Домой Ягоды Получение азота и кислорода фракционной перегонкой воздуха. История получения газов путем разделения воздуха. Методы выделения и очистки

Получение азота и кислорода фракционной перегонкой воздуха. История получения газов путем разделения воздуха. Методы выделения и очистки

Урок №6

Тема: Перегонка нефти. Нефтепродукты и их применение. Фракционная перегонка жидкого воздуха.

Цель: ознакомиться с продуктами переработки нефти и их применением; рассмотреть процесс перегонки нефти и перегонки жидкого воздуха; развивать познавательный интерес и интеллектуальные способности; воспитывать отношение к химии, как к одной из фундаментальных наук.

Оборудование: коллекция «нефть и продукты переработки нефти»; фильм «Продукты нефтепереработки»; презентация по теме; мультимедийный проектор и экран.

Ход урока.

I Организация класса.

II Сообщение темы, цели урока, мотивация учебной деятельности.

Важнейшим природным сырьем для получения материалов для изготовления различных важных для нас вещей является нефть. Сегодня мы рассмотрим, что такое нефть, какие материалы из нее получают, где они применяются. Рассмотрим также, как разделяют нефть на составляющие ее фракции и как разделяют воздух на отдельные газы, из которых воздух состоит.

III Актуализация опорных знаний.

(Фронтальная беседа)

    Какие способы разделения смесей вы знаете?

    Что такое отстаивание? Какие смеси можно разделить с помощью этого метода?

    Что такое фильтрование? Какие смеси можно разделить с помощью этого метода?

    Что такое выпаривание и кристаллизация? Для каких целей предназначен этот метод?

    Что такое дистилляция? Для каких целей предназначен этот метод?

    Что такое флотация? Какие смеси можно разделить с помощью этого метода?

    Что такое намагничивание? Какие смеси можно разделить с помощью этого метода?

IV Изучение нового материала.

    Какие материалы получают из продуктов переработки нефти? Какие предметы изготавливают из этих материалов? Как они используются человеком? Что из них изготавливают? (Постановка проблемы. Вопросы записаны на доске). Чтобы ответить на эти вопросы, давайте посмотрим на первый слайд. (Слайд 1) Что вы видите? (Слайд 2) Что вы видите на втором слайде? Так что же получают из нефти и где это применяется? (Слушаем ответы детей, затем показываем

    А что такое нефть? Что она из себя представляет? (Слушаем ответы детей).

    Итак, нефть – это смесь. Чтобы из нефти получить нужные материалы, необходимо нефть разделить на фракции. Это первичная обработка нефти. В состав нефти входят жидкие вещества с разной температурой кипения. Мы с вами знаем, что такие смеси можно разделить при помощи перегонки. Рассмотрим, как происходит перегонка нефти. (Слайд 5). (Объяснение учителя).

    Из каких газов состоит воздух? (Дети знают из курса биологии, природоведения, что в состав воздуха входит кислород и углекислый газ. Учитель дополняет). (Слайд 6). Можно ли из воздуха выделить газы, входящие в его состав? Большое значение имеет выделение азота и кислорода. Воздух сначала посредством охлаждения переводят в жидкое состояние, а потом перегоняют. (Слайд 7)

V Обобщение и систематизация знаний.

Итак, давайте подытожим, что мы сегодня усвоили.

    Что такое нефть? Зачем ее добывают? (Ответ учеников, показ первой строчки слайда 8.)

    Что собой представляет нефть? (Ответ учеников, показ второй строчки слайда 8.)

    Какой метод используют для первичной переработки нефти?

    На какие фракции разделяют смесь? (Ответ учеников, показ третей строчки слайда 8.)

    Каким методом получают кислород и азот в промышленности? (Ответ учеников, показ четвертой строчки слайда 8.)

VI Итог урока.

Мы с вами рассмотрели, как производят разделение нефти на фракции и жидкого воздуха методом перегонки. Вы очень активно работали на уроке. Молодцы! Наградой вам будут оценки: …..

II Сообщение домашнего задания.

Вам необходимо выучить опорный конспект к данному уроку.

Выбор установки (прибора) для выполнения работы определяется, в первую очередь, задачей, стоящей перед экспериментатором, условиями проведения работы, а также свойствами исходных и конечных продуктов.

Сборка установки должна проводиться с большой тщательностью и аккуратностью, так как это является непременным условием успешной и безопасной работы.

Можно отметить следующие правила сборки приборов и установок.

    Отдельные части установки необходимо соединять друг с другом осторожно, подбирая пробки, трубки и другие детали еще до закрепления прибора на штативе.

    Если приборы собирают на шлифах, то их следует предварительно смазать.

    Посуду подбирают такого размера, чтобы реакционная масса занимала не более 2/3 объема.

    Если реакционная смесь будет нагреваться, то обязательно применяют круглодонную колбу соответствующего размера.

    После того как собраны отдельные части установки, их закрепляют в лапках штатива.

    Установку всегда собирают, начиная с основного блока или с ее предполагаемого «верха». Например, при сборке установки для простой перегонки следует вначале укрепить на штативе колбу Вюрца, затем к ней присоединить нисходящий холодильник, потом аллонж и, наконец, подвести под него приемник.

    Вся установка должна быть собрана в одной плоскости или по одной линии (за исключением некоторых случаев), без перекосов или напряжения стеклянных частей прибора. Это особенно важно при работе со стандартными шлифами, когда они должны присоединяться друг к другу без особых усилий со стороны экспериментатора.

    Необходимо следить, чтобы при соединении отдельных частей прибора выполнялись условия герметичности.

    Если стеклянные части установки достаточно тяжелые (например, колба с обратным холодильником, мешалкой, капельной воронкой, термометром и т.д.), то крепить их к штативу следует несколькими лапками. При этом дефлегматоры, мешалки, обратные холодильники крепят строго вертикально, а нисходящие холодильники наклонно, чтобы жидкость стекала в приемник, не попадая на пробки.

    Если установка предназначена для работы под атмосферным давлением, то необходимо, чтобы она свободно сообщалась с атмосферой во избежание повышения давления в системе.

    При необходимости защиты реагирующих веществ от действия влаги воздуха используют хлоркальциевые трубки.

12.Приступая к работе, следует еще раз внимательно осмотреть прибор и

убедиться в правильности его сборки.

4. Методы выделения и очистки

органических веществ

Полученные при синтезе вещества, как правило, содержат некоторое количество примесей (исходные вещества, не вступившие в реакцию, побочные продукты, растворители и др.). Чтобы избавиться от них, применяют различные методы очистки и выделения органических веществ. Эти методы довольно разнообразны и зависят, в основном, от агрегатного состояния соединения.

4.1. Очистка жидких веществ

Основными видами очистки жидких веществ являются

Простая перегонка,

Фракционная перегонка,

Перегонка в вакууме,

Перегонка с водяным паром,

Экстракция.

4.1.1. Простая перегонка

В тех случаях, когда перегоняемое вещество достаточно устойчиво к нагреванию и практически не разлагается при температуре кипения, для очистки пользуются простой перегонкой при атмосферном давлении .

Обычно этот способ перегонки целесообразно применять для жидкостей с температурой кипения до 180 о С, так как выше 180 о С многие вещества заметно разлагаются. Часто при перегонке температура кипящей жидкости вследствие перегрева несколько выше, чем температура пара. Перегревы, возникающие при отсутствии центров кипения в перегоняемой жидкости, приводят к сильным толчкам, в результате которых вещество вместе с примесями и загрязнениями может быть переброшено в приемник. Существуют различные способы предотвращения или ослабления толчков при кипении. Чаще всего в колбу с жидкостью, подвергаемой перегонке, вносят так называемые «кипелки», роль которых выполняют различные, инертные, пористые материалы (рис. 57).

Рисунок 57. - Приготовление смеси для перегонки.

В качестве рабочего сосуда обычно используют круглодонные колбы (рис. 58). Для перегонки низкокипящих жидкостей берут колбу с высокоприпаянной отводной трубкой, для высококипящих - с низкоприпаянной. Температура кипения обычно контролируется термометром, ртутный шарик которого должен полностью омываться парами кипящего вещества, т.е. верхний край шарика следует устанавливать примерно на 0,5 см ниже отверстия отводной трубки колбы.

Величину перегонной колбы выбирают в зависимости от количества перегоняемой жидкости и от температуры ее кипения. Жидкость должна занимать не более 2/3 объема колбы. Колба не должна быть слишком большой, особенно при перегонке высококипящих жидкостей, так как в ней остается большое количество перегоняемого вещества. Колбу укрепляют в штативе, зажимая ее лапкой выше отводной трубки. Во избежание загрязнения вещества дистиллят должен по возможности меньше соприкасаться с пробками, поэтому отводную трубку перегонной колбы соединяют с холодильником так, чтобы конец ее выступал из пробки в холодильник не менее чем на 4-5 см и доходил до той части холодильника, который охлаждается водой. Размер холодильника (площадь охлаждения) выбирают в зависимости от температуры кипения отгоняемой жидкости.

Пары веществ, легко кристаллизующихся при комнатной температуре, не должны охлаждаться в холодильнике до температуры затвердевания. Для этого холодильник можно периодически отключать от проточной воды. Жидкости, кипящие в пределах 200-300 о С, перегоняются без холодильника, функцию которого в этом случае может выполнять отводная трубка колбы для перегонки. Холодильник соединяют с приемником посредством аллонжа. В качестве приемника обычно употребляют конические или плоскодонные колбы, которые можно поставить на поверхность. При применении в качестве приемников круглодонных колб, их необходимо дополнительно закреплять. Для более полной конденсации паров низкокипящих жидкостей приемник помещают в сосуд с охлаждающей смесью.

Схема установки для простой перегонки показана на рис. 58, 59 . Она состоит из перегонной колбы 1 (или колбы Вюрца), термометра 3, нисходящего холодильника Либиха 4, алонжа 5, приемника 6, нагревательного элемента 7. Части прибора крепятся на штативах 8 с помощью муфт 10 и лапок 9. Порядок сборки установки показан на рис. 61. Перед сборкой необходимо проверить колбу на наличие трещин (рис 60)

Когда весь прибор собран, его тщательно проверяют и только тогда начинают нагревать. В зависимости от температуры кипения нагревание ведут, используя различные типы нагревательных бань (рис. 59). Скорость перегонки обычно выбирают такую, чтобы стекало не более 1-2 капель дистиллята в секунду.

Простая перегонка часто применяется для очистки абсолютных растворителей, но в этом случае обязательно к аллонжу присоединяется хлоркальциевая трубка.

Рисунок 58. - Схема установки для простой перегонки без бани.

Рисунок 59. – Схема установки для простой перегонки на бане.

Рисунок 60 Колба с трещиной (звездочкой)


Рисунок 61. Порядок сборки установки для простой перегонки

Принцип получения кислорода из жидкого воздуха основан на том, что температура кипения основных составных частей воздуха различна.

Температура кипения кислорода равна -183°, а температура кипения азота -196°. Поэтому при медленном испарении жидкого воздуха из него сначала улетучивается главным образом азот. После того как основная часть азота испарится, температура оставшейся жидкости повысится до -183°, и кислород начнет кипеть.

На этом принципе основана любая дробная, или фракционная, перегонка жидкой смеси, состоящей из нескольких веществ, которые обладают различными температурами кипения. Дробной такая перегонка называется потому, что смесь жидкостей перегоняется по частям, начиная от той жидкости, которая кипит при более низкой температуре. До тех пор пока не перегонится основная часть низкокипящей жидкости, температура всей смеси, несмотря на подогревание, будет оставаться почти без изменения. Как только жидкость, кипящая при более низкой температуре, будет отогнана, температура быстро повысится до точки кипения следующей части смеси, и так до тех пор, пока не отгонится по частям вся перегоняемая жидкость.

На этом принципе основана перегонка нефти, из которой отгоняют сначала бензин, который кипит при более низкой температуре, чем другие составные части нефти, за ним - керосин, далее перегоняют более тяжелый вид топлива - так называемое дизельное топливо, или соляровое масло.

В перегонном аппарате после отгона бензина, керосина и дизельного топлива остается мазут. Нагревая мазут до еще более высокой температуры, получают различные смазочные масла и гудрон.

При однократной фракционной перегонке нельзя сразу получить чистые продукты отгона. После первой перегонки полученные продукты загрязнены соединениями, температуры кипения которых близки. Чтобы освободиться от примесей, необходимы последующие перегонки.

При однократном испарении жидкого воздуха также невозможно получить чистый кислород и азот. Вначале, когда в жидком воздухе содержится 21 процент кислорода и 78 процентов азота, испаряется главным образом азот. Однако чем меньше азота будет оставаться в жидкости, тем больше одновременно с азотом начнет испаряться кислорода. Так, например, когда в жидкой фазе останется 50 процентов азота, в парах над такой жидкостью будет уже около 20 процентов кислорода. Чтобы получить чистый кислород и азот, недостаточно испарить жидкий воздух один раз.

Газообразные продукты, полученные после испарения, конденсируют - превращают снова в жидкость, которая подвергается вторичной перегонке. Чем больше повторяют процесс испарения и конденсации, тем чище получают продукты отгона.

Конденсация и испарение являются двумя противоположными процессами. При испарении жидкости необходимо затратить тепло, при конденсации пара - тепло выделяется. Если никаких потерь тепла нет, то теплота испарения вещества будет равна теплоте его конденсации.

Для получения кислорода из жидкого воздуха необходимо затратить некоторое количество тепла - скрытую теплоту испарения.

Если газообразный кислород пропустить через жидкий воздух, он сконденсируется и превратится в жидкость. При этом выделится тепло, называемое скрытой теплотой конденсации. Жидкий воздух, получив это тепло, сразу же израсходует его на испарение азота, температура кипения которого ниже температуры кипения кислорода.

Так как скрытая теплота конденсации кислорода почти равна скрытой теплоте испарения азота, то из жидкого воздуха выделится по объему приблизительно столько же азота, сколько сконденсировалось кислорода.

На принципе многократной конденсации кислорода с одновременным испарением азота из жидкого воздуха основан процесс разделения жидкого воздуха на чистый газообразный азот и чистый жидкий кислород.

Такой процесс разделения носит название ректификации .

Он заключается в том, что газообразная смесь азота и кислорода, которая образуется при испарении жидкого воздуха, вновь пропускается через жидкий воздух. При этом кислород конденсируется, выделяя тепло. За счет этого тепла испаряется новая часть азота. Пропуская

вновь образовавшиеся газы через жидкий воздух, можно в конце концов получить чистый газообразный азот и жидкий чистый кислород.

Аппарат, в котором разделяют жидкий воздух на азот и кислород, называется ректификационной колонной.

Ректификационная колонна разделена перегородками на камеры-тарелки. Сверху в колонну медленно подают жидкий воздух. По сливным стаканам он постепенно стекает вниз, заполняя все тарелки колонны. Перегородки сделаны из латунного листа, в котором на расстоянии около 3 миллиметров друг от друга в шахматном порядке пробиты мелкие отверстия диаметром 0,8-0,9 миллиметра. Газы, образующиеся при испарении жидкого воздуха, легко проходят через такие отверстия, не давая жидкости просочиться через них. Попадая в жидкость, газы вспенивают ее и перемешиваются с ней. Во время перемешивания газообразный кислород конденсируется и переходит в жидкость, а азот, испаряясь, уходит через отверстия в перегородках вверх, на следующую тарелку. Таким образом, на каждой тарелке газы обогащаются азотом и обедняются кислородом.

По мере накопления жидкость стекает через края сливных больше и больше обогащаясь кислородом.

В результате наверху, на выходе из колонны, получается чистый газообразный азот, а внизу собирается чистый жидкий кислород, который сливают через кран.

Так из атмосферного воздуха получают для промышленности кислород.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

КАК ПОЛУЧАЮТ ЖИДКИЙ КИСЛОРОД

Обычно промышленное получение кислорода основывается на фракционной перегонке воздуха.

"Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части - фракции. Основана на различии в составах многокомпонентной жидкости и образующегося из неё пара. Осуществляется путём частичного испарения легколетучих компонентов исходной смеси и последующей их конденсации. Первые (низкотемпературные) фракции полученного конденсата обогащены низкокипящими компонентами, остаток жидкой смеси - высококипящими. Для улучшения разделения фракций применяют дефлегматор"

"Разделение воздуха является основным способом получения Кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а уже затем разделяют на составные части. Такой способ получения Кислорода называется разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (-180°С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого Кислород, основано на различии температуры кипения его компонентов [Ткип О2 90,18 К (-182,9°С), tкип N2 77,36 К (-195,8°С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость все более обогащается Кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий Кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько литров) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м3/ч Кислорода). Эти установки производят технологический Кислород с концентрацией 95-98,5%, технический - с концентрацией 99,2-99,9% и более чистый, медицинский Кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3."

"Большое количество кислорода используется в промышленности, в медицине, в других областях человеческой деятельности. Промышленные количества кислорода получают из жидкого воздуха. Сначала воздух сжимают мощными компрессорами – при этом он, как любой сжимаемый газ, сильно нагревается. Если вам приходилось энергично накачивать велосипедную камеру, то вы должны помнить, что корпус насоса и шланг нагреваются довольно заметно.

Сжатый воздух в больших баллонах-емкостях охлаждается. Затем его подвергают быстрому расширению через узкие каналы, снабженные турбинками для дополнительного отбора энергии у молекул газа. Эти устройства называются турбодетандерами. При расширении любого газа всегда происходит его охлаждение. Если газ был сжат очень сильно, то его расширение может привести к такому сильному охлаждению, что часть воздуха сжижается. Жидкий воздух собирают в специальные сосуды, называемые сосудами Дьюара. Жидкий кислород кипит при более "высокой" температуре (-183 оС), чем жидкий азот (-196 оС). Поэтому при "нагревании" жидкого воздуха, когда температура этой очень холодной жидкости медленно повышается от -200 оС до -180 оС, прежде всего при -196 оС перегоняется азот (который опять сжижают) и только следом перегоняется кислород. Если такую перегонку жидких азота и кислорода произвести неоднократно, то можно получить весьма чистый кислород."
"В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации воздуха.
В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа (6-200 кгс/см2), охлаждают в теплообменниках до температуры сжижения и в жидком состоянии подвергают разделению (низкотемпературной ректификации (см. примечание 1) ) на кислород и азот. Разница в температурах сжижения (кипения) кислорода и азота составляет около 13°, что достаточно для их полного разделения в жидкой фазе.

Для первоначального охлаждения аппаратов блока разделения воздуха и компенсации потерь холода применяют холодильные циклы. В этих циклах используют два основных метода получения низких температур реальных газов: 1) дросселирование сжатого воздуха; 2) расширение сжатого воздуха в поршневом детандере или турбодетандере (детандирование).
При дросселировании сжатого газа его охлаждение происходит за счет использования внутренней энергии газа на преодоление внутренних сил сцепления между частицами газа и внешних сопротивлений увеличению его объема при расширении. При детандировании газ охлаждается в значительно большей степени, чем при дросселировании, так как его внутренняя энергия расходуется также на производство внешней работы в результате политропического расширения газа в детандере. В современных установках применяют также сложные комбинированные циклы с целью снижения удельных затрат энергии на получение кислорода или азота. В крупных современных установках разделения воздуха применяется в качестве основного холодильный цикл низкого давления с турбодетандером. Более мелкие установки строят по циклам среднего давления с детандером. Цикл с одним дросселированием используют теперь только в очень небольших установках. Для получения жидкого кислорода или азота используют циклы высокого давления с детандером, а в очень крупных установках - цикл низкого давления с турбодетандером и дополнительным азотным холодильным циклом.

Примечание 1. Ректификацией называется процесс многократного испарения и конденсации жидкости на тарелках разделительного аппарата - так называемой ректификационной колонны, при котором в верхней части колонны собираются пары, состоящие из чистого легкокипящего компонента (азота), а в нижней - жидкость, содержащая в основном менее летучий компонент (кислород)."

СПАСИБО Академику ПЕТРУ ЛЕОНИДОВИЧУ КАПИЦЕ!


Пётр Леонидович Капица (26 июня (9 июля) 1894, Кронштадт - 8 апреля 1984, Москва) - физик, академик АН СССР (1939), член Президиума АН СССР (с 1957), дважды Герой Социалистического Труда (1945, 1974).

Лауреат Нобелевской премии по физике (1978) за фундаментальные открытия и изобретения в области физики низких температур. Дважды лауреат Сталинской премии (1941, 1943). Награждён большой золотой медалью имени М. В. Ломоносова АН СССР (1959). Один из основателей Московского физико-технического института. Член Еврейского антифашистского комитета.

О его работе над созданием установки по получению жидкого кислорода можно прочитать здесь: http://vivovoco.rsl.ru/VV/PAPERS/KAPITZA/KAP_17.HTM

там же есть и схема установки для получения ЖК.

Новое на сайте

>

Самое популярное