Домой Картофель Какую информацию можно получить из космических снимков. Созвездие фотожабы. Смотреть что такое "Космические снимки" в других словарях

Какую информацию можно получить из космических снимков. Созвездие фотожабы. Смотреть что такое "Космические снимки" в других словарях

Фотографии из космоса, публикуемые на сайте NASA и других космических агентств, часто привлекают к себе внимание тех, кто сомневается в их подлинности, - критики находят на изображениях следы редактирования, ретуширования или манипуляций с цветом. Так повелось еще со времен зарождения «лунного заговора», а теперь под подозрение попали снимки, сделанные не только американцами, но и европейцами, японцами, индийцами. N+1 предлагает разобраться, зачем вообще обрабатывают космические изображения и могут ли они, несмотря на это, считаться подлинными.

Для того чтобы правильно оценивать качество космических снимков, которые мы видим в Сети, необходимо учитывать два важных фактора. Один из них связан с характером взаимодействия агентств и широкой публики, другой продиктован физическими законами.

Связи с общественностью

Космические снимки - одно из самых эффективных средств популяризации работы исследовательских миссий в ближнем и дальнем космосе. Однако далеко не все кадры сразу оказываются в распоряжении СМИ.

Изображения, полученные из космоса, можно условно разделить на три группы: «сырые» (raw), научные и публичные. Сырые, или исходные, файлы с космических аппаратов иногда бывают доступны всем желающим, а иногда нет. Например, изображения, полученные марсоходами Curiosity и Opportunity или спутником Сатурна Cassini , публикуются практически в режиме реального времени, так что любой желающий может увидеть их одновременно с учеными, изучающими Марс или Сатурн. Необработанные фотографии Земли с МКС выкладываются на отдельный сервер NASA. Космонавты заливают их тысячами, и ни у кого нет времени на их предобработку. Единственное, что добавляют к ним на Земле, это географическую привязку для облегчения поиска.

Но обычно за ретушь критикуют публичные кадры, которые прилагаются к пресс-релизам NASA и других космических агентств, - ведь именно они попадаются на глаза пользователям интернета в первую очередь. И при желании там можно найти много чего. И манипуляции с цветом:

Фото посадочной платформы марсохода Spirit в видимом диапазоне света и с захватом ближнего инфракрасного.

NASA/JPL/Cornell

И наложение нескольких снимков:



Восход Земли над лунным кратером Комптона

NASA/Goddard/Arizona State University

И манипуляции с вырезанными изображениями (copy & paste):



Следы «копипасты» на композитном изображении Земли

NASA/Robert Simmon/MODIS/USGS EROS

И даже прямую ретушь, с затиранием некоторых фрагментов изображения. Мотивация NASA в случае со всеми этими манипуляциями проста настолько, что ей готовы поверить далеко не все: так красивее.

Но ведь правда, бездонная чернота космоса выглядит более впечатляюще, когда ей не мешают мусор на объективе и заряженные частицы на пленке. Цветной кадр, и правда, привлекательнее черно-белого. Панорама из снимков лучше отдельных кадров. При этом важно, что в случае с NASA почти всегда можно найти исходные кадры и сравнить одно с другим. Например исходный вариант (AS17-134-20384) и вариант «для печати» (GPN-2000-001137) этого снимка с Apollo 17, который приводят как чуть ли не главное доказательство ретуширования лунных фотографий:


Один из кадров, снятых в ходе миссии Apollo 17


Высветленная версия исходного снимка


Или найти «сэлфи-палку» марсохода, которая «пропала» при создании его автопортрета:


NASA/JPL-Caltech/MSSS


NASA/JPL-Caltech/MSSS

Физика цифровой фотографии

Как правило те, кто упрекает космические агентства за манипуляции с цветом, использование фильтров или публикацию черно-белых фотографий «в наш век прогресса цифровых технологий», не учитывают физические процессы получения цифровых изображений. Они полагают, что если смартфон или фотоаппарат сразу выдают цветные кадры, то космическому аппарату это тем более должно быть по плечу, и даже не догадываются, какие сложные операции необходимы, чтобы цветное изображение сразу попало на экран.

Поясним теорию цифрового фото: матрица цифрового аппарата - это, по сути, солнечная батарея. Есть свет - есть ток, нет света - нет тока. Только матрица представляет собой не единую батарею, а множество маленьких батарей - пикселей, с каждого из которых по отдельности считывается выдача тока. Оптика фокусирует свет на фотоматрицу, а электроника считывает интенсивность выделения энергии каждым пикселем. Из полученных данных строится изображение в оттенках серого - от нулевого тока в темноте до максимального на свету, то есть на выходе оно получается черно-белым. Чтобы сделать его цветным, необходимо применить цветные фильтры. Получается, как ни странно, что цветные фильтры присутствуют в каждом смартфоне и в каждой цифровой камере из ближайшего магазина! (Для кого-то эта информация банальна, но, по опыту автора, для многих она окажется новостью.) В случае с обычной фототехникой применяется чередование красных, зеленых и синих фильтров, которые поочередно накладываются на отдельные пиксели матрицы, - это так называемый фильтр Байера .

Фильтр байера наполовину состоит из зеленых пикселей, а красный и синий занимают по одной четверти площади.

Перед NASA вовсе не стоит задача поставлять красивые фотографии для пресс-релизов и СМИ. Камеры космических аппаратов прежде всего являются инженерными или научными инструментами, которые помогают управлять этими аппаратами или получать информацию о космосе. Подробно об этом мы уже говорили в статье «Как исследуют планеты с помощью света». Здесь повторим: навигационные камеры выдают черно-белые изображения потому, что такие файлы меньше весят, а также потому, что цвет там просто не нужен. Научные камеры позволяют извлекать информации о космосе больше, чем способен воспринимать глаз человека, и поэтому для них используется более широкий набор цветовых фильтров:


Матрица и барабан светофильтров инструмента OSIRIS на «Розетте»

Применение фильтра ближнего инфракрасного света, который не виден глазу, вместо красного привело к покраснению Марса на многих кадрах, ушедших в СМИ. Пояснение про инфракрасный диапазон перепечатали далеко не все, что породило отдельную дискуссию, которую мы также разбирали в материале «Какого цвета Марс».

Однако на марсоходе Curiosity стоит фильтр Байера, что позволяет ему снимать в цвете, привычном нашему глазу, хотя отдельный набор цветных фильтров к камере также прилагается.

Применение отдельных фильтров удобнее с точки зрения выбора диапазонов света, в которых хочется посмотреть на объект. Но если этот объект движется быстро, то на снимках в разных диапазонах его положение меняется. На кадрах «Электро-Л» это было заметно на быстрых облаках, которые успевали сдвинуться за считанные секунды, пока спутник меняет фильтр. На Марсе подобное происходило при съемке закатов у марсохода Spirit и Opportunity - у них нет фильтра Байера:


Закат, снятый «Спиритом» в 489 сол. Наложение снимков, снятых с фильтрами на 753 535 и 432 нанометров.

NASA/JPL/Cornell


На Сатурне похожие трудности у Cassini:


Спутники Сатурна Титан (сзади) и Рея (впереди) на снимках Cassini

NASA/JPL-Caltech/Space Science Institute

В точке Лагранжа с той же ситуацией сталкивается DSCOVR:


Чтобы получить из этой съемки красивое фото, пригодное для распространения в СМИ, приходится поработать в редакторе изображений.

§ 9. Изображение земной поверхности на плоскости. Аэрофотоснимки и космические снимки

Зачем нужны плоские изображения Земли. Вы уже познакомились с одной из моделей Земли - глобусом. Однако использовать его для решения большинства практических задач неудобно. Главное достоинство глобуса - объемность - является одновременно и его главным недостатком. Для получения очень подробного изображения земной поверхности глобусы должны быть огромных размеров.

Поэтому чаще всего люди пользуются плоскими изображениями поверхности Земли. Как лучше всего получить точное плоское изображение земной поверхности? Для нас, жителей третьего тысячелетия, ответ на этот вопрос достаточно прост: надо сфотографировать ее сверху.

Аэрофотоснимки и космические снимки. Съемка земной поверхности с самолетов позволяет получать подробное изображение всех деталей местности (рис. 27, а).

Рис. 27. а - аэрофотоснимок; б - план

Во время съемки самолет летает по прямолинейным маршрутам, параллельным друг другу. Специальные фотографические камеры непрерывно делают снимки. Местность таким образом снимается по частям. Можно склеить снимки соседних участков и получить изображение большой территории.

На космических снимках хорошо видны скопления облаков и гигантские воздушные вихри, зоны наводнений и лесные пожары. Геологи по космическим снимкам выявляют зоны разломов на поверхности Земли, с которыми связаны месторождения полезных ископаемых, вероятные землетрясения.

Космические снимки делают со спутников, движущихся по орбитам вокруг Земли. От высоты, на которой летает спутник, зависит охват снимаемой территории и масштаб снимков. Чем выше от Земли летают спутники, тем меньше масштаб снимков и детальность их изображения (рис. 28).

Рис. 28. Площадь поверхности Земли, снимаемая с разной высоты

Географические объекты на космических и аэрофотоснимках представлены в непривычном для нас виде. Распознавание изображения на снимках называют дешифрированием. В дешифрировании все большую роль играет компьютерная техника. С помощью космических снимков составляют географические планы и карты.

Вопросы и задания

  1. Почему необходимо изображать Землю на плоскости?
  2. Назовите достоинства аэрофотоснимков.
  3. Какую информацию можно получить из космических снимков?

Впервые полученные из космоса фото- и телеизображения Земли и облачного покрова использовали для своих нужд метеорологи. В апреле 1960 года в США был выведен на орбиту первый специализированный метеоспутник «Тирос-1» (Television and Infrared Observation Satellite - спутник для наблюдений с телевизионным и инфракрасным оборудованием). Первые снимки, полученные этим аппаратом, показывали облачный покров и крупные географические детали в разрывах - и никаких следов деятельности человека! Первыми такими следами оказались темные пятна в снегах Канады , которые, как выяснилось, были следами расчистки лесов.

Только с началом пилотируемых полетов выяснилась возможность наблюдения деталей на земной поверхности. Насколько неясно это было в начале космической эры, видно из перечня объектов, подлежащих наблюдению и фото- и кинорегистрации в первых полетах советских космонавтов: это горизонт; облака в надире; Луна ; облака вдоль трассы; поверхность океана; высокогорные районы; заря; острова и полуострова; пустыни; города; северные сияния ; серебристые облака ; ночной горизонт. То есть, попросту говоря, предлагалось регистрировать все, что удастся увидеть. И неожиданностью, вызвавшей шок на Земле, было то, что с орбиты можно видеть достаточно мелкие объекты (строения, дороги, автомобили).

Уже первые фотографии, сделанные с орбиты космонавтами, позволили выявить многие детали структуры облачных систем, при этом они отличались от телеизображений, получаемых с автоматических метеоспутников, более высоким пространственным разрешением.

Первое время сообщения космонавтов о том, что они видят с орбиты, подвергались сомнениям. Например, вызвало недоверие сообщение, что с орбиты видны подводные хребты в океанах : ведь свет проникает на глубину всего нескольких десятков метров, а хребты находятся на километровых глубинах. И только через некоторое время выяснилось, что очертания зоны перемешивания теплых поверхностных и холодных глубинных вод как бы повторяют подводный рельеф.

«Пусть только читатель поверит, что, когда космонавт висит над иллюминатором и смотрит в окно, то рано или поздно его наблюдения пополнят общую копилку знаний, - писал в своих воспоминаниях космонавт-50 /100 В. П. Савиных . - В очереди за порцией позарез необходимых сведений к космонавтам стоят хлеборобы и геологи, мелиораторы и географы. Можно продолжать этот список чуть ли не бесконечно … И не только потому, что „сверху видно все“, но и потому, что из космоса легче выявить взаимосвязи некоторых земных процессов и даже предсказать их течение».

Сверху, с высоты орбиты, видно если и не все, то очень многое, чего иначе и не увидишь - люди заново открывали планету. Эксперименты и наблюдения, проведенные космонавтами на орбите, позволили получить изображения ряда не наблюдавшихся ранее традиционными средствами (как аэрофотосъемка) различных объектов (например, масштабные геологические образования - кольцевые структуры, разломы земной коры). Так, съемки со станции «Салют-5» позволили проследить на больших расстояниях крупные глубинные разломы , которые часто являются зонами залегания полезных ископаемых. Съемки со станции «Салют-6» показали возможность получения изображений дна морских мелководий, морских и океанских течений, что открыло возможность их картирования; зон скопления фито- и зоопланктонов, косяков рыб.

Результаты наблюдений космонавтов впоследствии практически всегда подтверждались. Особенно важны эти наблюдения и съемки были на начальном этапе, когда ещё не было полного и четкого представления о том, куда смотреть и что искать.

По мере накопления знаний определились новые области использования космической техники для изучения Земли. Стали создаваться различные спутниковые системы, вначале специализированные (связные, метеорологические, навигационные, для исследования природных ресурсов Земли и т.д.).

Орбитальные эксперименты и наблюдения космонавтов послужили основой для формирования технических требований при определении облика и характеристик автоматических систем и при разработке новой аппаратуры для проведения наблюдений и исследований из космоса.

Первой советской специализированной метеосистемой была система «Метеор». «Метеор-1» был запущен 26 марта 1969 года. В систему входило три спутника на квазиполярных околокруговых орбитах высотой порядка 900 км, ежечасно они охватывали территорию 30 тыс км². Информация получалась с помощью оптической и инфракрасной аппаратуры.

Национальная эксплутационная метеосистема США в полном составе начала функционировать в 70-х годах прошлого века. В её состав входят спутники «Тирос», «Нимбус» , АТС. За это время, по утверждению американских специалистов, не упущен ни один тропический шторм. В частности, в августе–сентябре 1979 года, когда ураганы «Давид» и «Фредерик» двигались к побережью Мексиканского залива, сотни тысяч жизней были спасены благодаря тому, что на орбитах находились метеоспутники. Данные, получаемые с этих спутников позволили метеорологам с большой точностью определять направление движения и скорость урагана и своевременно оповещать местное население об их приближении.

В 1978–1979 годах был осуществлен самый крупный по тем временам международный метеорологический проект ГАРП (Global Atmospheric Research Programme), направленный на изучение глобальных процессов в атмосфере, приводящих к изменениям погоды и климата. В группировку средств, осуществлявших метеонаблюдение, входили как низкоорбитальные, так и геостационарные спутники. Одновременно наблюдения велись с помощью морских судов, самолетов, буев, шаров-зондов, метеоракет.

Электронный глаз

Информация из космоса оказалась не просто полезной, а жизненно необходимой едва ли не для всех сфер деятельности человека. Кроме службы погоды это сельское и лесное хозяйство, градостроительство , прокладка трасс железнодорожных и автомобильных дорог, трубопроводов, охрана окружающей среды , разведка полезных ископаемых…

Весьма эффективным оказалось применение космических средств для исследования природных ресурсов Земли. В США на начальном этапе эти исследования проводились спутниками «Лэндсат», в СССР аппаратами серии «Космос». Информация извлекалась из изображений, получаемых в видимом и инфракрасном диапазонах спектра.

С помощью спутников были получены многоспектральные изображения крупномасштабных особенностей и разрывов структуры земной коры, которые ранее не наблюдались. Информация о зонах разрывов и разломов, полученная со спутников «Лэндсат», была использована при выборе мест для строительства атомных электростанций и прокладки трубопроводов .

С помощью спутниковых систем было сделано много важных открытий, разведаны новые месторождения полезных ископаемых, в том числе нефти и газа, картированы сейсмоопасные районы - все действительно трудно перечислить. В песках Кызылкум по снимкам со спутников обнаружены линзы неглубоко залегающих пресных и слабоминерализированных вод. Сделано и географическое открытие, правда, грустное - Аральского моря больше не существует .

Визуально-инструментальные наблюдения проводятся в каждом пилотируемом полете с начала космической эры и по сей день, круг задач расширяется и усложняется, совершенствуется аппаратура.

На первых советских аппаратах «Восток» для фото- и кинорегистрации использовалась обычная техника - профессиональный киноаппарат «Конвас». От него до современной аппаратуры, с которой сейчас работают космонавты - дистанция огромного размера. Для наблюдения и съемок с орбиты сейчас применяется многозональная и спектрозональная фотосъемка. В 1976 году на корабле «Союз-22» впервые был испытан многозональный фотоаппарат МКФ-6 , совместно разработанный учеными СССР и ГДР в рамках программы «Интеркосмос» и изготовленный на известном предприятии «Карл Цейс Йена» (Carl Zeiss Jena). Этим фотоаппаратом впервые получено стереоскопическое изображение ледника Федченко и более ста менее крупных ледников, из которых ранее было известно лишь около 30. Кроме того, выявлены районы, подходящие для разведения крупного рогатого скота.

Впоследствии стал использоваться блок из шести многозональных аппаратов МКФ-6 М. В аппаратах используются специальная пленка и светофильтры, воспринимающие различную информацию. Например, один из аппаратов регистрирует структуру почвы, её состав и содержание влаги, другая камера получает информацию о типах растительности, третья настроена на получение данных о качестве воды в озерах и океанах.

Эти камеры широко использовались на станциях «Салют» и «Мир». Сейчас на борту МКС работает новый прибор - «Спектр-256» . Он позволяет регистрировать спектральные характеристики земной поверхности в 256 каналах видимого и инфракрасного спектра. В качестве регистратора полученной информации используется микрокомпьютер.

Огромная работа по изучению крупномасштабных природных процессов и изменения климата была проведена американскими астронавтами в апреле 1994 года. На борту КК «Индевор» () на орбиту была выведена космическая радарная лаборатория SRL-1 (Space Radar Laboratory). В состав лаборатории входил также прибор для мониторинга загрязнений атмосферы. Планировалось получить около 6000 радиолокационных изображений более 400 объектов и около 50 млн км² (10%) площади Земли. Кроме того, астронавты должны были сделать 14000 снимков обычной аппаратурой, для чего на борту имелось 14 фото- и кинокамер. Съемки из космоса дополнялись наблюдениями наземных групп, а также с самолетов и судов.

План съемок был выполнен практически полностью. Были получены уникальные трехмерные стереоскопические изображения гор, пустынь, лесов, океанов и рек. Астронавты произвели съемку района гигантского пожара в Китае в 1987 году и измерили концентрацию окиси углерода над этим районом.

Во втором полете «Индевора» с SRL-1 в сентябре того же года в число объектов съемки входила Чернобыльская АЭС - исследовалось восстановление окружающей среды после катастрофы 1986 года. В это время происходило извержение Ключевской сопки на Камчатке , корабль дважды прошел над вулканом на высоте 283 км и заснял извержение. Это были уникальные съемки - ранее извержения случились в 1737 и 1945 годах.

В настоящее время создана и функционирует глобальная система дистанционного зондирования Земли, и подавляющая часть информации поступает с беспилотных аппаратов. Тем не менее визуально-инструментальные наблюдения с борта орбитальных станций и пилотируемых аппаратов не потеряли своего значения. Они проводятся постоянно и составляют важнейшую часть деятельности космонавта в полете.

В особенности это важно при исследовании быстро протекающих процессов и явлений, требующих оперативной передачи информации. Это тайфуны, районы аварийного слива нефти , сели, лесные пожары, подвижки ледников , и многое другое. Особенно эффективны визуально-инструментальные наблюдения при проведении океанографических исследований, т.к. другими средствами весьма затруднительно получить оперативную информацию о динамических процессах больших масштабов.

Объем информации, который приходит из космоса, колоссален. Например, объем информации, который получали экипажи советских орбитальных станций «Салют-6» и «Салют -7» за пять минут, мог бы быть собран лишь за два года аэрофотосъемок.

Присутствие на борту человека позволяет сократить объем передаваемой информации за счет её предварительного контроля, обработки и отбора перед передачей на Землю. При этом качество съемок, как правило, выше, чем с беспилотных спутников, так как оператор путем управления работой стационарной аппаратуры имеет возможность учесть условия съемки (облачность, дымку, освещенность и т.д.). Имеется возможность наблюдения и исследования случайно возникающих процессов и явлений различного рода, а также, что очень важно, оперативной передачи информации на Землю.

За послеперестроечные годы наши спутниковые системы значительно постарели и поредели, однако потихоньку все восстанавливается. Вот как выглядит программа запусков до 2015 года.

36.Космическая съемка. Виды съемок. Способы определения масштаба космического снимка.

Космическая съёмка , съёмка Земли, небесных тел, туманностей и различных космических явлений, выполняемая приборами, находящимися за пределами земной атмосферы. Снимки земной поверхности, полученные таким путём, отличаются тем, что при целостном характере изображения местности они охватывают огромные площади (на одном снимке от десятков тысяч км2 до всего земного шара). Это позволяет изучать по космическим снимкам основные структурные, региональные, зональные и глобальные особенности атмосферы, литосферы, гидросферы, биосферы и ландшафты нашей планеты в целом. При Космической съёмке возможна повторная съёмка местности в течение одного и того же полёта носителя, т. е. через краткие промежутки времени, что позволяет изучать динамику как природных явлений, периодических (суточных, сезонных и др.) и эпизодических (извержения вулканов, лесные пожары и др.), так и различных проявлений хозяйственной деятельности (уборка урожая, заполнение водохранилищ и др.).

Первые снимки из космоса были сделаны с ракет в 1946, с искусственных спутников Земли - в 1960, с пилотируемых космических кораблей - в 1961 (Ю. А. Гагариным). Космическая съёмка вначале ограничивалась фотографированием в видимом диапазоне спектра электромагнитных волн с непосредственной доставкой снимков на Землю (преимущественно в контейнерах с парашютом). Наряду с черно-белой и цветной фото- и телесъёмкой применяются инфратепловая, микроволновая, радарная, спектрометрическая и др. фотоэлектронные съёмки. Съёмочная аппаратура принципиально та же, что и при аэросъёмке.

Методами Космической съёмки нашей планеты являются:

1) съёмки с высот 150-300 км с недолговременных носителей и возвращением экспонированных плёнок и регистрограмм на Землю;

2) съёмки с высот 300-950 км с долговременных носителей (на орбитах, при которых спутник находится как бы постоянно над освещенной стороной Земли) и передачей изображений на Землю с помощью радиотелевизионных систем;

3) съёмки с высоты примерно 36 тыс. км с т. н. стационарных спутников с доставкой фотоинформации на Землю путём применения тех же систем;

4) съёмки с межпланетных автоматических станций с ряда последовательно увеличивающихся высот (например, со станции «Зонд» с 60 и 90 тыс. км и т. д.);

5) съёмки Земли с поверхности Луны и ближайших планет, автоматически выполняемые доставленной туда регистрирующей фотоэлектронной и передающей радиотелевизионной аппаратурой;

6) съёмки с пилотируемых космических кораблей и пилотируемых орбитальных станций (первая - советская станция «Салют»).

Средние масштабы космических снимков 1: 1000000 - 1: 10000000. Детальность изображения земной поверхности на снимках из космоса довольно значительна. Например, при рассматривании с 10-кратным увеличением фотографий масштаба 1:1500000, полученных с борта «Салюта», на открытой местности видны основная гидрографическая и дорожная сеть, контуры полей,селения средних размеров и все города с их квартальной планировкой.

Современные области использования Космической съёмки:

    метеорология (изучение облачности, снежного покрова и др.),

    океанология (течений, дна мелководий и др.),

    геология и геоморфология (в особенности образований большой протяжённости),

    исследования ледников, болот, пустынь, лесов, учёт культурных земель, природно-хозяйственное районирование территорий, создание и обновление мелкомасштабных тематических и общегеографических карт.

Ближайшие перспективы практического применения Космической съёмки для изучения, освоения и охраны географической среды и естественных ресурсов Земли связаны с выполнением с орбитальных научных станций-лабораторий т. н. многоканальных съёмок (одновременно в нескольких спектральных диапазонах при одинаковой освещённости местности). Это увеличивает разнообразие и объём получаемой информации и обеспечивает возможность её автоматической обработки, в частности при дешифрировании космических снимков. Носители и космические комплексы.

Космические системы (комплексы) мониторинга окружающий среды включают в себя (и выполняют):

1. Спутниковые системы на орбите (центр управления полетами и съемкой),

2. Прием информации наземными пунктами приема, спутниками-ретрансляторами,

3. Хранение и распространение материалов (центры первичной обработки, архивы снимков). Разработана информационная поисковая система, обеспечивающая накопление и систематизацию материалов, получаемых с искусственных спутников Земли.

Виды съемок.

По характеру покрытия земной поверхности космическими снимками можно выделить следующие съемки:

Одиночное (выборочное) фотографирование выполняется космонавтами ручными камерами. Снимки обычно получаются перспективными со значительными углами наклона.

Маршрутная съемка земной поверхности производится вдоль трассы полета спутника. Ширина полосы съемки зависит от высоты полета и угла обзора съемочной системы.

Прицельная (выборочная) съемка предназначена для получения снимков специально заданных участков земной поверхности в стороне от трассы.

Глобальную съемку производят с геостационарных и полярно- орбитальных спутников. спутников. Четыре-пять геостационарных спутников на экваториальной орбите обеспечивают практически непрерывное получение мелкомасштабных обзорных снимков всей Земли (космическое патрулирование) за исключением полярных шапок.

Аэрокосмический снимок – это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

Космическая съемка различается по : масштабам, пространственному разрешению, обзорности, спектральным характеристикам.

Эти параметры определяют возможности дешифрирования на космических снимках различных объектов и решения тех задач, которые целесообразно решать с их помощью.

Типы снимков подразделяются по обзорности, по масштабу, по пространственному разрешению.

Масштаб и обзорность (форма, размер) космических снимков позволяют выявить объекты разного ранга, снятые в одно время и в одном режиме съемки.Обзорность снимка зависит от размеров участков земной поверхности, отображенной на космоснимке, и измеряется в единицах площади.

Масштабы космоснимков разные: от 1:1000 до 100 000 000, т.е. он может меняться в сто тысяч раз. Самые распространенные масштабы космических снимков: от 1:200 000 до 1:10 000 000.

Масштабы космоснимков зависят от:

Высоты фотографирования,

Фокусного расстояния аппарата,

Коэффициента увеличения,

Углов наклона,

Кривизны земной поверхности.

Распознавание объектов на снимках зависит от масштаба съемки и разрешающей способности. По соотношению масштабного ряда космических снимков с масштабным рядом геологических карт, принятых в России, космические снимки разделяются по уровням естественной генерализации на:

Глобальные, с высот 20-30 тыс. км Масштаб: 1:5 000 000.

Континентальные, имеют малое разрешение

Региональные, среднее разрешение, Масштаб: 1:1 000 000 и 1:500 000

Локальные, Эта съемка использует цифровые сканеры, дающие высокое трехмерное изображение. Получаемые снимки пригодны для кадастра и инвентаризации, для изготовления среднемасштабных и крупномасштабных карт. Масштаб: 1:200 000 и 1:100 000

Детальные, по своим свойствам близки к высотным аэрофотоснимкам и снимкам мелкого масштаба. Проводится с орбит высотой около 200 км. Масштаб: 1:50 000 и 1:25 000.

Определение масштаба КС путем сравнения длины идентичных отрезков, измеренных на снимке и на топографической карте.

Достоинства космосъемки. Летящий спутник не испытывает вибраций и резких колебаний, поэтому космические снимки удается получать с более высокой разрешающей способностью и высоким качеством изображения, чем аэроснимки. Снимки могут быть переведены в цифровую форму для последующей компьютерной обработки.

Недостатки космосъемки: информация не поддается автоматизированной обработке без предварительных преобразований. При космофотосъемке происходит смещение точек (под влиянием кривизны Земли), их величина на краях снимка достигает 1,5 мм. В пределах снимка нарушено постоянство масштаба, различие которого на краях и в центре снимка может составлять выше 3%.

Зачем люди изобрели глобус? Почему его называют объёмной моделью Земли? Почему необходимо изображать Землю на плоскости? Назовите достоинства и недостатки аэрофотоснимков. Какую информацию можно получить из космических снимков? Что такое географические планы и карты? Что такое легенда плана и карты, зачем она нужна? Подумайте, в каких ситуациях вам может понадобиться географическая карта. На все эти вопросы ответит эта статья.

Чтобы наглядно видеть форму нашей планеты,ее размеры. В отличие от карт, на глобусе нет искажений и разрывов, поэтому глобус удобен для получения общего представления о расположении материков и океанов. В то же время глобус (обычных размеров) имеет довольно мелкий масштаб и не может показать какую-либо местность подробно. При измерении географическая карта удобнее глобуса, поскольку последний требует использования при измерении расстояний гибкой линейки. Некоторые глобусы изначально оборудованы линейками, изогнутыми в виде дуги.

Шарообразность Земли была установлена древнегреческими учёными в III веке до н. э. Первый глобус был создан около 150 г. до н. э. Кратетом Малльским из Киликии, жившим в Пергаме; о нём упоминают Страбон и Гемин. Последний сообщает, что Кратет снабдил свой глобус системой координат («кругов»).

Почему его называют объёмной моделью Земли?

Глобус наиболее точно передает форму Земли. Поэтому только на нем очертания океанов, материков, островов и других географических объектов отвечают их настоящем видам. Это означает, что на глобусе не искажается расстояние между отдельными точками. Направления на глобусе совпадают с направлениями на Земле. Вот почему при изучении Земли ученые давно используют глобус. Он крайне необходим для учебных и научных целей.

Почему необходимо изображать Землю на плоскости?

Потому что когда земля изображена на плоскости, проще смотреть города и т.д.

Назовите достоинства и недостатки аэрофотоснимков. Какую информацию можно получить из космических снимков?

Космические снимки, эти моментальные фотографии подвижного лика нашей планеты, несут в себе огромное количество геодинамической информации. Они убедительно показывают высокую мобильность литосферы Земли и одновременно системность и взаимосвязанность большинства новейших и современных разрывных и пластических деформаций земной поверхности, показывают единство геодинамической картины мира. На космических снимках четко прослеживаются рифтовые зоны расколов и ргздвигов континентальной коры Земли, зоны крупных сдвигов, зоны сжатия и поддвигов, маркируемые системами горных хребтов, линеаменты, концентрические структуры разных размеров. Для понимания общих закономерностей размещения этих структур целесообразно начинать их изучение с глобальных космических снимков Земли, постепенно переходя ко все более крупномасштабным космическим снимкам.

Что такое географические планы и карты?

Географический план и географическая карта - это плоские уменьшенные изображения участков земной поверхности с помощью условных знаков.

Что такое легенда плана и карты, зачем она нужна?

Что бы упралять всем миром!

Мы должны точно знать размеры отдельных территорий, которые нам принадлежат, дожны знать где расположены враги, друзья, полезные ископаемые и нужные нам населенные пункты. Мы должны точно знать где расположены места отдыха, а где природа слишком сурова, что бы там жить постоянно.
То есть что бы правильно чем то управлять - надо четко знать чем управляешь карты и географические планы дают нам эту возможность!

Подумайте, в каких ситуациях вам может понадобиться географическая карта.

Географическая карта может понадобиться при ориентировке на местности, попытке найти расположение какой-либо страны, города, острова и т.д.

Новое на сайте

>

Самое популярное