Домой Полезные советы Струйные течения. Что такое струйное течение

Струйные течения. Что такое струйное течение

Струйное течение в атмосфере

(СТ) - сильный узкий поток с почти горизонтальной осью в верхней тропосфере или в стратосфере, характеризующийся большими вертикальными и горизонтальными сдвигами ветра и одним или более максимумами скорости. Обычно длина СТ составляет тысячи км, ширина - сотни км, толщина - несколько км. Вертикальный сдвиг ветра около 5-10 м/с на 1 км, а горизонтальный Струйное течение в атмосфере5 м/с на 100 км. Нижний предел скорости в СТ условно считается равным 100 км/ч и выбран с учётом того, что ветер, скорость которого превышает 100 км/ч, оказывает заметное влияние на путевую скорость летательных аппаратов, выполняющих полёт в зоне СТ. Центральная часть СТ, где скорости ветра наибольшие, называют сердцевиной, линия максимального ветра внутри сердцевины - осью СТ. Слева от оси, если смотреть по потоку, расположена циклоническая сторона СТ, справа - антициклоническая. Горизонтальные сдвиги на циклонической стороне СТ гораздо больше, чем на антициклонической, вертикальный сдвиг ветра обычно больше над осью СТ, чем под ней. Чем сильнее СТ, тем больше вертикальный сдвиг ветра в нём. Различают тропосферные и стратосферные СТ.
Тропосферные С. т. формируются в переходной зоне между высокими холодными циклонами и высокими тёплыми антициклонами в верхней тропосфере, образующими высотные фронтальные зоны. Высотные фронтальные зоны (ВФЗ) могут объединяться, образуя планетарную (сравнимую по размерам с размерами Земли) фронтальную зону. Оси тропосферных С. т. располагаются вблизи тропопаузы и в северном полушарии находятся на высоте 6-8 км над Арктикой, 8-12 км - в умеренных широтах, 12-16 км - в субтропиках.С. т. высоких и средних широт связаны с ВФЗ и атмосферными фронтами; они меняют своё положение вместе с ними. Субтропическое западное С. т. сравнительно устойчиво и сильно. Наиболее мощное на Земле субтропическое С. т. наблюдается в зимнее время над западной частью Тихого океана, где создаются большие контрасты температуры в тропосфере между тёплым воздухом над поверхностью океана и холодным воздухом над восточной Азией.
На картах представлены средние скорости ветра на изобарической поверхности 300 гПа (соответствует высоте около 9 км) в северном полушарии зимой и летом. Видно, что зимой во внетропических широтах С. т. образуются над севером Атлантического океана и Европы. Субтропические С. т. почти окаймляют земной шар на широте 25-30(р). Они более мощные, чем внетропические С. т. Средние скорости в центре С. т. превышают 150 км/ч, а над Японскими островами - 200 км/ч. Летом в связи с прогревом воздуха во внетропических широтах и уменьшением горизонтального градиента температуры между низкими и высокими широтами С. т. ослабевают. Они чаще образуются над севером Европы. В соответствии с сезонными радиационными условиями субтропические С. т., ослабевая, перемещаются к северу. Над Азией и Северной Америкой они находятся летом на широте 40-45(°). С. т. изображаются и с помощью вертикальных разрезов атмосферы.
Стратосферные С. т. расположены выше тропопаузы. Зимние западные С. т. возникают в зоне больших меридиональных градиентов температуры и давления зимнего стратосферного циклона, расположенных между приполюсной областью и более низкими широтами. Ось этого С. т. находится на высоте 50-60 км на широте около 50(°), скорость ветра меняется от 180 до 360 км/ч. Положение и высота западного стратосферного С. т. может меняться при зимних стратосферных потеплениях, во время которых холодный циклон меняет своё местоположение и интенсивность и замещается теплым антициклоном. В соответствии с радиационными условиями летнее стратосферное С. т. устойчивого восточного направления возникает на обращённой к экватору периферии летнего стратосферного тёплого антициклона. Ось С. т. расположена на высоте 50-60 км, на широте около 45(°); средняя скорость ветра на оси до 180 км/ч. Экваториальное С. т. восточного направления находится летом вблизи экватора (от 0 до 15-20(°) широты) с осью на высоте 20-30 км и максимальными скоростями ветра до 180 км/ч.
При метеорологическом обеспечении полётов летательных аппаратов прогнозируется положение тропосферных С. т., высоты осей С. т. и максимальная скорость ветра. Эти данные включаются в авиационные прогностические карты барической топографии, вручаемые экипажам воздушных судов.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия .Главный редактор Г.П. Свищев .1994 .

Влияние ветра на параметры движения ВС наиболее существенно при больших скоростях ветра, особенно в области струйных течений (СТ).
СТ – это перенос воздуха в виде узкого течения с большими скоростями, обычно в верхней тропосфере нижней стратосфере с осью вблизи тропопаузы. Максимальная скорость ветра (30 м/с и >) наблюдается на оси СТ. Изменение скорости ветра в области СТ обычно составляет 5-10 м/с на 1 км высоты и 10 м/с и > на 100 км в гориз-м направлении.

СТ образуются в зонах наибольшего сближения тёплых и холодных воздушных масс, где создаются значительные горизонтальные градиенты давления и температуры. Поскольку наибольшие контрасты температуры в зонах атмосферных фронтов наблюдаются в хол. половину года, то в этот период СТ наиболее активны.

Навигационное значение струйных течений трудно переоценить. С одной стороны, в зоне СТ часто возникают перистые и перисто-кучевые облака и интенсивная турбулентность, а с другой – сильный ветер в зоне СТ значительно изменяет скорость ВС.

Интенсивная турбулентность отмечается в основном на холодной (циклонической) стороне СТ, где градиенты температуры и ветра больше. На оси СТ сильная турбул-ть бывает значительно реже.

Если полёт в зоне СТ происходит против ветра, то путевая скорость резко уменьшается, если по ветру – увеличивается. При полёте на большие расстояния можно использовать СТ для сокращения времени полёта и для увеличения дальности полёта. В настоящее время есть методы, позволяющие по данным о поле ветра предложить наивыгоднейший маршрут, по которому ВС прилетит в пункт назначения или с наименьшей затратой времени, или с наименьшим расходом топлива. Всё сказанное свидетельствует о большом навигационном значении СТ.

22. Классификация воздушных масс (а)географическая (арктический, умеренный и тропический воздух, каждая из ВМ бывает континентальной или морской в зависимости от условий образования ); б)по условиям для развития конвекции (устойчивая и неустойчивая).



а) В зависимости от положения очага формирования воздуха в одном из основных термических поясов земного шара и с учетом характера подстилающей поверхности (океан или материк) выделяют следующие типы воздушных масс:

Арктический или антарктический воздух (АВ) - морской (мАВ) и континентальный (кАВ) - находится в северных и южных полярных областях льда и снега;

Воздух умеренных широт (УВ) - морской (мУВ) и континентальный (кУВ) - находится в умеренных широтах;

Тропический воздух (ТВ) - морской (мТВ) и континентальный (кТВ) - находится в областях пассатов северного и южного полушарий;

Экваториальный воздух (ЭВ) - находится у экватора между северными и южными пассатами.

Морской воздух отличается большой влажностью. Она повсеместно составляет около 80%. Кроме того, наблюдаются различия и в температурном режиме. В летнее время в умеренных широтах он будет холоднее континентального, а зимой - теплее.

Арктический и антарктический воздух, из-за преобладания ледяных полей и суши в высоких широтах, редко бывает морским арктическим (мАВ). Не делят на морской и континентальный экваториальным воздух, так как над сушей и над морем он одинаково теплый и влажный из-за огромного количества осадков.

б) Устойчивой называется воздушная масса, в ко­торой нет условий для развития восходящих движений воздуха (конвекции). Вертикальные движения могут воз­никать лишь в виде динамической турбулентности при го­ризонтальном движении воздуха. К такой воздушной мас­се обычно относятся теплые массы.

Неустойчивой называется воздушная масса, в ко­торой есть условия для развития восходящих движений воздуха (конвекции). К неустойчивым обычно относятся холод­ные массы.

23. Ветер – направление и скорость, классификация: слабый, умеренный, сильный, шторм, меняющийся, порывистый, шквал.

Ветер – это горизонтальное (адвективное) перемещение воздуха относительно земной поверхности, характеризуется направлением и скоростью.

Направление задается углом (или румбом δ=22,5 0 ), отсчитываемым от северного направления по часовой стрелке

Величина скорости задается оперением на стрелке (малое перо – 2,5 м/с, большое перо – 5 м/с, зачерненный треугольник – 25 м/с)

По величине скорости ветер различают:

1) < 3 м/с – слабый

2) 4-7 м/с – умеренный

3) 8-14 м/с – сильный

4) 15-19 м/с – очень сильный

5) 20-24 м/с – шторм

6) 25-30 м/с – жестокий шторм, ураган.

7) Меняющийся ветер – за 2 мин направление изменяется более, чем на 1 румб.

8) Порывистый – за 2 минуты ветер меняется на 4 м/с и более.

9) Шквал – кратковременное резкое усиление ветра до 20 м/с и более со значительным изменением направления.

24. Местные ветры: фен, бора, бриз, внутримассовый шквал, тромбы, смерчи, торнадо. Условия для авиации.

Местные ветры - ветры, характерные для определенных районов, связанных с особенностями местной орографии, соседством суша-вода и др.

1.Бриз – это ветер у береговой линии морей и небольших озер, имеющие резкую суточную смену направлений (слой 1-2 км).

Ночной бриз : Дневной бриз :

2.Фён (гармсиль) – теплый, сухой порывистый ветер, дующий с гор в долину.

Особенности:

1. Значительно повышает температуру (на 30 0 за несколько часов) и понижает влажность (до 4-5%).

2. Продолжительность – от нескольких часов до нескольких суток.

3. Вызывает сильную болтанку ВС.

3.Бора – сильный (V> 20 м/с) холодный порывистый ветер, дующий с низких горных хребтов в сторону теплого моря.

4.Шквалы - резкие кратковременные усиления ветра (до 20 м/с). Бывают внутримассовыми (в конвективных Cb) и Фронтальными (в нескольких местах вдоль ХФ 2 рода– линия шквалов).

P.S. Ci - перистые, Cs - перисто-слоистые, Cb – кучево-дождевые, Cu – кучевые,

Ns – слоисто-дождевые, St – слоистые.

Шкваловый ворот (ХФ) - вихрь с горизонтальной осью, возникающий в передней части грозового облака.

5.Тромб (смерч, торнадо) – особые маломасштабные вихри (d=1-100 м, h=1 км, скорость перемещения – 20-30 км/ч, время жизни – 1-10 мин, давление в центре снижено на 10-100 гПа).

Особенности:

1. Возникает в передней части грозового облака и проникает сверху до самой Земли;

2. Наблюдаются в умерен-й и тропич-й широтах в теплой и влажной неустойчиво стратифицированной ВМ;

3. Вращение воздуха вокруг оси как в циклоне с v=70-100 м/с;

4. Предположительно – разновидность грозового шквала;

5. Энергия типичного смерча радиусом 1 км и средней скоростью 70 м/с равна энергии эталонной атомной бомбы в 20 килотонн тротила.

6.Горно-долинные ветры (до 10 м/c) – выражены в теплый сезон, заполняют все сечение долины, вертикальная мощность – средняя высота хребтов.

25. Циклоническая деятельность. Этапы развития циклонов. Образование антициклонов. Условия полетов в разных частях циклонов и антициклонов, в зоне атмосферных фронтов.

Циклон – область пониженного давления, ограниченная замкнутыми изобарами с минимальным давлением в центре.

Антициклон – область повышенного давления, ограниченного замкнутыми изобарами с максимальным давлением в центре.

Согласно барическому закону ветра:

1) В циклоне циркуляция осуществляется против часовой стрелки, в антициклоне – по часовой стрелке.

2) Скорость ветра в циклоне в среднем больше по величине, чем в антициклоне.

НУЖНО ДОДЕЛАТЬ

26. Минимумы погоды.

Минимум погоды – термин, обозначающий предельные погодные условия, при которых разрешается выполнять полеты подготовленному командиру ВС, эксплуатировать ВС и использовать аэродром для вылета и посадки.

Минимум погоды определяется:

Высота нижней границы облаков(высотой принятия решения)

Видимостью(видимостью на ВПП)

P.S. Видимость на ВПП – максимальное расстояние, в пределах которого пилот ВС, находящегося на осевой линии ВПП, может видеть маркировку ее покрытия или огни, ограничивающие ВПП или обозначающие ее осевую линию.

Высота принятия решения – установленная относительная высота, на которой должен быть начат маневр ухода на второй круг в случае, если до достижения этой высоты командиром ВС не был установлен визуальный контакт с ориентирами для продолжения захода на посадку, а также если положение ВС в пространстве или параметры его движения не обеспечивают безопасной посадки.

В минимум погоды входят минимумы:

Аэродрома

Воздушного судна

Командира ВС

Вида авиационных работ

Минимумы аэродрома зависят от географического положения аэродрома и его оборудования системами посадки.

Состоит из минимумов:

  1. для взлёта – это минимальные допустимы значения видимости на ВПП и высоты нижней границы облаков, при которых разрешается выполнять взлет на ВС данного типа.
  2. для посадки – минимально допустимые значения видимости на ВПП и высоты принятия решения, при которых разрешается выполнять посадку на ВС данного типа.
  3. тренировочного для взлета (1)
  4. тренировочного для посадки (те же характеристики как и для пункта (2) только для тренировочных полетов.

Минимум воздушного судна обусловлены наличием и качеством специальной навигационной аппаратуры, имеющейся на борту ВС.

Состоит из минимумов:

  1. для взлёта – минимально допустимые значения видимости на ВПП, позволяющие безопасно производить взлет на ВС данного типа.
  2. для посадки – минимально допустимые значения видимости на ВПП и высоты принятия решений, позволяющие безопасно производить посадку на ВС данного типа.

Минимум командира ВС обусловлены и определяются личной подготовкой летчика.

Состоит из минимумов:

  1. для взлёта – минимально допустимое значение видимости на ВПП, при котором командиру разрешается выполнять взлёт на ВС данного типа.
  2. для посадки – минимально допустимые значения видимости на ВПП и высоте принятия решений(Высоте нижней границы облаков), при котрых командиру разрешается выполнять посадку на ВС данного типа.
  3. для полета по правилам визуального полёта и особым правилам визуального полёта – минимально допустимые значения видимости и высоты нижней границы облаков, при которых командиру разрешается выполнять визуальные полёты на ВС данного типа.

Минимум вида авиационных работ – минимально допустимые значения видимости и высоты нижней границы облаков, при которых разрешается выполнение авиационных работ с применением правил полётов(визуальных или по приборам), установленных для данного вида работ.

  1. первая категория (60м) , видимость на ВПП (800м) .
  2. вторая категория – высота нижней границы облаков (менее 60м, но не менее 30м) , видимость на ВПП (менее 800м, но не менее 400м) .
  3. третья категория – высота нижней границы облаков (менее 30м) , а видимость на ВПП (менее 400м) .

Делится на:

III-A – видимость на ВПП (не менее 200м) .

III-B – видимость на ВПП (не менее 50м) .

III-C – видимость на ВПП (равна 0 метров) .

P.S. При взлёте и посадке учитываются 3 минимума погоды: аэродрома, воздушного судна и командира ВС, из этих трёх выбирается наибольший .

При минимуме аэродрома 100х1000, минимуме ВС 50х500, минимуме командира ВС 80х1500, то этот летчик на этом самолете может сесть на этот аэродром при погоде не хуже чем 100х1500 .

27. Влияние температуры и плотности воздуха на тягу двигателя, потребную скорость, потолок самолета.

Зависимость располагаемой тяги от метеорологических условий определяет их влияние и на другие важные летно-технические характеристики самолета - максимальную скорость полета, скороподъемность, потолок самолета, а также на расход топлива.

Одной из важнейших летно-технических характеристик самолета является его потолок - наибольшая высота, на которую может подняться самолет при определенном режиме полета.

Различают:

Теоретическим потолком называется высота, на которой избыток тяги, и вертикальная скорость равны нулю.

Практическим потолком называется высота, на которой максимальная вертикальная скорость для реактивных самолетов равна 5 м/с, а для поршневых - 0,5 м/с.

Статическим потолком называется наибольшая высота горизонтального полета с постоянной скоростью.

Динамическим потолком называется наибольшая высота, достигаемая за счет использования кинетической энергии самолета, т.е. за счет потери скорости.

На этих высотах уменьшается расход топлива, увеличивается дальность полета. Если потолок самолета позволяет летать выше тропопаузы, то это, кроме указанных выше преимуществ полета вблизи потолка, способствует преодолению зон грозовой деятельности, интенсивной турбулентности, обледенения и других неблагоприятных метеорологических условий, наблюдающихся в тропосфере. Однако, следует иметь в виду, что вблизи потолка ухудшаются аэродинамические качества самолета, так как здесь используются большие углы атаки, потере устойчивости и управляемости. Потолок самолета зависит от физического состояния атмосферы. Он для большинства современных самолетов превышает высоту тропопаузы.

28. Опасные для ГА явления погоды (указать, где формируются указанное явление, и в чем опасность для полетов): Атмосферная турбулентность (термическая, орографическая, динамическая) и болтанка ВС. Турбулентность ясного неба (где наблюдается?). Сдвиги ветра и их влияние на взлет и посадку ВС. При каком значении сдвига ветра взлет и посадка запрещены? Обледенение ВС, методы борьбы. При какой скорости нарастания льда на несущих поверхностях ВС обледенение считается сильным? Грозовая деятельность. Классификация гроз, шквал. Статическое электричество.

Турбулентность

· Возникает при грозах, на АФ, при вертикальном сдвиге ветра ∆v/∆h (при радиационных, адвективных и орографических инверсиях), в зонах СТ при ясном небе (ТЯН на циклонической периферии), в горной местности (орографическая болтанка), в кучевых облаках, в неустойчивых ВМ.

· Вызывает перегрузки (отношение подъемной силы к силе тяжести), ухудшает управляемость ВС

По условиям образования различают:

1) Термическая турбулентность (неуст ВМ)

2) Динамическая турбулентность:

На приземных АФ при горизонтальных градиентах Т более 2 С на 100 км, горизонтальных градиентах скорости ветра - более 20 км/ч на 100 км,

Облачность

Вблизи главных (климатологических) фронтов (ПВФЗ, СТ), чаще это ТЯН, cиноптические ситуации со значительной сходимостью или расходимостью изогипс

3) Механическая (орографическая) турбулентность:

· (в результате трения воздуха о подстилающую поверхность), на наветренной стороне часто – сдвиг ветра, на подветренной – «ротор»),

· При устойчивой стратификации и v>10 м/с, возрастающей с высотой – горные волны с длиной волны 5-50 км, h=(3-4) Hхр, при высокой влажности – чечевицеобразные облака.

Размеры и повторяемость зон турбулентности

85-90% случаев: Δz <1000 м,

(В умеренных широтах Δz <500 м, Δl ~40 км 80%

Т/о вероятность попадания в болтанку при смене эшелона выше, чем при горизонтальном полете.

В тропосфере: наибольшая повторяемость турбулентности в слое 0-2 км (термическая и механическая турбу-лентность) и в слое 8-12 км (динамическая).

Интенсивность болтанки

Слабая - Δn < + 0,5 g на эшелоне

и Δn < + 0,3 g на глиссаде снижения

Умеренная - Δn < (0,5-1) g на эшелоне

и Δn < (0,3-0,4) g на глиссаде снижения

Сильная - Δn > 1 g на эшелоне

и Δn > 0,4 g на глиссаде снижения

Электризация

Поражение ВС э/ст разрядами происходит в Cb, Ns, Sc, St – при Е>10 6 В/м

Часты в зоне ХФ 1 рода, в Cb, не достигших стадии грозового облака;

Слабая электризация в Сi, St (ТФ, ХФ).

Возникновение радиопомех

Рыскание стрелок радиокомпасов,

Отказы бортовых радиолокаторов, антенн,

Повреждение обшивки

Когда я слышу «страшилки» о глобальном потеплении, я напоминаю очередному пророку близкой гибели человечества о том, что во время одной только летней грозы выделяется энергия 13 атомных бомб вроде той, что была сброшена на Хиросиму. А уж об энергии ураганных ветров и говорить не приходится. Так что жалкие потуги цивилизации несравнимы с могучими силами природы. Ох, правильно говорил один из героев бессмертного романа Я.Гашека: «Что представляет собой капитан Венцель по сравнению с великолепием природы?» Далековато еще человечеству до того, чтобы загадить свою планету до невозможности проживания на ней!

Источником энергии грандиозных процессов, происходящих в атмосфере, является, конечно, Солнце. А причиной возникновения этих процессов – то, что солнечная энергия падает на поверхность Земли неравномерно. Ближе к экватору поверхность суши и поверхность океана прогреваются гораздо сильнее, чем у полюсов. В результате такой неравномерности, в атмосфере возникают воздушные потоки, переносящие тепло от более теплых к менее теплым районам Земли. Это – следствие фундаментального закона, который называется вторым началом термодинамики.

Воздух нагревается в более жарких местах, становится легче и поднимается вверх, на высоту 9-12 километров. Выше теплый воздух подняться не может из-за противодействия силы тяжести. Но и быстро охладиться он не в состоянии – слишком велик запас тепла. Поэтому воздушные потоки отклоняются к полюсам, туда, где прохладнее.

Однако до полюсов они дойти не успевают, где-то в районе 30 градусов северной или южной широты, воздух, наконец, охлаждается, опускается к поверхности Земли и теперь понизу следует в более теплые районы, то есть снова к экватору. Так образуются постоянные ветры, пассаты. Они дуют в юго-западном направлении в северном полушарии и в северо-западном направлении в южном. Смещение ветров на запад – следствие вращения Земли.

От полюсов холодный воздух движется вдоль поверхности земли туда, где теплее, то есть в южные широты. При этом он постепенно нагревается и где-то в районе 60-й широты начинает подниматься вверх, до границы тропосферы, на высоту около 9 километров. На этой высоте теплый воздух возвращается к полярным областям, постепенно отдавая свое тепло. Возле полюса он, охлажденный, спускается к поверхности земли, чтобы снова двигаться в более нагретые области.

Между этими двумя круговыми воздушными потоками возникает еще один, промежуточный. В нем холодный воздух, не успевший нагреться в районе 30 градусов широты, движется, постепенно нагреваясь, вдоль поверхности Земли и, достаточно нагревшись, поднимается вверх. По границе тропосферы он возвращается на юг, где, охладившись, вновь опускается к земной поверхности.

В местах, где эти круговые воздушные потоки соприкасаются, происходит взаимодействия холодных и теплых воздушных фронтов. В результате этого взаимодействия у поверхности Земли проливаются дожди, возникают грозы, а также ураганы, штормы и смерчи.

Что происходит на больших высотах, где тоже сталкиваются холодные и теплые воздушные фронты? Влажность здесь очень маленькая, поэтому ни дождь, ни снег, ни град здесь идти не будут. А вот грандиозные ураганные «воронки» здесь возникают с легкостью. Но направлены они не вертикально, как у поверхности Земли, а горизонтально. Поэтому они работают, как гигантские вентиляторы, создавая тонкие полосы завихряющегося воздуха, которые называются струйными течениями.

Струйные течения представляют собой узкие области высотой около 2 километров. Их ширина составляет от 40 до 160 километров. Этакие воздушные «трубы», по которым несется воздух со скоростью 400 – 500 километров в час. Длина струйного течения может быть самой разной в зависимости от скорости воздуха. Бывает, что одно струйное течение опоясывает земной шар в районе 30-х и 60-х широт. Бывает, что одно длинное струйное течение разбивается на несколько более коротких струйных течений.

Струйные течения в земной атмосфере метеорологи впервые зарегистрировали в 1883 году. В этом году произошло катастрофическое извержение вулкана Кракатау в Индонезии. Тучи дыма и вулканического пепла поднялись на стратосферные высоты – более 12 километров. Часть пепла и пыли была захвачена струйными течениями, что сделало эти течения хорошо видимыми с поверхности Земли.

В 1920 году японский метеоролог Васабуро Оиши запускал метеорологические воздушные шары с вершины горы Фудзи и обнаружил, что по достижении высот около 9 – 10 километров их резко уносит в восточном направлении. Оиши повезло, поскольку одно из струйных течений проходит как раз над Японией. Но его работы были практически неизвестны в других странах. Поэтому струйные течения повторно открыли американские летчики в 1945 году. «Летающие крепости» B-17 и B-29 летали на высотах свыше 10 километров со скоростью около 500 километров в час. На таких высотах они были недоступны для тогдашних истребителей, и американцы использовали эти самолеты для бомбардировки целей на Японских островах. Оказалось, что полет к месту бомбежки занимал гораздо больше времени, чем обратный полет. Более того, некоторые бомбардировщики, попадая в струйный поток, скорость ветра в которых достигала 400 – 500 километров в час, попросту «зависали», не в силах продвинуться вперед!

Современные пассажирские самолеты летают на высотах свыше 10 километров. Иногда они используют струйные течения для того, чтобы ускорить полет в направлении с запада на восток. Однако самолеты летят рядом, стараясь не попадать в само течение. Ведь здесь поток завихряется, в результате чего, самолет начинает сильно «болтать»

СТРУЙНЫЕ ТЕЧЕНИЯ, ИХ КЛ АССИФИКАЦИЯ, УСЛОВИЯ ОБРАЗОВАНИЯ И ПОЛ ЕТОВ В НИХ

Струйным течением (СТ ) называется узкая зона сильных вет ров со скорост ью

100 км/ч (30 м/с) и более большой горизонт альной протяженности.

Максимальная скорост ь ветра наблюдает ся в цент ральной части СТ, которая называется осью СТ . Вправо и влево от оси скорость ветра уменьшается. При эт ом горизонт альные сдвиги ветра могут достигать 10 м/с и более на 100 км расстояния, а вертикальные – 5…10 м/с и более на 100 м высоты.

СТ могут наблюдаться как в тропосфере (т ропосферные СТ), так и в ст ратосфере

(стратосферные СТ). При этом тропосферные СТ бывают: внет ропические, субтропические и экваториальные.

В Северном полушарии тропосферны е СТ направлены, как правило, с запада на восток,

но иногда они могут от клоняться к югу или к северу.

В поперечном сечении СТ может быть представлено в виде сильно сплющ енной

“т рубы” (рис. 10.2).


Рис. 10.2. Схематическое изображение струйного течения

Тропосферны е СТ наблюдают ся на высотах 7…11 км. Ось СТ обычно располагается на

1,5…2,0 км ниже т ропопаузы.

На террит ории СНГ СТ чаще образуются в холодное время года. Максимальная

скорость ветра (до 300 км/ч и более) наблюдается над Дальним Востоком, над остальной т еррит орией она достигает поряд ка 200 км/ч.

Наиболее интенсивными и устойчивыми являются субт ропические СТ. Максимальные скорости (650…750 км/ч и более) наблюд аются над Японией и Тихим океаном.

Для СТ характерно неодинаковое распределение т емперат уры и давления на правой и

левой сторонах (рис. 10.3).

Рис. 10.3. Распределение температуры и дав ления в струйном течении

На правой стороне от оси находит ся ТВ и наблюдается высокое давление, поэтому э та сторона называется антициклонической или теплой. На левой стороне нах одится ХВ и наблюдается низкое давление, поэтому эта сторона называется циклонической и холодной. Такое распределение температуры и давления в СТ объясняется тем, что в ХВ барическая ступень значительно меньше, чем в ТВ. Поэтому, на высотах низкое давление буд ет наблюдаться в ХВ, а высокое – в ТВ. А так как СТ – эт о ветер, т о в Северном пол уш арии оно направлено таким образом, чтоб ы слева ост авалось низкое давление и, следовательно, ХВ, а справа – высокое давление и ТВ.


Внетропические СТ связаны с главными атмосферными фронтами и высот ными фронт альными зонами (ВФЗ). Процесс образования СТ можно объяснить следующим образом (рис. 10.4). Больш ие контрасты температуры (8°С…10°С и более), наблюдаемые по обе ст ороны фронта, являются причиной возникновения больших горизонтальных градиент ов давления, а значит, и силы горизонтального барического град иента. Под воздействием эт ой силы начинается восходящее движение ТВ по фронтальной поверхности. При эт ом, чем больше конт раст температ уры, тем интенсивнее движение. В верхних слоях тропосферы ТВ встречает мощный задерживающий слой – тропопаузу. Тропопауза сверху, а фронтальная поверхност ь снизу образуют своего рода воздушные барьеры, ограничивающие свободный подъем ТВ. Под напором поднимающихся снизу масс воздуха верхний ТВ, “зажатый” с одной стороны тропопаузой, а с другой – фронтальной поверхностью, приобрет ает большую скорость и проносится вдоль ВФЗ как бы вдоль своеобразной аэ родинамической трубы. Восход ящие д вижения ТВ могут “поднимат ь” тропопаузу над СТ. По этому на левой стороне СТ т ропопауза, как правило, имеет очень крутой наклон.

Ось СТ, в основном, параллельна атмосферным фронтам, с кот орыми оно связано. Если

СТ связано с ТФ, то оно располагает ся в верхней тропосфере вперед и приземной линии теплого фронта на расстоянии 400…500 км. Если же участ ок СТ связан с ХФ, то СТ располагается в верхней тропосфере позади приземной линии ХФ на расстоянии 100…300 км (рис. 10.4).

Рис. 10.4. Синоптические условия образов ания струйного течения

СТ могут наблюдаться при ясном небе, но иногда они сопровождаются облаками верхнего яруса, которые располагаются преимущ ественно на правой стороне СТ. Сильными ветровыми потоками облака расчленяются на отдельные полосы, которые быстро перемещаются и своим движением указывают направление С Т. Облака обы чно располагаются ниже оси СТ на несколько сотен метров. В облаках возможна болтанка ВС, интенсивность которой можно определить по внешнему виду облаков – чем “неспокойнее” их вид, тем сильнее болт анка.


Наиболее опасным явлением в зоне СТ является возникновение на его периферии очагов т урбулентности. Причиной возникновения этих очагов является сильное торможение СТ на его внешних границах окружающим более спокойным возд ухом. В связи с резким т орможением пот ока образуются сд виги ветр а, приводящие к вихреобразованию. При этом очаги турб улентности черед уются со спокойными участками, их интенсивность и местоположение непрерывно изменяются. Наиболее интенсивными и опасными турбулентные очаги бывают на левой, циклонической стороне СТ, где горизонтальные сдвиги ветра в

1,5…2 раза больш е, чем на правой стороне (рисунки 10.5 и 10.6).

Рис. 10.5. Вихреобразование в струйном течении

Р ис. 10.6. Повторяемость болтанки в различных частях струйного течения

При от сут ствии облаков, ТЯН, вызывающая сильную болтанку, может начаться внезапно д ля экипажа и привест и к т яжелым последст виям. Опасная болт анка в зоне СТ наб людает ся в тех районах, гд е горизонт альные сдвиги вет ра более 6 м/с на 100 км расст ояния, и/или верт икальные – более 3 м/с на 100 м высот ы. Толщина слоя сильной б олтанки, как правило,

Самые благоприятные условия для полетов наблюдаются в цент ральной части СТ и на

его правой стороне. Но при этом необходимо учитыват ь, чт о при полет ах в СТ на высотах, б лизких к потолку, от клонение ВС в ст орону повыш ения температуры пред ставляет опасност ь, так как не исключена возможность его выхода в область значительных положительных от клонений температуры от стандартной атмосферы. В эт их сл учаях ВС может оказаться на высот е выше предельно допустимой, его уст ойчивост ь и управляемость б уд ут нарушаться, оно может непроизвольно терять высоту и “проваливаться”. Если при э том в атмосфере происход ят вертикальные пульсации ветра, ВС может попасть на критические углы атаки и срывные режимы.


Струйные течения – это сравнительно узкие зоны сильных ветров в верхней тропосфере и нижней стратосфере. Границей СТ обычно считается скорость ветра равная 30 м/с (100 км/час), вертикальный сдвиг скорости ветра от 5 до 10 м/с и более на 1 км высоты, горизонтальный сдвиг скорости ветра 10 м/с и более на 100 км. Струйное течение напоминает сильно сплюснутую трубу, высота которой 1-5 км, ширина 500-1000 км и длина – тысячи километров. Иногда СТ огибает весь земной шар.

Струйные течения образуются в зонах сближения теплых и холодных воздушных масс, гда создаются значительные градиенты давления и температуры, расположенных между высотными циклонами и антициклонами.

Максимальные скорости достигают 350км/час, над Японией до 700км/час. Интенсивность СТ имеет ярко выраженный характер. В холодное время струйные течения усиливаются, в летнее – ослабевают.

В зависимости от высоты расположения различают тропосферные и стратосферные струйные течения. Тропосферные СТ возникают когда поверхность главного атмосферного фронта простирается до тропопаузы, а разность температур воздушных масс, лежащих по обеим сторонам фронта, составляет 8-10° и более.

Тропосферные СТ по географическому признаку подразделяются на внетропические , субтропические и экваториальные .

Внетропическими являются струйные течения умеренных широт, связанные с полярным фронтом, а арктическое СТ связанное с арктическим фронтом. Их преобладающим направлением является западное, а интенсивность подвергается непрерывным изменениям. Ось внетропического СТ располагается в тёплом воздухе, обычно на 1-2км ниже тропопаузы. Она лежит впереди приземной линии тёплого фронта на расстоянии 400-500км и позади линии холодного фронта на расстоянии 100-300км. Перемещается СТ с атмосферным фронтом.



Левая сторона СТ (по направлению потока) более холодная, располагается вдоль высотной области пониженного давления и называется циклонической или холодной. Правая сторона относительно теплее левой, располагается вдоль высотной области повышенного давления и называется антициклонической или тёплой. На внешних границах СТ в связи с торможением воздушного потока более спокойным воздухом наблюдаются большие градиенты (перепады) скорости ветра. Резкие его изменения вызывает образование турбулентных зон. Такие зоны более опасны и интенсивны на левой циклонической стороне СТ (под действием двух задерживающих слоев – тропопаузы и фронтальной поверхности) На правой, антициклональной стороне, турбулентные зоны встречаются реже, здесь турбулентность бывает слабой или умеренной.

По отношению к атмосферным фронтам ось струйного течения не остаётся постоянной. В стадии волны ось СТ почти не искривлена и располагается левее линии фронта, в стадии молодого циклона на оси СТ отмечается изгиб, при этом ось СТ находится слева приземного центра циклона. В процессе окклюдирования циклона ось СТ испытывает ещё больший изгиб, при этом ось СТ пересекает фронты значительно правее приземного фронта.

Субтропическое СТ образуется на северной периферии субтропических антициклонов зимой между 25 и 35°с.ш., а летом между 35 и 45° с.ш. На участках большой протяженности (тысячи км) она имеет устойчивое западное направление. Зачастую в холодную половину года субтропическое СТ опоясывает весь земной шар. Ось СТ располагается над тропопаузой на высоте 12км. Тропопауза в зоне субтропического СТ претерпевает разрыв. На сравнительно небольшом расстоянии разница в её высоте при переходе их холодного в тёплый воздух может достигать 4-5км. Ширина субтропического СТ около 1500км, вертикальная протяженность 8-12км, по сравнению с внетропическим СТ является более устойчивым и интенсивным.

Экваториальные СТ образуются в экваториальных районах на южной периферии высоких субтропических антициклонов и имеют восточное направление.

Стратосферные СТ – оно образуется зимой на широте Полярного круга и имеют западное направление, ось находится на высоте около 50км, а нижняя часть охватывает всю среднюю и верхнюю атмосферу. Средняя скорость в этом СТ на высотах 20-25км составляет около 200км/час. Возникновение этого СТ объясняется наличием больших контрастов температуры в стратосфере на границе смены дня и ночи. В период полярной ночи (в январе высота ночи над Северным полюсом достигает 440км) Стратосферный воздух в Арктике выхолаживается и оказывается значительно холоднее стратосферного воздуха южнее Полярного круга. В связи с этим возникают большие горизонтальные градиенты температуры между умеренным и арктическим воздухом.

Турбулентность в зоне СТ.

На холодной стороне СТ горизонтальный сдвиг ветра составляет 12-14м/с на каждые 100км, на тёплой он равен 10м/с. Вертикальный сдвиг ветра в СТ составляет 5-10м/с на 1000м высоты, но может достигать и 25-30м/с. Наличие таких градиентов приводит к турбулентность в области СТ. Толщина возмущенных слоёв составляет 300-600мЮ иногда увеличиваясь до 1-3км, ширина обычно не превышает 100км, в длину – несколько сотен километров. Величина перегрузок при болтанке не превышает 0,5 – 1g, но иногда отмечаются случаи до 2g. В этих случаях сильная болтанка затрудняла управление самолётом или приводила к более тяжёлым последствиям.

Нередко болтанка в СТ наблюдается в области расположения Ci и Cc, образующихся на правой стороне СТ, несколько ниже его иси. Слева от оси облака образуются реже, вдоль оси облака отсутствуют. Ось СТ является границей между облачными системами по обе стороны СТ.

Турбулентные зоны зачастую бывают при ясном небе и называются ТЯН.

СТ может быть обнаружено по изменению угла сноса ВС и изменению температуры. При входе самолёта в левую сторону СТ происходит быстрый рост температуры (2-3° на 100км пути) и левый снос. При входе в СТ с правой стороны температура понижается (1-2° на 100км пути) и наблюдается правый снос. При полёте вдоль СТ температура воздуха не изменяется, а увеличивается путевая скорость (при попутном ветре) или уменьшается (при встречном ветре).

При попадании в зону болтанки, связанной с СТ, изменяют высоту полёта на 300-400м или уклоняются от маршрута на 50-70км. Высоту полёта рекомендуется изменять снижением, если полёт происходит на высотах более 8км, а на меньших – уходом вверх. Уклоняться от маршрута наиболее безопасно на правую (антициклональную) сторону струйного течения.

При предполётной консультации следует знакомиться с картой максимальных ветров, с картами барической топографии и вертикальными разрезами атмосферы.

Карты погоды и их анализ.

5.1 Карты погоды. Приземные и высотные. Использование международного метеорологического кода КН-01. Анализ приземных карт .

Изучение погодных процессов на большой территории наиболее эффективно проводить с помощью специальных карт, на которые условными знаками нанесены результаты одновременных метеороло­гических или аэрологических (высотных) наблюдений. Такие карты получили название синоптических (от греческого слова «синоптикос» - одновременно обозревающий).

Синоптическая карта, на которую нанесены данные наблюдений у поверхности земли, называется приземной картой погоды, а карта с нанесенными данными аэрологических наблюдений - высотной или аэрологической. Приземная карта погоды - это метеорологическая карта, которая отражает фактическое состояние погоды у поверхности земли в конкретный момент времени на определенной площади. Карты погоды бывают основные и кольцевые.

Основные карты составляются в 00, 06, 12 и 18 ч среднего гринвич­ского времени (UTC). Эти карты охваты­вают огромные территории и позволяют анализировать атмосферные процессы на расстояниях протяженностью в несколько тысяч километ­ров.

На АМСГ по основным картам прогнозируют крупномасштабные процессы, такие как образование и перемещение циклонов и антицик­лонов, перемещение атмосферных фронтов. По этим картам - составляют прогнозы погоды на срок 24...36 ч, а также прогнозы погоды по маршру­там большой протяженности.

Кольцевые карты (кольцовки) составляют через каждые 3 ч: в 00,03, 06,09,12,15, 18 и 21 ч по Гринвичу.

Это карты сравнительно небольших районов - от нескольких сотен
до тысячи километров, по этим картам уточняют прогнозы погоды на несколько часов, а также составляют предупреждения о возникновении опасных для авиации явлений погоды.

Сведения о погоде наносят на основные и кольцевые карты в виде цифр и условных знаков (символов) в строго определенном порядке вокруг кружка станции в соответствии с кодом КН-01.

На синоптические приземные карты погоды вокруг кружка (пункта) станции данные наносятся цифрами кода и условными знаками.

TTTtT- температура воздуха, целые (TT) и десятые доли(tT) градуса Цельсия;

TdTdtd- точка росы, целые (TdTd) и десятые доли(td) градуса Цельсия;

VV- горизонтальная видимость;

h(hh)- высота облаков нижнего яруса;

Nh- количество облаков нижнего яруса в октах;

PPP- давление воздуха приведенное к уровню моря, в гПа;

рр – величина барической тенденции за последние три часа;

а - характеристика барической тенденции;

N – общее количество облаков;

W – погода между сроками наблюдения;

CL – форма облаков нижнего яруса;

CM – форма облаков среднего яруса;

CH – форма облаков верхнего яруса;

dd – направление ветра у поверхности земли (откуда дует);

ff – скорость ветра обозначается оперением;

ww – атмосферные явления погоды с срок наблюдения или в течение последнего часа перед сроком наблюдения;

Sn – знак отрицательного значения температуры воздуха, точки росы, барической тенденции.

Характер погоды над какой-либо территорией определяется свойствами воздушных масс, положением атмосферных фронтов и видом барических систем. Задачей анализа является прослеживание движения воздушных масс, установление характера их стратификации, выявлению барических систем и определение траекторий их перемещения, а также уточнение положения и типа фронтальных разделов. Полное пространственное представление об атмосферных процессах можно получить, используя в анализе весь комплекс аэросиноптического материала, имеющегося на АМСГ.

Анализ погоды обычно начинается с анализа приземных синоптических карт – основных и кольцевых, затем карт барической топографии, аэрологических диаграмм, карт максимальных ветров, карт тропопаузы и авиационных карт АКП.

Анализ приземных карт погоды начинается с их «подъёма». На карте выделяются зоны обложных, моросящих и ливневых осадков, районы кучево-дождевых облаков и грозовой деятельности, районы занятые туманом, метелями, пыльными бурями и другими явлениями.

Затем проводятся линии равных значений барических тенденций. В центральной части области роста давления проставляется синим цветом буква Р и максимальная величина роста давления, в центральной части падения – буква П красным цветом и наблюдаемая величина падения давления. Линии равных значений барических тенденций называются изаллобарами или изотенденциями. Затем проводятся изобары – линии равных давлений, выявляются основные формы барического рельефа – циклоны, антициклоны, ложбины, гребни, седловины. Центры циклонов и антициклонов обозначаются буквами Н и В соответственно.

Все эти этапы являются подготовительными для анализа атмосферных фронтов.

Для анализа атмосферных фронтов сначала изучают их положение по приземным картам предшествующих сроков, а затем на основании анализа барического поля, полей ветра, температуры, влажности, распределения облачных систем, зон осадков и изаллобарических областей определяют положение фронта и его тип. При этом учитываются все факторы, которые могут привести и изменению погодных условий в зоне фронта в зависимости от времени года и суток, характера распределения давления, температуры и т.п.

Анализ фронтов не исчерпывается определением их положения на приземной карте, а используются карты барической топографии, аэрологические диаграммы и другие материалы, как спутниковая информация, бортовая погода.

Карты барической топографии используются в комплексе с приземными картами, что позволяет достаточно полно проанализировать процессы и явления погоды, которые наблюдаются не только у земли, но и на различных высотах.

Для анализа используют карты АТ850, АТ700, АТ500, АТ400, АТ300, АТ200 и АТ100Гпа поверхности. Для анализа температурного режима нижней тропосферы используются карты ОТ500/1000 . Изогипсы на этой карте в то же время являются изотермами средней температуры нижнего 5-километрового слоя тропосферы. Для уточнения положения атмосферных фронтов используется карта АТ850, на которой лучше чем на приземных картах обнаруживаются фронтальные поверхности по контрастам температур и другим элементам. Для выявления расположения и характеристики высотных фронтальных зон и связанных с ними струйных течений используются карты АТ300, АТ200, реже АТ500.

Высотную фронтальную зону по этим картам можно обнаружить по участкам с наибольшим сгущением изогипс и изотерм, на которых наблюдаются наиболее сильные ветры, иногда превышающие 100 км/час – струйное течение.

Обычно зоны интенсивной турбулентности располагаются в местах резкой расходимости воздушных потоков, особенно если эти зоны связаны со СТ, а передняя часть зоны расходимости располагается над холодным фронтом.

При анализе синоптических процессов используется аэрологическая диаграмма, по которой можно получить некоторые данные.

Для прогноза развития синоптических процессов учитывается суточный и годовой ход метеоэлементов (суточный ход температуры, ветра, зимой – отрицательных температур, летом – высоких). Учитывая изменения, обусловленные прохождением атмосферных фронтов, развитием циклонических и антициклонических образований. Одним из этапов является прогноз смещения барических образований:

1. Циклоны перемещаются в направлении изобар его тёплого сектора, оставляя тёплый воздух справа;

2. Центр циклона движется параллельно линии соединяющей центр падения давления с центром роста в сторону падения.

Если при этом отрицательные тенденции располагаются только в передней части циклона, не захватывая его центральную часть, а в тылу наблюдается рост той же интенсивности, то это указывает на быстрое смещение циклона.

Если отрицательные тенденции захватывают центр циклона и теплый сектор, это указывает на его углубление, вероятное обострение фронтов, увеличение мощности облаков и интенсивности осадков.

3. Если же циклоны или антициклоны имеют общую замкнутую изобару, то их центры совершают вращательное движение друг относительно друга у циклонов против часовой стрелки, у антициклонов – по часовой стрелке.

4. Ложбина перемещается вместе с циклоном, с которым она связана, и вращается вокруг циклона против часовой стрелки.

5. Гребни перемещаются вместе с антициклоном и вращаются вокруг антициклона по часовой стрелке.

При использовании карт барической топографии для анализа применяются следующие правила:

1. Приземные центры барических систем перемещаются в направлении воздушного потока течений (ведущего потока), наблюдающихся в данный момент над этими центрами, на высотах 3-6 км, т.е. в направлении изогипс на АТ700 и АТ500.

При этом скорость перемещения центров приземных барических образований будет составлять 0,7 от скорости ветра на АТ700 и 0,5 от скорости ветра на АТ500.

2. Высокие циклоны (AZn) c вертикальной осью остаются малоподвижными и заполняются (разрушаются). Большой наклон оси указывает на быстрое перемещение барического образования.

3. Циклоны углубляются, если над ними на картах АТ700 и АТ500 наблюдается расходимость потоков; заполняются, если имеется сходимость потоков.

4. Антициклоны и гребни усиливаются, если над ними на картах АТ700 и АТ500 наблюдается сходимость потоков, и разрушаются, если есть расходимость потоков.

Для прогноза перемещения фронта применяется карта АТ700, каждая точка на приземной линии фронта перемещается вдоль изогипс, проходящих над этой точкой со скоростью 0,8 для теплых и 0,9 для холодных фронтов от скорости ветра на этой изобарической поверхности.

Таким образом, определяя скорость и направление перемещения барических образований и атмосферных фронтов, составляется прогноз синоптического положения, т.е. будущее расположение атмосферных объектов. Учет эволюции атмосферных фронтов и барических систем является важным элементом при разработке синоптического положение и прогноза погоды, причем прогноз погоды исходит из основного принципа, что с перемещением воздушных масс и фронтов переносятся с определенными изменениями свойственные им условия погоды. Поэтому в первом приближении принимаются те значения метеоэлементов, откуда ожидается перемещение фронта и перенос воздушной массы.

5.2 Карты барической топографии. Их анализ. Карты тропопаузы.

Карты барической топографии (БТ) составляют по данным радио­зондирования в 00, 12, UTC. По этим картам определяют метеорологические условия на различных высотах, а также уточняют анализ погоды у поверхности земли. Карты БТ составляют для поверх­ностей равного давления, которые называются изобарическими.

Изобарические поверхности не параллельны уровню моря. В зависимости от распределения давления на уровне моря и от распре­деления температуры воздуха они или поднимаются несколько вверх (над антициклоном и в области тепла), или опускаются вниз (над циклоном и в области холода) относительно своей средней высоты. Высота изобарической поверхности выражается в геопотенциальных метрах 1 или декаметрах (десятках метров). Изобарических поверхно­стей в атмосфере можно выделить бесконечное множество. На практи­ке обычно выделяют несколько, их называют стандартными, или главными. В зависимости от уровня отсчета высоты изобарической поверхности эти карты подразделяют на карты абсолютной топографии (AT) - высота изобарической поверхности отсчитывается от уровня моря и карты относительной топографии (ОТ) - высота отсчитывается от любой ниже расположенной изобарической поверх­ности или от поверхности земли. На практике составляют только одну ОТ500/1000

1 Геопотенциальный метр отличается от линейного не более чем на 0,3 %.

.

Изобарические поверхности и карты барической топографии

Карты абсолютной топографии составляются для следующих изобарических поверхностей:

850гПа,Нср≈1,5км (слой1…2км)

700 гПа, Нср ≈ 3 км (2…4км)

500 гПа, Нср ≈ 5 км (4…6км)

400 гПа, Нср ≈ 7 км (6…8км)

300 гПа, Нср ≈ 9 км (8…10км)

200гПа,Нср≈ 12 км (10…12км)

100гПа,Нср≈ 16 км (12…14км)

На карты AT наносят следующие данные:

Здесь ННН - высота изобарической поверхности, геопотенциальные декаметры (гп. дкм); t - температура воздуха на высоте данной изобарической поверхности, °С; Δtd- дефицит точки росы, указывается цифрой. Направление δ и ff скорость ветра и наносят так же, как на приземную карту:

Точки с одинаковой высотой данной изобарической поверхности соединяют на картах AT плавными черными линиями, которые назы­ваются изогипсами (изос - равно, гипса – высота).

После проведения изогипс на картах AT выделяются высотные центры барических систем. Высотные циклоны и антициклоны очерче­ны замкнутыми изогипсами. В циклоне высота изобарической поверх­ности к центру уменьшается, а в антициклоне высота изобарической поверхности к центру увеличивается.

С помощью карт AT определяют следующие параметры.

1. Направление и скорость ветра в том районе, где данные о ветре отсутствуют, т. е. направление и скорость градиентного ветра, харак­теристики которого зависят от направления и густоты изогипс.

2. Струйное течение (СТ). Это - ветровой поток со скоростью
100 км/ч (30 м/с) и больше, который простирается на несколько тысяч
километров по горизонтали. Иногда СТ опоясывает весь земной шар.
Ось СТ (максимальная скорость) располагается на 1,5...2 км ниже
тропопаузы.

3. Зоны облачности и обледенения. На изобарических поверхно­стях 850,700 и 500 гПа облачность вероятна при Δtd ≤ 2 °С;

на изобарических поверхностях 400, 300 и 200 гПа облачность вероятна при Δtd ≤ 4°С;

4. Зоны болтанки (_/\_ - умеренная; -сильная). Если на не­большом участке маршрута резко меняется направление или скорость ветра или то и другое вместе, то при полете на этом участке маршрута будет наблюдаться болтанка;

5. Ведущий поток. Это господствующее направление ветра над данным районом в средней тропосфере (в слое 3 – 6 км) Его определяют по картам АТ-700 и АТ-500. По ведущему потоку определяется направление и скорость перемещения основных барических систем, а также скорость перемещения атмосферных фронтов.

6. Вертикальная мощность циклонов и антициклонов.

7. Положение атмосферных фронтов и воздушных масс.

8. Эволюция приземных циклонов и антициклонов

Карты тропопаузы.

Карты тропопаузы составляют по данным радиозондирования в 00 и 12 ч по Гринвичу. Они дают представление о пространственном положении тропопаузы.

На карты наносят следующие данные:

Здесь РРР- давление на самом нижнем уровне тропопаузы; t- температура воздуха на уровне тропопаузы, °С; Δtd - дефицит точки росы, указывается цифрой кода (так же, как на картах AT).

Направление δ и скорость ветра наносят так же, как на приземную карту. По карте тропопаузы при полетах на высоких эшелонах можно определить, где ВС будет пересекать тропопаузу, и ее наклон.

В местах, где наклон тропопаузы равен или больше 1/300 будет наблюдаться сильная болтанка. Пересекать тропопаузу в таких районах не рекомендуется.

Новое на сайте

>

Самое популярное