Домой Овощи Изображение черной дыры в интерстеллар. Интерстеллар: внутри черной дыры и тессеракта. Пыльный мир и патогены

Изображение черной дыры в интерстеллар. Интерстеллар: внутри черной дыры и тессеракта. Пыльный мир и патогены

Вселенная таит в себе множество загадок. Строение и особенности различных , возможность межпланетных путешествий привлекают внимание не только ученых, но и любителей научной фантастики. Естественно, наибольшей привлекательностью обладает то, что имеет уникальные свойства, что, в силу разных обстоятельств, недостаточно исследовано. К подобным объектам относятся чёрные дыры.

Чёрные дыры обладают очень высокой плотностью и невероятно большой силой гравитации. Даже лучи света не могут вырваться из них. Именно поэтому учёные могут «увидеть» чёрную дыру только благодаря тому действию, которое она оказывает на окружающее пространство. В непосредственной близости от чёрной дыры вещество раскаляется и движется с очень большой скоростью. Это газообразное вещество называют аккреционным диском, который выглядит как плоское светящееся облако. Рентгеновское излучение аккреционного диска учёные наблюдают в рентгеновские телескопы. Также фиксируют огромную скорость движения звёзд по их орбитам, что происходит благодаря большой гравитации невидимого объекта огромной массы. Астрономы выделяют три класса чёрных дыр:

Чёрные дыры, имеющие звёздную массу,

Чёрные дыры с промежуточной массой,

Сверхмассивные чёрные дыры.

Звёздной считают массу от трех до ста солнечных масс. Сверхмассивными называют чёрные дыры, имеющие от сотен тысяч до нескольких миллиардов масс Солнца. Они находятся обычно в центре галактик.

Вторая космическая скорость или скорость убегания – это тот минимум, который необходимо достичь для преодоления гравитационного притяжения и выхода за пределы орбиты данного небесного тела. Для Земли скорость убегания равна одиннадцати километрам в секунду, а для чёрной дыры - это более трёхсот тысяч, вот насколько сильна её гравитация!

Границу чёрной дыры называют горизонтом событий. Объект, попавший внутрь него, уже не может покинуть эту область. Размер горизонта событий пропорционален массе чёрной дыры. Чтобы показать, насколько огромна плотность чёрных дыр, учёные приводят следующие цифры – чёрная дыра с массой, в 10 раз превосходящей солнечную, имела бы, примерно, 60 км в диаметре, а чёрная дыра с массой нашей Земли – всего лишь 2 см. Но это только теоретические расчеты, поскольку чёрных дыр, не достигших трёх солнечных масс, учёными ещё не выявлено. Всё, что входит в область горизонта событий, двигается по направлению к сингулярности. Сингулярность, если сказать упрощенно, - это место, где плотность стремится к бесконечности. Через гравитационную сингулярность нельзя провести входящую в неё геодезическую линию. Для чёрной дыры характерно искривление структуры пространства и времени. Прямая линия, которая в физике представляет собой путь движения света в вакууме, вблизи чёрной дыры становится кривой. Какие физические законы работают рядом с точкой сингулярности и непосредственно в ней, пока неизвестно. Некоторые исследователи, например, говорят о наличии так называемых червоточин, или пространственно-временных туннелей, в чёрных дырах. Но не все учёные согласны признать существование подобных туннелей-червоточин.

Тема космических путешествий, пространственно-временных туннелей служит источником вдохновения для писателей-фантастов, сценаристов и режиссеров. В 2014 году состоялась премьера фильма «Интерстеллар». Над его созданием работала целая группа учёных. Их руководителем стал известный учёный, специалист в области теории гравитации, астрофизики – Кип Стивен Торн. Этот фильм считают одним из самых научных среди фантастических кинокартин и, соответственно, предъявляют к нему высокие требования. Велись многочисленные споры о том, насколько различные моменты фильма соответствуют научным фактам. Была даже издана книга «Наука Интерстеллара», в которой профессор Стивен Торн объясняет с научной точки зрения различные эпизоды из фильма. Он говорил о том, что многое в киноленте основано как на научных фактах, так и на научных предположениях. Однако есть и просто художественный вымысел. Например, чёрная дыра Гаргантюа представлена в виде светящегося диска, который огибает свет. Это не расходится с научными знаниями, т.к. видна не сама чёрная дыра, а только аккреционный диск, а свет не может двигаться по прямой из-за мощной гравитации и искривления пространства.

В чёрной дыре Гаргантюа есть кротовая нора, представляющая собой червоточину или туннель, проходящий сквозь пространство и время. Наличие подобных туннелей в чёрных дырах - всего лишь научное предположение, с которым не согласны многие учёные. К художественному вымыслу относится возможность совершить путешествие по такому туннелю и вернуться назад.

Чёрная дыра Гаргантюа – это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам. Поэтому для особо яростных критиков хочется напомнить – фильм, всё же, научно-фантастический, а не научно-популярный. Он показывает красоту и величие мира, который нас окружает, напоминает о том, как много ещё нерешенных задач у . А требовать от фантастического фильма точного отражения научно доказанных фактов - несколько неправомерно и наивно.

Совсем недавно науке стало достоверно известно, что же такое черная дыра. Но едва ученые разобрались с этим феноменом Вселенной, на них свалился новый, куда более сложный и запутанный: сверхмассивная черная дыра, которую и черной-то не назовешь, а скорее ослепительно белой. Почему? А потому, что именно такое определение дали центру каждой галактики, который светится и сияет. Но стоит туда попасть, и кроме черноты, ничего не остается. Что же это за головоломка такая?

Памятка о черных дырах

Доподлинно известно, что простая черная дыра - это некогда светившая звезда. На определенном этапе существования ее стали непомерно увеличиваться, при этом радиус оставался прежним. Если раньше звезду "распирало", и она росла, то теперь силы, сосредоточенные в ее ядре, начали притягивать к себе все остальные составляющие. Ее края "заваливаются" на центр, образуя невероятной силы коллапс, который и становится черной дырой. Такие «бывшие звезды» уже не светят, а являются абсолютно внешне незаметными объектами Вселенной. Но они весьма ощутимы, так как поглощают буквально все, что попадает в их гравитационный радиус. Неизвестно, что кроется за таким горизонтом событий. Исходя из фактов, любое тело столь огромная гравитация буквально раздавит. Однако в последнее время не только фантасты, но и ученые придерживаются мысли о том, что это могут быть своеобразные космические тоннели для путешествий на большие расстояния.

Что же такое квазар

Подобными свойствами обладает сверхмассивная черная дыра, иными словами, ядро галактики, у которого есть сверхмощное гравитационное поле, существующее за счет своей массы (миллионы или миллиарды масс Солнца). Принцип формирования сверхмассивных черных дыр пока установить не удалось. Согласно одной версии, причиной такого коллапса служат слишком сжатые газовые облака, газ в которых предельно разряжен, а температура невероятно высока. Вторая версия - это приращение масс различных малых черных дыр, звезд и облаков к единому гравитационному центру.

Наша галактика

Сверхмассивная черная дыра в центре Млечного Пути не входит в разряд самых мощных. Дело в том, что сама галактика имеет спиралевидную структуру, что, в свою очередь, заставляет всех ее участников находиться в постоянном и достаточно быстром движении. Таким образом, гравитационные силы, которые могли бы быть сосредоточены исключительно в квазаре, как бы рассеиваются, и от края к ядру увеличиваются равномерно. Несложно догадаться, что дела в эллиптических или, скажем, неправильных галактиках, обстоят противоположным образом. На «окраинах» пространство крайне разряженное, планеты и звезды практически не движутся. А вот в самом квазаре жизнь буквально бьет ключом.

Параметры квазара Млечного Пути

Используя метод радиоинтерферометрии, исследователи смогли рассчитать массу сверхмассивной черной дыры, ее радиус и гравитационную силу. Как было отмечено выше, наш квазар тусклый, супермощным его назвать трудно, но даже сами астрономы не ожидали, что истинные результаты будут такими. Итак, Стрелец А* (так названо ядро) приравнивается к четырем миллионам солнечных масс. Более того, по очевидным данным, эта черная дыра даже не поглощает материю, а объекты, которые находятся в ее окружении, не нагреваются. Также был подмечен интересный факт: квазар буквально утопает в газовых облаках, материя которых крайне разряжена. Возможно, в настоящее время лишь начинается эволюция сверхмассивной черной дыры нашей галактики, и через миллиарды лет она станет настоящим гигантом, который будет притягивать не только планетарные системы, но и другие, более мелкие

Насколько малой ни была бы масса нашего квазара, более всего ученых поразил его радиус. Теоретически такое расстояние можно преодолеть за несколько лет на одном из современных космических кораблей. Размеры сверхмассивной черной дыры немного превышают среднее расстояние от Земли до Солнца, а именно составляют 1,2 астрономические единицы. Гравитационный радиус этого квазара в 10 раз меньше основного диаметра. При таких показателях, естественно, материя просто не сможет сингулировать до тех пор, пока непосредственно не пересечет горизонт событий.

Парадоксальные факты

Галактика относится к разряду молодых и новых звездных скоплений. Об этом свидетельствует не только ее возраст, параметры и положение на известной человеку карте космоса, но и мощность, которой обладает ее сверхмассивная черная дыра. Однако, как оказалось, «смешные» параметры могут иметь не только молодые Множество квазаров, которые обладают невероятной мощностью и гравитацией, удивляют своими свойствами:

  • Обычный воздух зачастую имеет большую плотность, чем сверхмассивные черные дыры.
  • Попадая на горизонт событий, тело не будет испытывать приливных сил. Дело в том, что центр сингулярности находится достаточно глубоко, и дабы достичь его, придется проделать долгий путь, даже не подозревая, что обратной дороги уже не будет.

Гиганты нашей Вселенной

Одним из самых объемных и старых объектов в космосе является сверхмассивная черная дыра в квазаре OJ 287. Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности. Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет.

Опасное соседство

Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями - расстояние между ними составляет примерно 3,5 миллиарда световых лет. Астрономы не исключают и той версии, что в ближайшем будущем эти два космических тела столкнутся, образовав сложную звездную структуру. По одной из версий, именно из-за сближения с подобным гравитационным гигантом движение планетарных систем в нашей галактике постоянно ускоряется, а звезды становятся горячее и активнее.

Сверхмассивные черные дыры на самом деле белые

В самом начале статьи был затронут весьма щекотливый вопрос: цвет, в котором перед нами постают самый мощные квазары, сложно назвать черным. Невооруженным глазом даже на самой простенькой фотографии любой галактики видно, что ее центр - это огромная белая точка. Почему же тогда мы считаем, что это сверхмассивная черная дыра? Фото, сделанные через телескопы, демонстрируют нам огромное скопление звезд, которые притягивает к себе ядро. Планеты и астероиды, которые вращаются рядом, из-за непосредственной близости отражают, тем самым преумножая весь присутствующий рядом свет. Так как квазары не затягивают с молниеносной скоростью все соседние объекты, а лишь удерживают их в своем гравитационном радиусе, они не пропадают, а начинают еще больше пылать, ведь их температура стремительно растет. Что же касается обычных черных дыр, которые существуют в открытом космосе, то их название полностью оправдано. Размеры относительно невелики, но при этом сила гравитации колоссальна. Они попросту «съедают» свет, не выпуская из своих берегов ни единого кванта.

Кинематограф и сверхмассивная черная дыра

Гаргантюа - этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь. Но в первоначальном сценарии планировали создать три черных дыры, две из которых носили бы названия Гаргантюа и Пантагрюэль, взятые из сатирического романа После внесенных изменений осталась лишь одна «кроличья нора», для обозначения которой было выбрано первое наименование. Стоит заметить, что в фильме черная дыра изображена максимально реалистично. Так сказать, дизайном ее внешнего вида занимался ученый Кип Торн, который базировался на изученных свойствах данных космических тел.

Как мы узнали о черных дырах?

Если бы не теория относительности, которая была предложена Альбертом Эйнштейном в начале ХХ века, никто бы, наверное, даже не обратил внимания на эти загадочные объекты. Сверхмассивная черная дыра расценивалась бы как обычное скопление звезд в центре галактики, а рядовые, маленькие, вовсе бы осталась незамеченными. Но сегодня, благодаря теоретическим расчетам и наблюдениям, которые подтверждают их правильность, мы можем наблюдать такой феномен, как искривление пространства-времени. Современные ученые говорят, что найти «кроличью нору» не так уж и сложно. Вокруг такого объекта материя ведет себя неестественно, она не только сжимается, но порой и светится. Вокруг черной точки образуется яркий ореол, который виден в телескоп. Во многом природа черных дыр помогает нам постичь историю становления Вселенной. В их центре находится точка сингулярности, подобная той, из которой ранее развился весь окружающий нас мир.

Доподлинно неизвестно, что может случиться с человеком, который пересечет горизонт событий. Раздавит ли его гравитация, или же он окажется в совершенно ином месте? Единственное, что можно утверждать с полной уверенностью, - гаргантюа замедляет время, и в какой-то момент стрелка часов окончательно и бесповоротно останавливается.

Вышедший в начале ноября фильм «Интерстеллар» уже с полным правом можно считать главным событием сезона. Причем не только кинематографического. Показанные в картине события - космические полеты через гиперпространство, падения в черные дыры и путешествия во времени - вызвали бурные дискуссии как среди любителей фантастики, так и в околонаучных кругах. Что неудивительно - консультантом фильма выступил знаменитый физик-теоретик Кип Торн. А там, где дело касается современной теоретической физики, сплошь и рядом получается так, что еще вчера бывшее оголтелой фантастикой сегодня оказывается респектабельной научной теорией.
*Осторожно, в тексте есть спойлеры.

Кротовая нора

Основные события фильма начинаются с полета главных героев через развернувшуюся рядом с Сатурном червоточину. Физически она представляет собой тоннель, связывающий две удаленные области пространства-времени. Эти области могут как находиться в одной и той же вселенной, так и связывать разные точки разных вселенных (в рамках концепции мультивселенной). В зависимости от возможности вернуться сквозь нору обратно их подразделяют на проходимые и непроходимые. Непроходимые дыры быстро закрываются и не дают возможности потенциальному путешественнику проделать обратный путь.

Впервые решения уравнений ОТО типа кротовой норы открыл в 1916 году Людвиг Фламм. В 1930-х годах ими заинтересовались Альберт Эйнштейн и Натан Розен, а позднее - Джон Уилер. Однако все эти червоточины были непроходимыми. Только в 1986 году Кип Торн предложил решение с проходимой кротовой норой.

С математической точки зрения кротовая нора представляет собой гипотетический объект, получаемый как особое несингулярное (конечное и имеющее физический смысл) решение уравнений общей теории относительности (ОТО) Альберта Эйнштейна. Обычно червоточины изображают в виде согнутой двумерной поверхности. Попасть с одной ее стороны на другую можно, перемещаясь обычным способом. А можно проделать отверстие и соединить тоннелем обе стороны. В наглядном случае двумерного пространства видно, что это позволяет существенно сократить расстояние.

В двумерии горловины червоточины - отверстия, с которых начинается и заканчивается тоннель, - имеют форму окружности. В трехмерии (как в фильме) горловина кротовой норы похожа на сферу. Образуются такие объекты из двух сингулярностей в разных областях пространства-времени, которые в гиперпространстве (пространстве большей размерности) стягиваются друг к другу с образованием норы. Поскольку нора представляет собой пространственно-временной тоннель, путешествовать по нему можно не только в пространстве, но и во времени.

В «Интерстелларе» нора была проходимой и связывала разные галактики во Вселенной. Но, чтобы вернуться через нее обратно, червоточина должна быть заполнена материей с отрицательной средней плотностью массы, препятствующей закрытию тоннеля. Среди известных науке обладающих такими свойствами элементарных частиц нет. Однако, вероятно, они могут входить в состав темной материи.

Планковская длина равна примерно 1,62х10 -35 метрам, что в 2х10 20 раз меньше «диаметра» протона. Численное значение планковских единиц (длины, массы, времени и других) получается из четырех фундаментальных физических постоянных и очерчивает границу применимости современной физики.

Считается, что подобную кротовую нору можно поймать в квантовой пене, а затем расширить и сделать потенциально пригодной для путешествий через гиперпространство. Такая пена представляет собой флуктуации пространства на планковских масштабах длин, где законы классической ОТО не работают, поскольку необходим учет квантовых эффектов.

Другой способ создания червоточины - протягивание одной области пространства, образующего дыру с сингулярностью, которая в гиперпространстве достает до другой области пространства. Поддерживать проходимость норы в обоих случаях предлагается посредством пропускания через нее материи с отрицательной плотностью массы. Такие проекты не противоречат ОТО.

Экзопланеты и замедление времени

После пролета через червоточину космические путешественники отправляются на экзопланеты , потенциально пригодные для жизни согласно сведениям, полученным от разведывательных миссий. Чтобы планета была хотя бы потенциально пригодна для жизни человека, на ней должны быть похожие на земные устойчивые световые, температурные и гравитационные режимы. Давление в атмосфере должно быть сравнимо с земным, а химический состав - пригодным для жизни хотя бы некоторых земных организмов. Обязательное условие - наличие воды. Все это налагает определенные ограничения на массу и объем планеты, а также расстояние ее до светила и параметры орбиты.

В настоящее время самые благоприятные для человека путешествия во времени созданы на орбите Земли. Чем дольше космонавты и астронавты находятся на борту Международной космической станции, вращающейся со скоростью более семи километров в секунду вокруг планеты, тем медленнее (по сравнению с землянами на поверхности) они стареют. Рекорд путешествий во времени принадлежит Сергею Крикалеву, который за более 803 суток переместился в будущее на примерно 0,02 секунды.

При этом первая из планет (Миллер) оказалась расположена очень близко к сверхмассивной черной дыре Гаргантюа массой 100 миллионов солнц и удаленной от Земли на 10 миллиардов световых лет. Радиус дыры сравним с радиусом орбиты Земли вокруг Солнца, а окружающий ее аккреционный диск простирался бы далеко за орбиту Марса. Из-за сильного гравитационного поля черной дыры один час, проведенный на поверхности планеты Миллер, оказывается равен семи годам на Земле.

Ничего удивительного, утверждает теоретическая физика, это связано с эффектом замедления времени в сильном гравитационном поле черной дыры, в котором находится планета. В специальной теории относительности (СТО) - теории движения тел с околосветовыми скоростями - замедление времени наблюдается в движущихся объектах. А в ОТО, представляющей собой обобщение СТО с учетом гравитации, имеет место эквивалентность инерции и тяготения, дальним следствием которой и является гравитационное замедление времени.

Сверхмассивная черная дыра

После неудачных миссий на экзопланетах героя Мэттью МакКонахи (вместе с роботом) затягивает в сверхмассивную черную дыру Гаргантюа. Причем ни героя МакКонахи, ни его робота при приближении к дыре не разорвало на тысячу маленьких Мэттью и роботиков от чудовищной гравитации. Однако и тут у современной физики есть объяснение.

Эйнштейн в основу ОТО положил локальную эквивалентность полей ускорения и тяготения. Ее просто проиллюстрировать на примере лаборатории внутри падающего лифта. Все предметы внутри такого лифта будут падать вместе с ним с одинаковым ускорением, а их относительные ускорения будут равны нулю. В этом случае ситуацию можно описать в двух системах отсчета. В первой, инерциальной и связанной с Землей, лифт падает под действием гравитации Земли. Во второй, связанной с лифтом (неинерциальной), поля тяготения нет. Если внутри лифта находится наблюдатель, то он не в состоянии определить, в каком поле: ускорения или гравитации, он находится. Получается, что в локальном смысле (когда ускорение свободного падения имеет примерно одинаковые значения в заданной области пространства, то есть гравитационное поле однородно) инерция и гравитация эквивалентны.

Черная дыра представляет собой массивный объект, гравитационное притяжение которого, согласно классической версии ОТО, не позволяет материи покидать ее пределы. Граница дыры с окружающим пространством называется горизонтом событий. Переходя сквозь него, тело, как считается, обратно (по крайней мере, тем же путем) выйти не может.

Есть несколько сценариев образования таких объектов. Основной механизм предполагает гравитационный коллапс некоторых типов звезд или вещества в центрах галактик. Также не исключается их образование еще во времена Большого взрыва и при реакциях элементарных частиц. Существование черных дыр у большинства ученых не вызывает сомнения.

Напряженность гравитационного поля (проще говоря, значение ускорения свободного падения) черной дыры убывает при удалении от нее. Это незаметно на большом расстоянии, где поле черной дыры локально, однородно и существенно на небольших расстояниях: разные части одного и того же протяженного объекта падают в дыру с разными ускорениями, и объект растягивается.

Именно так действует приливная сила черной дыры. Однако тут есть лазейка. Приливная сила прямо пропорциональная массе черной дыры и обратно пропорциональна кубу радиуса горизонта событий. Радиус горизонта событий дыры растет пропорционально ее массе. Следовательно, по порядку величины приливная сила обратно пропорциональна квадрату массы дыры. Для обычных черных дыр получаются огромные значения приливных сил, тогда как для сверхмассивных они не такие уж большие, чем и воспользовались герои «Интерстеллара».

Гиперпространство

Внутри вращающейся черной дыры герой Мэттью МакКонахи (и его робот) обнаружили пятимерную вселенную. И тут им, скажем прямо, повезло - если бы черная дыра не была вращающейся, путешественники продолжили бы движение к ее центру - сингулярности , и в этом случае финал фильма был бы совсем иным.

Математически понятие о физическом гиперпространстве возникло в конце 1910, когда Теодор Калуца вложил четырехмерное пространство ОТО в пятимерное, и тем самым ввел новое измерение. Обычно в теориях с дополнительными измерениями размеры наблюдаемой вселенной вдоль новых измерений настолько малы, что они почти не оказывают влияния на остальные четыре.

ОТО допускает возможность решений уравнений Эйнштейна, например, в форме метрики Керра , аналитические свойства которых позволяют уйти от сингулярности. Такие решения обладают необычными свойствами, в частности из них следует возможность существования внутри черной дыры особых пространственно-временных траекторий, нарушающих обычные причинно-следственные связи.

Можно предположить, что герою МакКонахи (и его роботу) удалось проникнуть в такую черную дыру, избежать ее сингулярности и путешествовать внутри нее по специальной траектории, которая привела его в новую вселенную. В ней геометрия оказалась локально устроенной так, что четыре измерения являются пространственными и одно - временным. Формально это не противоречит ОТО.

И хотя человек, по всей видимости, способен воспринимать только три пространственных и одно временное измерение, в фильме главный герой в новой вселенной получил возможность не только путешествовать по временному измерению, но и наблюдать в трехмерном пространстве проекции четырехмерного.

«Уравнение гравитации»

Пока Мэттью МакКонахи (вместе с роботом) летает по экзопланетам и в черную дыру, оставшийся на земле профессор в исполнении Майкла Кейна пытается решить некое «уравнение гравитации», которое позволило бы связать в одну теорию квантовую механику и ОТО и тем самым понять физику червоточины и черной дыры.

Излучение Грибова-Хокинга предполагает испарение черной дыры вследствие квантовых флуктуаций, связанных с образованием пар виртуальных частиц. Одна частица из такой пары улетает от черной дыры, а другая - с отрицательной энергией - «падает» в нее. Впервые о возможности такого явления высказывался советский физик-теоретик Владимир Грибов. А в первой половине 1970-х годов, после визита в СССР, Стивен Хокинг опубликовал работу, в которой предсказал существование излучения черных дыр (называемое излучением Хокинга в англоязычной литературе или Грибова-Хокинга в русскоязычной).

И, надо сказать, герой Майкла Кейна мучается не один. Создание универсальной теории, связывающей ОТО и квантовую механику, - основная задача большинства современных математических физиков - специалистов по теории струн. Главная задача теории - объединение всех четырех известных взаимодействий: сильного, слабого, электромагнитного и гравитационного. Описанием первых трех занимается квантовая теория поля (КТП), математическая модель современной физики элементарных частиц, последним - ОТО. При этом ОТО в целом не противоречит КТП, поскольку говорит о явлениях на других масштабах длин и энергий. Но если ОТО имеет дело с космологическими объектами огромных масс, то КТП применима на субатомном уровне.

Проблема в том, что обе теории вступают в противоречие друг с другом на планковских масштабах, поскольку на них в ОТО необходим учет квантовых поправок. Так, в черной дыре квантовые эффекты приводят к ее испарению. Квантовая версия ОТО, получаемая аналогичным КТП образом, оказывается неперенормируемой, то есть наблюдаемые величины не удается сделать конечными. Решению данного вопроса и посвящена большая часть исследований в этой области. Сама же теория струн (M-теория) основана на предположении существования на планковских масштабах гипотетических одномерных объектов - струн, возбуждения которых интерпретируются как элементарные частицы и их взаимодействия.

В фильме бесстрашные исследователи используют червоточину рядом с орбитой Сатурна, чтобы попасть в другую планетную систему. Зрителю показывается, что «кротовая нора» представляет собой пространственно-временной туннель, через который люди практически мгновенно могут перемещаться на огромные расстояния.

Если проткнуть лист бумаги – воображаемую Вселенную – в разных концах, а потом согнуть его, чтобы два отверстия оказались друг напротив друга, то получится та самая червоточина.
Но возможны ли мгновенные путешествия между двумя удаленными точками?

Профессор Барстоу:

Я не думаю, что «кротовые норы» действительно существуют. Это нечто из области научной фантастики. Нет прямых доказательств существования таких вещей во Вселенной. Мы знаем, что такое черные дыры, но возможность пространственно-временного искривления только начинаем изучать.

Ли Биллингс:

Очень хочется надеяться, что в космосе есть червоточины, через которые можно путешествовать в пяти измерениях. Но мы понятия не имеем, существуют ли стабильные червоточины в макроскопических масштабах. Похоже, что намного проще путешествовать по старинке, не полагаясь на чудо; возможно, в этом деле помогут солнечные паруса. И не нужно никуда торопиться.

Попав в черную дыру, нельзя выжить

В одном из ключевых эпизодов фильма один из главных героев, покидая космический корабль, падает в черную дыру, а затем выбирается из нее. Но можно ли выжить, попав в черную дыру?

Нет. Гравитационное поле черной дыры является чрезвычайно сильным и очень быстро меняется. Все, что попадает в нее, растягивается силой тяжести и становится похожим на длинные тонкие макароны. Поэтому у всего, что попадает в черную дыру, нет никаких шансов выжить. Передавать сигналы оттуда тоже нельзя.

Ли Биллингс:

Приближаться к аккреционному диску вокруг сверхмассивной черной дыры, как это было показано в фильме, очень плохая идея. Большое заблуждение, что мощное излучение от раскаленного материала позволит скользить по горизонту событий и не расплавиться. Обитаемые планеты здесь также представлены по-другому.

Можно ли выйти на орбиту черной дыры?


Герой фильма использует орбиту черной дыры, чтобы добраться до одной из экзопланет. Возможно ли это?

Вы можете вращаться вокруг черной дыры, пока не приблизитесь к ней на очень близкое расстояние. Астрономия демонстрирует нам множество систем на орбите вокруг черной дыры. И, как правило, это системы со звездами. Увидеть их можно, лишь оказавшись внутри горизонта событий.

Если вокруг черной дыры и существуют планеты, то они, вероятно, не пригодны для жизни


Исследователи в фильме посещают планетарную систему, которая не только находится рядом с черной дырой, но также имеет потенциально обитаемые планеты.

Ничто не запрещает планетам вращаться вокруг орбиты черной дыры, хотя таких примеров пока нет. Проблема в стабильности таких планетных систем. Любая планетная система рядом с черной дырой, вероятно, будет поглощена.

Ли Биллингс:

Я думаю, что «Интерстеллар» — это фильм для физиков, а не для планетологов. В фильме много нестыковок, связанных с планетами.

О «легкой сингулярности»


Герой фильма говорит, что внутри черной дыры есть только «легкая », которая может объяснить некоторые из событий в планетной системе, которую посещают исследователи. Но существует ли вообще такое понятие, как «легкая сингулярность»?

Важно то, что черные дыры могут иметь различные массы. Сингулярность – это центр черной дыры. Но существует понятие, что все черные дыры имеют конечную массу, которая не исчезает в пространстве. По ней мы собственно их и обнаруживаем – масса влияет на окружающий материал.

Мэтт Каплан:

Нам мало что известно о процессах рядом с черной дырой. Никто не знает, что находится за горизонтом событий. Пока мы полагаемся только на теорию.

Процесс старения из-за замедления времени показан точно

Астронавты стареют гораздо медленнее, чем их коллеги на Земле, благодаря воздействию замедления времени. Согласно теории, люди, путешествующие на скоростях, близких к скорости света, замедляют время. Этому есть экспериментальное подтверждение.

Об этом хорошо известно. Теория относительности, предложенная Эйнштейном, гласит, что люди, путешествующие на разных скоростях, чувствуют время по-разному. Например, астронавты, совершившие полет на Луну, постарели чуть меньше тех, кто остался на Земле, хотя это было едва заметно. Но если вы достигнете скорости, близкой к скорости света, что сделать довольно сложно, эта разница будет видна.

Можно поверить в искусственную гравитацию на космическом корабле «Эндюранс», но не в его фантастический двигатель


По мнению экспертов, «Эндюранс» выглядел достаточно реалистично. Но то, с какой простотой космический корабль садился на поверхность планет и поднимался с них, они сочли неправдоподобным.

Ли Биллингс:

С точки зрения искусственной гравитации, которая препятствует разрушению костей в условиях невесомости, «Эндюранс» выглядит вполне правдоподобно. Сомнения вызывает двигательная установка, которая позволяла игнорировать воздействие сил притяжения планет, в результате чего астронавты за час старели на десять лет.

Мэтт Каплан:

Я думаю, что для такой большой истории, как эта, на некоторые вещи можно закрыть глаза.

Часть из показанного в фильме - чистая правда, другая часть основана на научных предположениях, а еще часть - чистой воды спекуляция.

Фильм Кристофера Нолана «Интерстеллар» многие называют самым научным в современной кинофантастике, но и претензии ему предъявляют по всей строгости. Споры о достоинствах и недостатках этой картины заставляют людей зарываться с головой в учебники физики. Попробуем и мы разобраться, как «Интерстеллар» стал таким, каков он есть, и что в нём строго научно, а что - не совсем.

ОСТОРОЖНО! СПОЙЛЕРЫ!

Видеоверсия этой статьи.

Человек, придумавший «Интерстеллар»

Имя известного физика Кипа Торна всплывает в каждом споре о научности картины Нолана. Учёный сыграл в создании фильма огромную роль. Торн не ограничивался ролью научного консультанта - по сути, именно он придумал «Интерстеллар».

Досье: Стивен Кип Торн

Специалист в области теории гравитации, астрофизики и квантовой теории измерений. Более пятнадцати лет был профессором Калифорнийского технологического института (Калтех). Один из главных мировых экспертов по общей теории относительности. Популяризатор науки. Близкий друг и коллега Стивена Хокинга.

Лет тридцать назад знаменитый Стивен Хокинг устроил своему другу, молодому физику и одинокому отцу Кипу Торну свидание вслепую с Линдой Обст, редактором раздела науки журнала The New-York Times Magazine и начинающим телепродюсером. Романа у парочки так и не вышло, зато образовалась крепкая дружба. Лет десять назад Линда и Кип загорелись идеей создать фильм, основанный на достижениях и знаниях современной науки. Они написали восьмистраничный набросок, где фигурировали, помимо прочего, целых шесть кротовых нор, пять черных дыр и загадочная раса инопланетян, живущих в «балке» - пространстве, имеющем минимум пять измерений. Одним из героев должен был стать Стивен Хокинг, который лично отправлялся в космос.

Предлагая свою идею киностудии, Торн поставил условие: все сюжетные ходы в фильме должны быть научно достоверны или хотя бы основаны на допустимых теориях и спекуляциях.

Идеей заинтересовалась студия Paramount, а в режиссерское кресло уселся сам Стивен Спилберг. Сценарий поручили младшему брату Кристофера Нолана Джонатану. Но затем начались трудности: из-за забастовки Гильдии сценаристов Джон прекратил работу над фильмом, затем ему пришлось переключиться на «Темного рыцаря», а Спилберг что-то не поделил с боссами Paramount и покинул проект. Торн пал было духом, но Линда не отчаялась и за пару недель нашла нового режиссера - Кристофера Нолана.

Старший Нолан привнес в «Интерстеллар» немало нового. Крис переписал сценарий, объединив его с собственными идеями, изначально предназначавшимися для совсем другого проекта. Финальный вариант был совсем не похож на изначальный восьмистраничный набросок, но Кип не расстроился, поскольку, с его точки зрения, Нолан почти всегда придерживался озвученного Торном принципа. Торн категорически возразил режиссеру лишь один раз - когда Крис придумал сцену, где герои двигались быстрее света. Кип две недели доказывал, почему это совершенно невозможно, и добился своего.

Вместе с тем Кип понимал, что Крис снимает художественное кино, поэтому то и дело закрывал глаза на мелкие неточности, нужные для усиления драматизма, и следил лишь, чтобы фантазию Нолана не уносило слишком далеко. Получилось ли у него? Давайте разберемся.

Пыльный мир и патогены

Начало «Интерстеллара» разворачивается на Земле будущего, которая выглядит крайне малопривлекательно. Новый патоген уничтожил все сельхозкультуры, кроме кукурузы, возникла угроза голода, правительства распустили армии и научные центры, а простые люди вынуждены становиться фермерами, чтобы прокормить себя. Словно этого мало, жители страдают от регулярных пылевых бурь, превративших большую часть США в «пылевой котел». Хуже того, патоген уничтожает запасы кислорода в воздухе, замещая его азотом, так что те, кто не умрёт от голода, банально задохнутся.

ПРЕТЕНЗИЯ: Постойте! Как один-единственный патоген мог уничтожить всю растительную жизнь? Как правило, подобные вещи влияют только на определенные виды растений, полностью выкашивая их популяцию. Те же заболевания, которые затрагивают сразу несколько видов, как правило, не настолько сильны.

История Земли знает примеры массовых вымираний, когда из-за резко изменившихся условий погибала большая часть живых существ. Так произошло, когда возникли цианобактерии, выделявшие кислород, который в те времена был настоящим ядом для большинства видов. Сейчас вполне может развиться похожий микроорганизм, который, например, будет выделять в атмосферу азот.

Есть и другой возможный сценарий: появление нового заболевания, которое поражает те основные разновидности растений, от которых мы зависим больше всего. Биологи не исключают такую возможность, хотя и находят ее крайне маловероятной.

КОНТРАРГУМЕНТ: Но зачем в такой ситуации сокращать расходы на науку? Их, наоборот, надо увеличивать, чтобы биологи вывели новые растительные культуры, обладающие иммунитетом к вирусу, изобрели прививку, противоядие или другой способ борьбы с напастью. Ведь именно так сейчас мы боремся с любой болезнью, имеющей даже малейший шанс вызвать пандемию. Помимо прочего, это же гигантский бизнес, где можно заработать огромные деньги. Куда выгоднее, чем выращивать кукурузу в Канзасе.

Возможно, такие попытки были, но потерпели неудачу. Даже сейчас есть болезни, вакцины от которых до сих пор не нашли, хотя разработки ведутся уже лет тридцать. Допустим, поначалу государства действительно тратили на поиски лекарства сотни миллионов, но затем поступления в казну прекратились, бюджеты иссякли, и финансирование пришлось отменить.

КОНТРАРГУМЕНТ: Но кислород-то куда из воздуха денется?

Кислород в атмосфере в основном появляется благодаря фотосинтезу растений. Если новый патоген повлияет именно на этот процесс, кислород перестанет быть возобновляемым ресурсом. Теперь посмотрим, как образуется углекислый газ: либо в процессе дыхания всех живых существ, либо в результате гниения органики, либо в виде промышленных выбросов предприятий и выхлопов автомобилей. Даже если после голода и экономического кризиса сократится население и уменьшатся выбросы в атмосферу, погибающая растительность будет гнить на полях. По некоторым оценкам, в процессе гниения будет поглощено около процента от оставшихся запасов кислорода. На его место придет угарный газ, который затруднит дыхание чувствительным людям и поднимет температуру воздуха градусов на десять. Не смертельно, конечно, но приятного мало.

Впрочем, надо признать, что подобный вариант развития событий маловероятен. Он используется в фильме не как предсказание будущего, а как сюжетный поворот, призванный заставить персонажей отправиться в космос.

Червоточина и «Эндюранс»

Воспользовавшись удачно подвернувшейся кротовой норой, NASA снаряжает межзвездную экспедицию на корабле «Эндюранс» в поисках нового дома для человечества. Хорошо, что возле Сатурна есть нора! Ведь в мире Купера путешествия со скоростью света невозможны, и к звёздам пришлось бы лететь тысячи лет.

ПРЕТЕНЗИЯ: Разве кротовые норы реальны? Неужели физики зарегистрировали хотя бы одну?

Нет, но наука допускает их существование или, по крайней мере, не отрицает его. А что не запрещено… В последнее время не без участия мистера Торна в космологии набирает популярность идея, что пространство - это не бескрайняя пустота, а своего рода материал, который поддается изменению, были бы нужные инструменты.

КОНТРАРГУМЕНТ: Допустим. Но для поддержания норы в рабочем состоянии требуются немалые количества отрицательной или экзотической материи. Да и для открытия норы требуется источник огромной гравитации типа Гаргантюа, а появление подобного в Солнечной системе погрузило бы ее в хаос.

И даже если бы кротовая нора появилась - например, из-за влияния Гаргантюа - то была бы дорогой с одностороннем движением. Для обратного путешествия потребовался бы аналогичный источник гравитации с другой стороны.

Да, само появление норы - это необходимая вольность. В фильме герои предполагали, что кротовая нора была создана существами, живущими в пятимерном пространстве, чтобы указать нам путь к спасению.

КОНТРАРГУМЕНТ: Профессор Бранд говорит, что кротовая нора появилась на орбите Сатурна за пятьдесят лет до событий «Интерстеллара». NASA разогнали за десять лет до начала фильма. То есть на протяжении сорока лет никто ничего не знал о появлении гравитационной аномалии в пределах Солнечной системы? Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века!

С тех пор прошло полвека, о какой-то норе в космосе все успели забыть - проблем-то хватало. Помнит о ней только один сумасшедший дед, который живет под землей, косит под Кипа Торна и собирает космические корабли на коленке.

ПРЕТЕНЗИЯ: Кстати, о корабле! Зачем ракета-носитель выводила его на орбиту, если ему оказалось под силу взлетать с планет Миллер и Манна?

Во-первых, на орбиту выходил «Эндюранс», а на планеты космонавты садились в «Рейнджере» - челноке, пристыкованном к «Эндюранс». Во-вторых, на пути от Земли до Гаргантюа заправок нет, так что топливо надо экономить.

КОНТАРГУМЕНТ: Кстати, о топливе. На такую дорогу его требуется очень много. Почему ни на одном кадре с «Эндюранс» мы не видим гигантских топливных баков?

А вы уверены, что камера показала все отсеки? Зачем, к примеру, показывать грузовые трюмы, где ничего не происходит? Кроме того, на пути к Сатурну члены экспедиции могли экономить топливо при помощи гравитационных манёвров - разгоняться, замедляться или менять направление полета под действием гравитации небесных тел. Примерно так в конце девяностых годов NASA запускало зонд «Кассини». На его борту было недостаточно топлива, чтобы добраться до Сатурна, но в NASA рассчитали курс так, чтобы «Кассини» прошел по касательной орбит Венеры, Земли и Юпитера. Каждый такой маневр придавал зонду ускорение.

Чтобы добраться от Земли до Сатурна за два года, «Эндюранс» должен преодолевать в среднем 20 километров в секунду. Кип Торн считает, что с помощью маневров и увеличения эффективности ракетного топлива к концу XXI века человечеству будет под силу достичь скорости в 300 километров в секунду. Так что долететь до Сатурна за такое время вполне реально.

КОНТРАРГУМЕНТ: Но как они затормозили на орбите Сатурна и не улетели дальше? Мощи корабельных носовых двигателей тут явно бы не хватило.

Самих по себе, может, и не хватило бы, но с помощью очередных коррекций курса на орбите Сатурна - почему нет? Кроме того, не стоить забывать о кротовой норе, которая вполне могла повлиять на расположение гравитационных полей.

Жизнь на орбите чёрной дыры

Пройдя через кротовую нору, Купер и остальные попадают в конечную точку своего путешествия - планетную систему возле огромной черной дыры Гаргантюа. Это небесное тело - предмет особой гордости как Кипа Торна, так и мастеров по спецэффектам. При изображении дыры использовались вычисления, сделанные Торном специально для фильма. Получившийся результат ошарашил самого Кипа. Он догадывался, как должны в реальности выглядеть черные дыры, но компьютерная анимация превзошла все его ожидания.

ПРЕТЕНЗИЯ: Рядом с Гаргантюа не видно других небесных тел, кроме парочки планет. Откуда планеты Миллер, Эдмундса и Манна черпают тепло и свет?

Из аккреционного диска. Притяжение Гаргантюа так велико, что способно захватить целую звезду. Когда звезда движется прямо на черную дыру, ее судьба плачевна и предсказуема. Если же её орбита пролегает рядом с Гаргантюа, то притяжение черной дыры попросту разрывает небесное тело на части, а большая часть материи, ранее составлявшей тело звезды, попадает на орбиту Гаргантюа и формирует аккреционный диск. Он излучает свет, тепло и радиацию, так что вполне может заменить солнце.

КОНТРАРГУМЕНТ: Выходит, жить на этих планетах нельзя из-за высоких температур и радиации. Как же экипаж «Эндюранс» не поджарился, просто пролетая мимо?

Возможно, с момента, когда последняя звезда попала в гравитационные тиски Гаргантюа, прошло несколько миллионов лет. Тогда газ, составляющий диск, остыл до температуры в несколько тысяч градусов и уже не излучает такой сильной радиации, хотя продолжает давать достаточно света и тепла. Низкой температурой объясняется и блеклость диска.

Гаргантюа - самая достоверная чёрная дыра в истории кино. Но даже она отличается от реальной.

ПРЕТЕНЗИЯ: Откуда там вообще планеты взялись? Разве их не должно было засосать внутрь дыры?

На самом деле наука допускает существование возле гигантских черных дыр зон обычного времени и пространства, даже целых планетных систем, которые вращаются вокруг центральной сингулярости по сложным, но замкнутым орбитам.

ПРЕТЕНЗИЯ: Аккреционный диск выглядит неправдоподобно. Он должен быть несколько сплющенным и несимметричным. Кроме того, модель не учитывает эффект Допплера: один край диска должен отливать красным, другой - синим.

Да, тут Кристофер Нолан специально пошел против истины, чтобы не смущать зрителей. А еще он специально занизил скорость вращения черной дыры. Кроме того, учитывая расстояние от черной дыры до планеты Миллер, Гаргантюа должна занимать половину небосвода, а планета при таком раскладе находилась бы внутри аккреционного диска, так что он в основном был бы виден только с противоположной дыре стороны планеты.

Планеты Миллер и Манна

Первым делом астронавты отправляются на планету Миллер. Время там идёт замедленно - один час на ее поверхности равен семи земным годам.

ПРЕТЕНЗИЯ: Такое возможно только вблизи объектов, обладающих огромной массой, например, на орбите черной дыры. Но нужно находиться совсем рядом с дырой, практически над ее поверхностью. А стабильная орбита вокруг черной дыры должна превышать диаметр Гаргантюа как минимум трижды. Иначе планету Миллер давно бы засосало внутрь. С учетом показанных в фильме кадров время на поверхности планеты должно течь медленнее, чем на Земле, всего процентов на двадцать.

Это верно в отношении невращающихся черных дыр, но с Гаргантюа все обстоит по-другому. Гаргантюа - сверхмассивная вращающаяся черная дыра, что несколько меняет ее воздействие на окружающее пространство. При определенных условиях, скажем, если она будет вращаться очень быстро, а планета Миллер - располагаться достаточно близко к циркулярной орбите Гаргантюа, такое замедление времени возможно.

Правда, у вращающихся черных дыр есть предел скорости вращения, причем максимума они, как правило, не достигают. Чтобы на планете Миллер было такое замедление времени, Гаргантюа должна вращаться лишь чуточку меньше максимума. Это реально, хотя и маловероятно.

КОНТРАРГУМЕНТ: А как быть с приливными волнами? Они возможны, только если разница в гравитационном притяжении черной дыры на разных сторонах планеты очень велика. Но в таком случае планету просто разорвало бы на части!

На самом деле нет. Благодаря гигантским размерам Гаргантюа разница в притяжении черной дыры на разных сторонах планеты Миллер недостаточно велика. Тем не менее силы притяжения должно было хватить для деформирования планеты. Планета Миллер должна была выглядела как эллипсоид, сжатый по бокам и вытянутый в длину. Кроме того, если бы планета вращалась вокруг своей оси, то силы притяжения Гаргантюа действовали бы в нескольких направлениях в зависимости от положения орбит. По фильму же мы видим, что все гигантские волны движутся примерно в одном направлении. Отсюда следует вывод, что планета Миллер всегда повёрнута к черной дыре одной и той же стороной.

Возможно и еще одно объяснение: из-за деформации планеты и притяжения Гаргантюа в определенных районах постоянно проходят землетрясения, вызывающие гигантские цунами.

КОНТРАРГУМЕНТ: Радиация, отсутствие привычного источника света и тепла - планета Миллер не выглядит подходящим местом для жилья. Неужели нужно было лететь на нее в первую очередь и неужели этой части экспедиции нельзя было избежать?

Разумеется, можно было. Планета Миллер никогда бы не стала бы первым кандидатом на место нового дома для человечества, если бы Купер или другие члены экипажа «Эндюранс» догадались использовать по назначению кучу научного оборудования, именно с этой целью доставленного на борт корабля. Информацию о пригодности планеты Миллер для жизни можно было получить прямо с орбиты при помощи телескопов и прочих приборов. Тех самых, которыми Ромили почти четверть века изучал саму чёрную дыру, пока остальные боролись с цунами.

Не спускаясь на планету, можно было бы провести ее изучение с безопасного расстояния, где временной лаг минимальный. Простой спектральный анализ здорово сэкономил бы топливо экспедиции и снизил бы накал страстей на экране. Кристоферу Нолану нужно было это замедление времени, чтобы показать, как растёт пропасть между отцом и дочерью.

В крайнем случае, если NASA так уж хотелось отправить на планету делегацию из мыслящих существ, вполне можно было бы послать в экспедицию экипаж, состоящий из одних роботов. Роботы способны выжить почти в любых условиях (судя по фильму - даже в черной дыре), они менее требовательны, не так капризны и легче переносят одиночество.

ПРЕТЕНЗИЯ: Насколько оправданны маневры Купера, которые он совершил перед посадкой на планете Миллер, чтобы избежать замедления времени и притяжения черной дыры?

Замедления времени он не избежал бы в любом случае - оно возрастает обратно пропорционально расстоянию от черной дыры. Но сэкономить время путем корректировки курса корабля благодаря гравитационному притяжению разных небесных тел еще как можно. В фильме Купер решает избежать притяжения Гаргантюа, разогнавшись до огромной скорости, а затем резко затормозить, попав в зону притяжения нейтронной звезды.

На самом деле подобным образом снизить скорость (и чтобы корабль и пассажиров при резком торможении не разорвало на кусочки) с помощью нейтронной звезды не удалось бы - для этого требуется небольшая черная дыра размером с Землю. Но Нолан был непреклонен насчёт количества черных дыр в фильме: одна, только одна!

***

Перенесемся на планету Манна. Действие разворачивается высоко над поверхностью, в небе которой висят гигантские ледяные облака.

ПРЕТЕНЗИЯ: Как возможно существование подобных облаков? И почему они не падают под собственным весом?

По-видимому, планета Манна вращается вокруг Гаргантюа по крайне сложной орбите и большую часть времени проводит вдали от черной дыры. Почему? Во-первых, до планеты Манна было чуть ли не дольше всего лететь, когда экипаж «Эндюранс» решал, откуда начать. Зато, когда Купер взлетает с планеты, «Рейнджер» оказывается совсем рядом с Гаргантюа. А во-вторых, на это намекают гигантские ледяные облака, которые замерзают на то время, пока планета удалена от аккреционного диска.

А не падают они благодаря особому виду магии. Киномагии. На самом деле они давно должны были рухнуть на поверхность.

Падение в чёрную дыру

ПРЕТЕНЗИЯ: После взлета с планеты Манна «Эндюранс» захватывает притяжением Гаргантюа. Куперу удается спасти основной модуль, но сам он, робот ТАРС и «Рейнджер» проходят сквозь горизонт событий и падают в черную дыру. Как они пережили весь процесс? Их должно было или убить радиацией и температурой аккреционного диска, или они должны были спагеттицифицироваться - превратиться в вытянутую нить из-за разницы в притяжении разных частей тела.

Если Гаргантюа последний раз захватывала звезды в свой гравитационный капкан миллионы лет назад, то диск стал безопасным для случайных путешественников (и бесполезным для окрестных планет, к слову). Что касается спагеттификации, она опять же возможна в маленьких и невращающихся черных дырах. Размеры и скорость вращения Гаргантюа сводят разницу притяжений различных частей тела к нулю, так что превращения в спагетти можно не опасаться.

КОНТРАРГУМЕНТ: Разве это значит, что можно благополучно пережить падение в черную дыру?

Нет, конечно. Отправившись следом за ТАРСом, Купер подписал себе смертный приговор и сам это понимал.

КОНТРАРГУМЕНТ: Допустим, каким-то чудом Купер остался жив. Как он рассчитывал передать сигнал обратно домой? Ведь они испытывали трудности даже с передачей сигнала через кротовую дыру. Что уж говорить о черной дыре, из которой, как известно, не сбегает ничто.

Считалось, что притяжения черной дыры не может избежать ничто, даже свет. Но Стивен Хокинг доказал, что и черные дыры могут излучать элементарные частицы, преимущественно фотоны. Некоторые теории подразумевают, что информацию в принципе невозможно остановить, но единого взгляда на этот вопрос у ученых нет. Тем не менее они едва ли согласятся с тем, что из черной дыры может транслироваться сигнал, так что это, конечно, преувеличение.

ПРЕТЕНЗИЯ: Что это за гравитационные данные, без которых невозможно решение уравнения профессора Бранда?

Согласно фильму, данные были нужны профессору, чтобы подойти к пониманию гравитации и ее взаимодействия с квантовой механикой. Впоследствии это помогло бы поднять с Земли новые человеческие колонии. Разумеется, для решения таких проблем в реальной жизни прыжок в черную дыру не понадобится. И вряд ли такие данные можно передать столь короткой последовательностью сигналов.

ПРЕТЕНЗИЯ: Пройдя горизонт событий, Купер оказывается в тессеракте, четырехмерном гиперкубе, позволяющему измерять время как линейную величину и позволяющему общаться с Мёрф на любом отрезке её жизни. Это тоже научно?

С момента прыжка в черную дыру и до конца фильма сценарий перестает ориентироваться на науку и оперирует чистой воды спекуляциями. Да, учёные допускают существование других измерений, но их познание в трехмерном пространстве не представляется возможным. И уж конечно, нельзя научно доказать, что после прыжка в черную дыру неведомые силы перенесут человека в комнату его дочери. Все эти загадочные явления Нолан списывает на таинственных и загадочных «их», живущих в пятимерном пространстве.

***
Нолан снимал все-таки фантастику, а не документальное кино, поэтому имел право игнорировать кое-какие детали. «Интерстеллар» порой становился жертвой художественного замысла, визуальные решения делались для удобства зрителей и съемочной группы, а не для ученых. Тем не менее картина получилась куда более научной, чем большая часть современной кинофантастики. Задумайтесь: на каком еще сеансе нам вообще требовалось знать, как работает реальная астрофизика?

Новое на сайте

>

Самое популярное