиваться вне клетки;

3) представляют собой разнообразные формы и простой состав.

Список литературы:

1. Большая Советская Энциклопедия: Т.8 / Под ред. Б.А. Введенского.

2. Денисов И.Н., Улумбаев Э.Г. Справочник – путеводитель практикующего врача.- М.: Медицина, 1999.

3. Зверев И.Д. Книга для чтения по анатомии, физиологии и гигиене человека.- М.: Просвещение, 1983.

4. Лурия С. и др. Общая вирусология.- М.: Мир, 1981.

6.Покровский В.И. Популярная медицинская энциклопедия.- М.: Оникс, 1998.

7.Токарик Э.Н. Вирусология: настоящее и будущее// Биология в школе.-2000.- № 2-3.

Человеческий организм подвержен всякого рода заболеваниям и инфекциям, также довольно часто болеют животные и растения. Ученые прошлого века пытались выявить причину многих заболеваний, но, даже определив симптоматику и течение болезни, они не могли уверенно сказать о ее причине. И лишь в конце девятнадцатого века появился такой термин, как "вирусы". Биология, а точнее один из ее разделов - микробиология, стала изучать новые микроорганизмы, которые, как оказалось, уже давно соседствуют с человеком и вносят свою лепту в ухудшение его здоровья. Для того чтобы эффективнее бороться с вирусами, выделилась новая наука - вирусология. Именно она может рассказать о древних микроорганизмах очень много интересного.

Вирусы (биология): что это такое?

Только в девятнадцатом веке ученые выяснили, что возбудителями кори, гриппа, ящура и других инфекционных заболеваний не только у людей, но и у животных и растений являются микроорганизмы, невидимые человеческому глазу.

После того как были открыты вирусы, биология не сразу смогла дать ответы на поставленные вопросы об их строении, возникновении и классификации. У человечества появилась потребность в новой науке - вирусологии. В настоящий момент вирусологи работают над изучением уже знакомых вирусов, наблюдают за их мутациями и изобретают вакцины, позволяющие уберечь живые организмы от заражения. Довольно часто с целью эксперимента создается новый штамм вируса, который хранится в "спящем" состоянии. На его основе разрабатываются препараты и проводятся наблюдения по их воздействию на организмы.

В современном обществе вирусология является одной из самых важных наук, а самый востребованный научный сотрудник - это вирусолог. Профессия вирусолога, по прогнозам социологов, с каждым годом становится все более популярной, что хорошо отражает тенденции современности. Ведь, как считают многие ученые, скоро с помощью микроорганизмов будут вестись войны и устанавливаться правящие режимы. В таких условиях государство, имеющее высококвалифицированных вирусологов, может оказаться самым стойким, а его население наиболее жизнеспособным.

Появление вирусов на Земле

Ученые относят возникновение вирусов к самым древним временам на планете. Хотя с точностью сказать, каким образом они появились и какую форму имели в то время, невозможно. Ведь вирусы имеют способность проникать в абсолютно любые живые организмы, им доступны простейшие формы жизни, растения, грибы, животные и, конечно же, человек. Но вирусы не оставляют после себя никаких видимых остатков в виде окаменелостей, например. Все эти особенности жизни микроорганизмов существенно затрудняют их изучение.

  • они были частью ДНК и со временем отделились;
  • они были встроены в геном изначально и при определенных обстоятельствах "проснулись", начали размножаться.

Ученые предполагают, что в геноме современных людей находится огромное количество вирусов, которыми были заражены наши предки, и теперь они естественным образом встроились в ДНК.

Вирусы: когда были обнаружены

Изучение вирусов - это достаточно новый раздел в науке, ведь считается, что он появился только в конце девятнадцатого века. На самом деле можно сказать, что неосознанно открыл сами вирусы и вакцины от них английский врач в конце девятнадцатого века. Он работал над созданием лекарства от оспы, косившей в те времена сотни тысяч людей во время эпидемии. Он сумел создать экспериментальную вакцину прямо из болячки одной из девушек, болевшей оспой. Эта прививка оказалась весьма эффективной и спасла не одну жизнь.

Но официальным "отцом" вирусов считается Д. И. Ивановский. Этот русский ученый долгое время изучал болезни растений табака и сделал предположение о мелких микроорганизмах, которые проходят через все известные фильтры и не могут существовать самостоятельно.

Спустя несколько лет француз Луи Пастер в процессе борьбы с бешенством выявил его возбудителей и ввел термин "вирусы". Интересен тот факт, что микроскопы конца девятнадцатого века не могли показать ученым вирусы, поэтому все предположения делались относительно невидимых микроорганизмов.

Развитие вирусологии

Середина прошлого века дала мощный толчок в развитии вирусологии. К примеру, изобретенный электронный микроскоп позволил, наконец, увидеть вирусы и провести их классификацию.

В пятидесятые годы двадцатого века была изобретена вакцина от полиомиелита, ставшая спасением от этого страшного заболевания для миллионов детей по всему миру. К тому же ученые научились выращивать человеческие клетки в специальной среде, что привело к появлению возможности изучать вирусы человека в лабораторных условиях. В настоящий момент описано уже около полутора тысяч вирусов, хотя еще пятьдесят лет назад известными были всего лишь двести подобных микроорганизмов.

Свойства вирусов

Вирусы имеют ряд свойств, которые отличают их от других микроорганизмов:

  • Очень маленькие размеры, измеряющиеся в нанометрах. Крупные вирусы человека, например оспы, имеют размер триста нанометров (это всего лишь 0,3 миллиметра).
  • Каждый живой организм на планете содержит два вида нуклеиновых кислот, а вирусы имеют только одну.
  • Микроорганизмы не могут расти.
  • Размножение вирусов происходит только в живой клетке хозяина.
  • Существование происходит только внутри клетки, вне ее микроорганизм не может проявлять признаков жизнедеятельности.

Формы вирусов

К настоящему моменту ученые могут с уверенностью заявлять о двух формах данного микроорганизма:

  • внеклеточная - вирион;
  • внутриклеточная - вирус.

Вне клетки вирион находится в "спящем" состоянии, он не поддет никаких признаков жизни. Попав в организм человека, он находит подходящую клетку и, только проникнув в нее, начинает активно размножаться, превращаясь в вирус.

Строение вируса

Практически все вирусы, несмотря на то что они довольно разнообразны, имеют однотипное строение:

  • нуклеиновые кислоты, образующие геном;
  • белковая оболочка (капсид);
  • некоторые микроорганизмы поверх оболочки имеют еще и мембранное покрытие.

Ученые считают, что подобная простота строения позволяет вирусам выживать и приспосабливаться в изменяющихся условиях.

В настоящий момент вирусологи выделяют семь классов микроорганизмов:

  • 1 - состоят из двуцепочечной ДНК;
  • 2 - содержат одноцепочечную ДНК;
  • 3 - вирусы, копирующие свою РНК;
  • 4 и 5 - содержат одноцепочечную РНК;
  • 6 - трансформируют РНК в ДНК;
  • 7 - трансформируют двуцепочечную ДНК через РНК.

Несмотря на то что классификация вирусов и их изучение шагнули далеко вперед, ученые допускают возможность появления новых видов микроорганизмов, отличающихся от всех уже перечисленных выше.

Типы вирусной инфекции

Взаимодействие вирусов с живой клеткой и способ выхода из нее определяет тип инфекции :

  • Литическая

В процессе инфицирования все вирусы одновременно выходят из клетки, и в результате она погибает. В дальнейшем вирусы "селятся" в новых клетках и продолжают их разрушать.

  • Персистентная

Вирусы выходят из клетки хозяина постепенно, они начинают поражать новые клетки. Но прежняя продолжает свою жизнедеятельность и "рождает" все новые вирусы.

  • Латентная

Вирус встраивается в саму клетку, в процессе ее деления он передается другим клеткам и распространяется по всему организму. В подобном состоянии вирусы могут находиться достаточно долгое время. При необходимом стечении обстоятельств они начинают активно размножаться и инфекция протекает по уже перечисленным выше типам.

Россия: где изучают вирусы?

В нашей стране вирусы изучают уже достаточно давно, и именно российские специалисты лидируют в этой области. В Москве расположен НИИ вирусологии имени Д. И. Ивановского, специалисты которого вносят существенный вклад в развитии науки. На базе НИИ работаю научно-исследовательские лаборатории, содержится консультативный центр и кафедра вирусологии.

Параллельно российские вирусологи работают с ВОЗ и пополняют свою коллекцию штаммов вирусов. Специалисты НИИ работают по всем разделам вирусологии:

  • общей:
  • частной;
  • молекулярной.

Стоит отметить, что в последние годы наметилась тенденция к объединению усилий вирусологов всего мира. Такая совместная работа является более эффективной и позволяет серьезно продвинуться в изучении вопроса.

Вирусы (биология как наука это подтвердила) - это микроорганизмы, сопровождающие все живое на планете на протяжении всего их существования. Поэтому их изучение является столь важным для выживания многих видов на планете, в том числе и человека, который уже не раз в истории становился жертвой различных эпидемий, вызванных вирусами.

Новое на сайте

>

Самое популярное