Домой Заготовки на зиму Частицы космоса. Космические лучи самых высоких энергий. Космические лучи у Земли

Частицы космоса. Космические лучи самых высоких энергий. Космические лучи у Земли

К загадкам русского севера все относятся по-разному. Особенно разнятся мнения религиозно настроенных: для одних верующих - это место связи с энергией космоса, для других - исток русской духовности, а для третьих - скопище ведьм и чертей.

Одно точно: аномальных мест в Карелии очень много и все они полны полуисторических-полумифических фактов. Выбрать самые интересные я попросила директора Карельского Национального музея, Михаила Леонидовича Гольденберга, посвятившего изучению истории края несколько десятков лет.

№1. Гора Воотоваара - каменное волшебство

Самая высокая точка Карелии (417 метров), на которой сосредоточена, наверное, вся мистика края.

Загадки места:

Почему гору не любят ни животные, ни птицы, а у деревьев такие покорёженные стволы, как будто кто-то в порыве шаманских плясок вырвал их с корнем и воткнул в землю обратной стороной?

Как появились гигантские каменные плиты геометрически правильной формы, будто их вырезали лазером?

Зачем нужна каменная лестница с обрывающимися в небе 13-тью ступенями? Да еще с такими мистическими координатами: 63 04.999 32 38.666.

Как образовались сейды - огромные валуны, стоящие на камнях поменьше?

Возможно, последняя загадка - ключ ко всем остальным странностям горы. Часть историков считает, кто сейды - дело рук Саамов (или их духов) - древнего племени с шаманами-нойдами. До сих пор считается, что они способны подчинять своей поле группы людей. Все на полном серьезе - за нойдами охотились и НКВД, и Аненербе.


Сейды на Воотовааре

Но есть и прагматики, которые уверяют, что все каменные образования - сотворил ледник: это он «навалил» большие камни на маленькие, потом лед растаял, крошечные камешки вымылись, остались застрявшие. А четкие каменные разрезы - последствия землетрясений. Но когда ты видишь все это вживую, сохранять прагматичный взгляд на вещи сложно. Эзотерики называют Вотооваару энергетическим аккумулятором и «акупунктурной» точкой планеты, в которой можно принять информацию космоса.


Абсолютно ровный срез камней

Как добраться до Воотаваары?

Поездом: из Санкт-Петербурга или Петрозаводска до ст. Гимолы, это ближайший к горе поселок. Дальше пешком или на транспорте, договорившись с местными - 15-18 км.

На автомобиле: от Санкт-Петербурга есть 2 пути - слева от Ладоги (ближе и живописнее) и справа (дорога чуть лучше). В любом случае готовьтесь к необходимости оставить машину, потому что через 5 км от Гимолы, когда основная дорога уйдет налево, а к горе надо будет ехать прямо, начнется несносная грунтовка.

№2.Остров Кижи - христианство или язычество?

Кто не помнит со школы легенду о деревянной церкви без единого гвоздя? Кижи стали визитной карточкой русского Севера, охраняются ЮНЕСКО, принимают несколько сотен тысяч паломников в год. Но история острова не ограничивается христианством, по некоторым археологическим находкам очевидно, что место было сакральным для древних язычников.


Вид на Кижский погост

Загадки места:


  • Церковь Преображения , возведенная в 1714 годом неизвестным мастером все-таки с гвоздями. Мистики утверждают, что на этом месте раньше было древнейшее языческое капище.

  • Кижский погост славится опять же неподтверждёнными, но упорными слухами о НЛО и пространственно-временных искажениях на месте старообрядческого кладбища.

  • Церковь Воскрешения Лазаря - по преданию ее построил Преподобный Лазарь Муромский аж в начале XIV века. Люди верили, что церковь «чудотворна», до революции сюда тянулись вереницы паломников. Но во времена большевиков строение разорили и забросили, реставрация началась только в 1954 году. Теперь церковь является частью экспозиции «Русские Заонежья».

Церковь Воскрешения Лазаря

Словом, эзотерики всех мастей считают остров местом интенсивного геоактивного излучения, говоря простым языком - место силищи богатырской, где переплетаются верхние миры духов, людей и мир демонов.


Меня на Кижах атаковали чайки, кода я охотилась за прекрасным кадром, в центре которого было гнездо.

Но птицы, наверное, подумали, что гнездо у меня на голове.

Как добраться до острова Кижи:


  • Если у вас есть в запасе время, а денег нет, то можно доехать автобусом из Петрозаводска до поселка Велкая Губа (около 250 км. по трассе),оттуда до острова оставется всего 1 км, находим местных и договариваемся о лодке.

  • Самый быстрый и комфортный путь: водный трансфер из Петрозоводска, туда возит компания "Русский Север" двумя путями:

Относительно дешево и быстро на судне Метеор или Комета , идет 1.15 минут;
Дороже, но совсем по-царски на теплоходе "Меридиан" , целый мини-круиз на 3.30 минут в одну сторону

№3.Лабиринты - спираль в иной мир

Еще одна загадка - каменные символы спиралевидной формы, лабиринты с диаметром до 30 метров.

Вопрос тут один: с какой целью древние люди складывали булыжники в такие причудливые формы?

Лабиринт на острове Олешин (архипелаг Кузова, Белое море).

Популярных версий две:

Промысловая магия. Все лабиринты находятся в рыбных местах и связаны с побережьем и островами. Может так помечали места для рыбалки? Или это схема глобальной морской навигации?

Культ мертвых. Возможно, лабиринты символизируют трудный и извилистый проход от жизни к смерти? Или это вместилище душ умерших? Запутанный путь, чтобы духи не могли вернуться в мир живых. Но ведь не все лабиринты сопровождаются захоронениями...

Отдельные исследователи полагают, что образ спирали - код к знаниям, которые передавались из поколения в поколение, от народа к народу, невзирая на культурные и религиозные различия.

Как добраться до лабиринтов Карелии?

Два лабиринта находятся на архипелаге Кузова, остров Олешин, Белое море. Добраться до них можно водным транспортом из Кеми - 30 км. Кстати, кроме лабиринтов на архипелаге еще масса таинственных объектов.


Архипелаг Кузова

Регулярного сообщения с островами архипелага нет, они необитаемы, поэтому добраться до Кузовов можно или с экскурсией или дикарем, договорившись с перевозчиками из поселка Рабочеозерск. Обратите внимание, что Кузова - особо охраняемая природная территория и разбивать лагерь можно лишь на трех островах: Немецкий Кузов, Русский Кузов и Чернецкий.

Третий лабиринт расположен близ полуострова Красная Луда в северной части Чупинского залива. Но по этим координатам Гугл ничего не выдает, прокладывать маршрут надо до рабочего поселка Кереть, лабиринт - на 20 км севернее.

№4.Онежские петроглифы - северная Кама-сутра

Петроглифы (древние наскальные рисунки) есть во многих местах: от промозглой Норвегии до палящей Эфиопии. В большинстве случаев в них нет никакой мистики, рисунками древние люди передавали информацию: как охотиться, строить, собирать травы. Но с карельскими петроглифами все не так просто, большинство рисунков до сих пор не разгадано. Особенно интересны эротические мотивы в Онежских петроглифах, созданные около 6-ти с половиной тысяч лет назад.

Петроглиф на мысе Бесов Нос.

Загадки места:

Каково назначение рисунков? Информационной нагрузки как таковой нет, может, подсказка к лучшим позам или первые иллюстрации для разжигания своей фантазии?

Почему отдельных мужчин изображали с огромным фаллосом, огромной ногой и огромной рукой? Выражение превосходства?

Почему в разных местах все женщины изображены одинаково: с поднятыми руками и колесообразными ногами. Процесс выбивания на базальте длился тысячу лет, они что, сговорились?- Эротические сцены изображены в 7 местах, почему именно там? Своеобразная табличка «место для..» из-за особой энергетики?

Какие бы не были версии, надо смириться с мыслью, что часть петроглифов мы не сможем разгадать никогда. Хотя размышлять на эту тему очень занимательно.

Космические лучи

Дифференциальный энергетический спектр космических лучей носит степенной характер (в дважды логарифмическом масштабе - наклонная прямая) (минимальные энергии - жёлтая зона, солнечная модуляция, средние энергии - синяя зона, ГКЛ, максимальные энергии - пурпурная зона, внегалактические КЛ)

Косми́ческие лучи́ - элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве .

Основные сведения

Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц .

Физика космических лучей изучает:

  • процессы, приводящие к возникновению и ускорению космических лучей;
  • частицы космических лучей, их природу и свойства;
  • явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.

Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.

Классификация по происхождению космических лучей:

  • вне нашей Галактики
  • в Галактике
  • на Солнце
  • в межпланетном пространстве

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.

По количеству частиц космические лучи на 90 процентов состоят из протонов, на 7 процентов - из ядер гелия, около 1 процента составляют более тяжелые элементы, и около 1 процента приходится на электроны. При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента - по порождаемому ею синхротронному излучению , которое приходится на радиодиапазон (в частности, на метровые волны - при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей - и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами .

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: L, M, H, VH (соответственно, легкие, средние, тяжелые и сверхтяжелые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий , бериллий , бор) по сравнению с составом звёзд и межзвёздного газа . Данное явление объясняется тем, что частицы КЛ под воздействием галактического магнитного поля хаотически блуждают в пространстве около 7 млн лет, прежде чем достигнуть Земли. За это время ядра группы VH могут неупруго провзаимодействовать с протонами межзвёздного газа и расколоться на более легкие фракции. Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии .

История физики космических лучей

Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, все равно наблюдался остаточный ток. В 1911-1912 годах был проведен ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растет с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.

В 1921-1925 годах американский физик Милликен , изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами. В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления - открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещенной в постоянное магнитное поле, дали возможность «увидеть», за счет ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц. Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.

Солнечные космические лучи

Солнечными космическими лучами (СКЛ) называются энергичные заряженные частицы - электроны, протоны и ядра, - инжектированные Солнцем в межпланетное пространство. Энергия СКЛ простирается от нескольких кэВ до нескольких ГэВ. В нижней части этого диапазона СКЛ граничат с протонами высокоскоростных потоков солнечного ветра . Частицы СКЛ появляются вследствие солнечных вспышек .

Космические лучи ультравысоких энергий

Энергия некоторых частиц превышает Предел Грайзена-Зацепина-Кузьмина - теоретический предел энергии для космических лучей 6·10 19 эВ . Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA (англ.) русск. . Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.

Регистрация космических лучей

Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего - газоразрядные счётчики или ядерные фотографические эмульсии , поднимаемые в стратосферу, или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.

Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу она, взаимодействуя с атомами воздуха на первых 100 г/см², рождает целый шквал частиц, в основном пионов и мюонов , которые в свою очередь рождают другие частицы, и так далее. Образуется конус из частиц который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение , регистрируемое телескопами. Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.

Значение для космических полётов

Космонавты МКС , когда закрывают глаза, не чаще, чем раз в 3 минуты, видят вспышки света , возможно, это явление связано с воздействием частиц высоких энергий, попадающих в сетчатку глаза. Однако экспериментально это не подтверждено, возможно, что этот эффект имеет под собой исключительно психологические основы.

Длительное воздействие космической радиации способно очень негативно отразиться на здоровье человека. Для дальнейшей экспансии человечества к иным планетам Солнечной системы следует разработать надёжную защиту от подобных опасностей - учёные из России и США уже ищут способы решения этой проблемы.

См. также

Примечания

Литература

  • С. В. Мурзин. Введение в физику космических лучей. Москва, М.: Атомиздат, 1979.
  • Модель космического пространства - М.: изд-во МГУ, в 3-х томах.
  • А. Д. Филоненко Радиоастрономический метод измерения потоков космических частиц сверхвысокой энергии (рус.) // УФН . - 2012. - Т. 182. - С. 793-827.

Ссылки

  • Научно-образовательный открытый проект по исследованию Космических лучей

Wikimedia Foundation . 2010 .

Космические лучи - потоки быстрых заряженных частиц - протонов, электронов, ядер различных химических элементов, летящих в различных направлениях в космическом пространстве со скоростью более 100 000 км/с. Попадая в земную атмосферу, частицы космических лучей сталкиваются в ней с ядрами атомов азота и кислорода и разрушают их. В результате возникают потоки новых элементарных частиц. Такие частицы, рожденные в атмосфере, называются вторичными космическими лучами. Вторичные космические лучи регистрируются специальными приборами - счетчиками ионизующих частиц или с помощью особых ядерных фотоэмульсий. Первичные космические лучи практически не достигают Земли, и лишь небольшое их количество регистрируется высоко в горах. Исследования этих частиц проводятся в основном за пределами земной атмосферы с использованием современной космической техники.

Основная масса космических лучей, приходящих к Земле, имеет энергию более эВ (1 эВ равен Дж). Для сравнения укажем, что в недрах Солнца, где вещество нагрето до температуры 15 000 000 К, средняя энергия частиц плазмы лишь немногим превышает 103 эВ, т. е. она во много раз меньше, чем у космических лучей.

Космические лучи ежесекундно пронизывают буквально каждый квадратный сантиметр межпланетного и межзвездного пространства. На площадку с поверхностью в 1 м2 попадает в среднем около 10 000 частиц в секунду. В основном это частицы сравнительно невысоких энергий. Чем больше энергия космических частиц, тем реже они встречаются. Так, частицы с очень высокой энергией, превышающей эВ, попадают на площадь в 1 м2 в среднем раз в год.

Крайне редко встречаются частицы с фантастической энергией в эВ. Где они смогли получить столь большую энергию, пока остается неизвестным.

Более 90% первичных космических лучей всех энергий составляют протоны, около 7% приходится на -частицы (ядра атомов гелия), около 2% - на ядра атомов, более тяжелых, чем у гелия, и примерно 1 % - на электроны.

По своей природе космические лучи делятся на солнечные и галактические.

Солнечные космические лучи имеют сравнительно небольшую энергию и образуются главным образом при вспышках на Солнце (см. Солнечная активность). Ускорение частиц этих космических лучей происходит в хромосфере и короне Солнца. Потоки солнечных космических лучей после особенно сильных вспышек на Солнце могут представлять серьезную радиационную опасность для космонавтов.

Первичные космические лучи, приходящие извне в Солнечную систему, называются галактическими. Они движутся в межзвездном пространстве по довольно запутанным траекториям, постоянно меняя направление полета под действием магнитного поля, существующего между звездами нашей Галактики.

Рисунок (см. оригинал)

Электроны, входящие в состав космических лучей, постепенно тормозятся в магнитном поле, теряя энергию на излучение радиоволн. Такое излучение называется синхротронным. Оно регистрируется радиотелескопами. Наблюдая его, можно выявить области повышенной концентрации космических лучей. Оказалось, что космические лучи сконцентрированы в основном в диске нашей Галактики, толщиной в несколько тысяч световых лет (вблизи плоскости Млечного Пути). Полная энергия всех космических лучей в этом слое измеряется гигантской цифрой - Дж.

Основным источником космических лучей в межзвездном пространстве являются, по-видимому, взрывы сверхновых звезд. Не случайно остатки сверхновых обладают мощным синхротронным излучением. Вносят свою лепту и быстро вращающиеся намагниченные нейтронные звезды. Они способны сообщать заряженным частицам большие энергии. Очень мощными источниками космических лучей могут быть активные ядра галактик, а также радиогалактики с характерными для них выбросами вещества, сопровождающимися очень мощным радиоизлучением.

Получив большую энергию, частицы космических лучей десятки миллионов лет блуждают по Галактике в различных направлениях, прежде чем потеряют свою энергию при столкновениях с атомами разреженного межзвездного газа.

Изучение космических лучей - один из увлекательнейших разделов астрофизики. Наблюдения космических лучей (непосредственная регистрация их, анализ синхротронного излучения или эффектов их взаимодействия со средой) позволяют глубже понять механизмы выделения энергии при различных космических процессах, выяснить физические свойства межзвездной среды, находящейся под непрерывным воздействием космических лучей. Наблюдения важны также для изучения физики тех элементарных частиц, которые возникают при взаимодействии космических лучей с веществом. Существенным вкладом в этот раздел физики явились исследования, выполненные с помощью космических аппаратов, в том числе запущенных в 60-е гг. в СССР четырех тяжелых спутников «Протон».

рис. Космические лучи


Космические лучи - это поток заряженных частиц, движущихся в Галактике с чудовищными скоростями. Это главным образом ядра обычных химических элементов, по-видимому, возникающие в результате взрывов сверхновых звезд, движение которых по галактическим маршрутам регулируется слабыми магнитными полями, пронизывающими нашу Галактику. Космические лучи - это неотъемлемая часть межзвездной среды, и в них заключена значительная доля общей ее энергии. Когда мы прослеживаем пути космических лучей, регистрируя их с помощью специальных толстослойных фотографических эмульсий, мы действительно регистрируем захват частицы, дошедшей до нас из межзвездного пространства. В наши дни космические лучи - это единственные известные частицы, пришедшие из-за пределов Солнечной системы, с которыми мы можем иметь прямой контакт. По одной лишь этой причине они заслуживают тщательного исследования.

Открытие космических лучей


Космические лучи, которым удалось достичь Земли, пройдя сквозь толщу атмосферы, подверглись воздействию магнитного поля Земли и возможных межпланетных полей. Они также испытали действие солнечного ветра - потока частиц, выбрасываемых в пространство солнечной атмосферой. Космические лучи были впервые зарегистрированы около 60 лет назад благодаря ионизационным эффектам, которые они вызывают в ионизационных камерах. Информацию о направлениях, по которым приходят космические лучи, можно получить, проследив воздействие одной единственной заряженной частицы на цепочку соответствующим образом установленных ионизационных камер. Учеными установлено, что земная атмосфера сильно влияет на все частицы, кроме тех, которые обладают наибольшей энергией, и что на Земле регистрируются потоки вторичных космических лучей - «атмосферные ливни»,- возникающие в результате взаимодействия космических частиц высоких энергий с атомами верхних слоев атмосферы.


фото: наземная гамма обсерватория VERITAS для регистрации космического излучения


Всесторонние научные исследования позволили изучать свойства заряженных частиц, входящих в состав космических лучей. Легко были отождествлены самые распространенные их компоненты: ядра атомов водорода, протоны, и ядра атомов гелия, альфа частицы, состоящие из двух протонов и двух нейтронов. Но вскоре стало ясно, что присутствуют также ядра более тяжелых элементов, в частности ядра атомов железа с атомным номером Z = 26. Не так давно при помощи современных методов «проявления следов» удалось проследить пути частиц в метеоритах, что позволило обнаружить в космических лучах элементы тяжелее железа. Самым тяжелым ядром из ныне обнаруженных является ядро с атомным номером Z = 106, т. е. трансурановое ядро.

Влияние магнитного поля Земли на заряженные частицы из космоса


Магнитное поле Земли воздействует на частицы космических лучей в такой степени, что становится очень трудно проследить первоначальное направление до входа в магнитосферу Земли всех частиц, кроме тех, которые обладают наибольшими энергиями. Кроме того, взаимодействие частиц космических лучей и газов верхних слоев атмосферы создает вторичные эффекты в виде ливней ионизованных частиц. Магнитное поле Земли и ее атмосфера - это надежный щит, защищающий нас от космических лучей! Огромную помощь в изучении космических лучей до их вторжения в атмосферу Земли и до воздействия на них земного магнитного поля оказывают искусственные спутники. Чрезвычайно важная задача будущего - проводить исследование на космических аппаратах за пределами внутренней области Солнечной системы.

Природа космического излучения


Ученые выяснили, что наибольшая часть космических лучей, причем с наименьшими энергиями, имеет солнечное происхождение, но главный вклад вносят космические лучи, приходящие из и обладающие высокими энергиями. Возможно, что некоторая доля космических лучей - это посланцы других галактик. Сейчас считают, что наиболее вероятным источником космических лучей в Галактике являются взрывы сверхновых.


фото: Вспышка сверхновой - источник галактического излучения


Как мы отмечали, главными компонентами космических лучей являются протоны и альфа-частицы. За ними идут элементы с атомными номерами Z = 30 и больше, особенно группа железа. Интересно также, что среди частиц космических лучей встречаются и электроны. Нелегко отделить истинные космические электроны от электронов, образовавшихся в солнечном ветре и в результате вторичных эффектов в земной атмосфере. Наблюдения с искусственных спутников в периоды минимума солнечной активности позволяют получить наилучшие данные о свободных электронах в межзвездном и межпланетном пространстве. Результаты исследования космических лучей позволили нам узнать много нового и интересного об относительном распределении химических элементов и их распространенности в межзвездном пространстве.

Гипотеза сверхновых


В последние годы специалисты по космическим лучам много спорили о том, возникают ли космические лучи в нашей Галактике или за ее пределами. В целом представляется, что одерживают верх сторонники галактического происхождения космических лучей. Наибольшее внимание привлекла гипотеза, выдвинутая советскими учеными В. Л. Гинзбургом, В. Н. Сыроватским и поддержанная И. С. Шкловским, согласно которой космические лучи возникают при взрывах сверхновых звезд в нашей Галактике. В , происходит 2- 3 взрыва сверхновых в столетие. Энергия, освобождающаяся при каждом таком взрыве, колоссальна, и тот факт, что известные остатки вспышек сверхновых, например Крабовидная туманность, являются источниками синхротронного радиоизлучения, указывает на присутствие вокруг них крупномасштабных магнитных полей. Ядра атомов, выбрасываемые в космическое пространство в качестве побочных продуктов взрыва сверхновых звезд, ускоряются этими магнитными полями, что позволяет понять высокие энергии частиц космических лучей.

Можно не сомневаться в том, что космические лучи в больших количествах не могут приходить к нам от далеких галактик, находящихся на расстояниях нескольких миллиардов парсек. Гипотеза сверхновых обеспечивает постоянный приток частиц с примерно требуемой энергией. Именно поэтому представляется вполне разумным искать источник космических лучей в самых грандиозных явлениях, происходящих в нашей Галактике - взрывах сверхновых.

Энциклопедичный YouTube

    1 / 5

    ✪ Космические лучи: что это такое?

    ✪ NASA: изучаем КОСМИЧЕСКИЕ ЛУЧИ

    ✪ Космические лучи сверхвысоких энергий - Сергей Троицкий

    ✪ ТАЙНА КОСМИЧЕСКИХ ЛУЧЕЙ

    ✪ Великое в малом. Эксперимент космических лучей

    Субтитры

Основные сведения

Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц .

Физика космических лучей изучает:

  • процессы, приводящие к возникновению и ускорению космических лучей;
  • частицы космических лучей, их природу и свойства;
  • явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.

Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.

Классификация по происхождению космических лучей:

  • вне нашей Галактики
  • в Галактике
  • на Солнце
  • в межпланетном пространстве

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.

Энергетический спектр космических лучей на 43 % состоит из энергии протонов , ещё на 23 % - из энергии гелия (альфа-частиц) и 34 % энергии, переносимой остальными частицами .

По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % - из ядер гелия, около 1 % составляют более тяжелые элементы, и около 1 % приходится на электроны . При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента - по порождаемому ею синхротронному излучению , которое приходится на радиодиапазон (в частности, на метровые волны - при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей - и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами .

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: p (Z = 1) , α (Z = 2) , L (Z = 3 − 5) , M (Z = 6 − 9) , H (Z ⩾ 10) , V H (Z ⩾ 20) {\displaystyle p(Z=1),\alpha (Z=2),L(Z=3-5),M(Z=6-9),H(Z\geqslant 10),VH(Z\geqslant 20)} (соответственно, протоны, альфа-частицы, легкие, средние, тяжелые и сверхтяжелые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий , бериллий , бор) по сравнению с составом звёзд и межзвёздного газа . Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжелые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра . Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии .

История физики космических лучей

Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, все равно наблюдался остаточный ток. В 1911-1912 годах был проведен ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растет с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.

В 1921-1925 годах американский физик Милликен , изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами. В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления - открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещенной в постоянное магнитное поле, дали возможность «увидеть», за счет ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц. Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.

Солнечные космические лучи

Солнечными космическими лучами (СКЛ) называются энергичные заряженные частицы - электроны, протоны и ядра, - инжектированные Солнцем в межпланетное пространство. Энергия СКЛ простирается от нескольких кэВ до нескольких ГэВ. В нижней части этого диапазона СКЛ граничат с протонами высокоскоростных потоков солнечного ветра . Частицы СКЛ появляются вследствие солнечных вспышек .

Космические лучи ультравысоких энергий

Энергия некоторых частиц превышает предел ГЗК (Грайзена - Зацепина - Кузьмина) - теоретический предел энергии для космических лучей 5⋅10 19 эВ , вызванный их взаимодействием с фотонами реликтового излучения . Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA (англ.) русск. . Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.

Регистрация космических лучей

Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего - газоразрядные счётчики или ядерные фотографические эмульсии , поднимаемые в стратосферу, или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.

Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу, она, взаимодействуя с атомами воздуха на первых 100 г/см², рождает целый шквал частиц, в основном пионов и мюонов , которые, в свою очередь, рождают другие частицы, и так далее. Образуется конус из частиц, который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение , регистрируемое телескопами. Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.

Значение для космических полётов

Космонавты МКС , когда закрывают глаза, не чаще, чем раз в 3 минуты, видят вспышки света , возможно, это явление связано с воздействием частиц высоких энергий, попадающих в сетчатку глаза. Однако экспериментально это не подтверждено, возможно, что этот эффект имеет под собой исключительно психологические основы.

Новое на сайте

>

Самое популярное