Домой Комнатные цветы Добыча трития на луне. Гелий3 - мифическое топливо будущего. Как? или "в грамм добыча, в год труды"

Добыча трития на луне. Гелий3 - мифическое топливо будущего. Как? или "в грамм добыча, в год труды"

Кандидат физико-математических наук А. ПЕТРУКОВИЧ.

С легкой руки американского президента в конце 2003 года в повестку дня встал вопрос о новых целях человечества в космосе. Высказанная среди прочих предложений задача создания обитаемой станции на Луне отчасти основывается на заманчивой идее использовать уникальные лунные запасы гелия-3 для получения энергии на Земле. Пригодится лунный гелий или нет, покажет будущее, но рассказ о нем достаточно увлекателен и позволяет сравнить наши знания о строении атомного ядра и Солнечной системы с практическими аспектами энергетики и горного дела.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

ЗАЧЕМ? ИЛИ ЯДЕРНЫЙ СИНТЕЗ - АЛХИМИЯ НАЯВУ

Превратить свинец в золото было мечтой средневековых алхимиков. Как всегда, природа оказалась богаче человеческих фантазий. Реакции ядерного синтеза создали все разнообразие химических элементов, заложив материальные основы нашего мира. Однако синтез может дать и нечто гораздо более ценное, чем золото, - энергию. Ядерные реакции в этом смысле подобны химическим (то есть реакциям преобразования молекул): каждое составное вещество, будь то молекула или атомное ядро, характеризуется энергией связи, которую необходимо потратить, чтобы разрушить соединение, и которая высвобождается при его образовании. Когда энергия связи продуктов реакции выше, чем исходных материалов, - реакция идет с выделением энергии, и, если научиться ее забирать в том или ином виде, исходные вещества можно использовать как топливо. Из химических процессов наиболее эффективна в этом смысле, как известно, реакция взаимодействия с кислородом - горение, которая сегодня служит основным и незаменимым источником энергии на электростанциях, на транспорте и в быту (еще больше энергии выделяется в ходе реакции фтора, особенно молекулярного, с водородом; однако и сам фтор, и фтористый водород - вещества чрезвычайно агрессивные).

Энергия связи протонов и нейтронов в ядре значительно больше, чем та, что связывает атомы в молекулы, и ее можно в прямом смысле слова взвесить, пользуясь великой формулой Эйнштейна E = mc 2: масса атомного ядра заметно меньше масс отдельных протонов и нейтронов, его составляющих. Поэтому тонна ядерного топлива заменяет многие миллионы тонн нефти. Однако синтез не зря называется термоядерным: чтобы преодолеть электростатическое отталкивание при сближении двух положительно заряженных атомных ядер, нужно как следует разогнать их, то есть нагреть ядерное топливо до сотен миллионов градусов (вспомним, что температура есть мера кинетической энергии частиц). По сути, при таких температурах мы имеем дело уже не с газами или жидкостями, а с четвертым состоянием вещества - плазмой, в которой нет нейтральных атомов, а есть только электроны и ионы.

В природе подобные условия, подходящие для синтеза, существуют лишь в недрах звезд. Солнце своей энергией обязано так называемому гелиевому циклу реакций: синтезу ядра гелия-4 из протонов. В звездах-гигантах и при взрывах сверхновых рождаются и более тяжелые элементы, формируя, таким образом, все разнообразие элементов во Вселенной. (Правда, считается, что часть гелия могла образоваться и непосредственно при рождении Вселенной, во время Большого взрыва.) Солнце в этом смысле не самый эффективный генератор, потому что оно горит долго и медленно: процесс тормозит первая и самая медленная реакция синтеза дейтерия из двух протонов. Все следующие реакции идут гораздо быстрее и немедленно пожирают доступный дейтерий, в несколько этапов перерабатывая его в ядра гелия. В результате, даже если предположить, что в синтезе участвует только одна сотая солнечного вещества, находящаяся в его ядре, энерговыделение составляет всего лишь 0,02 ватта на килограмм. Впрочем, именно этой медлительности, объясняемой в первую очередь небольшой, по звездным меркам, массой светила (Солнце относится к категории субкарликов) и обеспечивающей постоянство потока солнечной энергии на многие миллиарды лет, мы обязаны самим существованием жизни на Земле. В звездах-гигантах преобразование материи в энергию идет значительно быстрее, но в результате они сжигают себя полностью за десятки миллионов лет, не успев даже толком обзавестись планетными системами.

Задумав провести термоядерный синтез в лаборатории, человек собирается таким образом перехитрить природу, создав более эффективный и компактный генератор энергии, чем Солнце. Однако мы можем выбрать гораздо более легко осуществимую реакцию - синтез гелия из дейтерий-тритиевой смеси. Планируется, что проектируемый международный термоядерный реактор - токамак "ИТЕР" сможет достичь порога зажигания, от чего, впрочем, еще очень и очень далеко до коммерческого использования термоядерной энергии (см. "Наука и жизнь" №№ , , 2001 г.). Основная проблема, как известно, состоит в том, чтобы удержать плазму, нагретую до нужной температуры. Так как никакая стенка при такой температуре не избежит разрушения, то удерживать плазменное облако пытаются магнитным полем. В водородной бомбе задача решается взрывом небольшого атомного заряда, сжимающего и нагревающего смесь до необходимой кондиции, но для мирного получения энергии этот способ мало подходит. (О перспективах так называемой взрывной энергетики см. "Наука и жизнь" № 7, 2002 г.)

Главный недостаток дейтерий-тритиевой реакции - высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. Это самая радиационно-грязная из доступных реакций, причем настолько, что в промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала. Правда, наиболее вредные радиоактивные отходы, требующие бессрочного захоронения глубоко под землей из-за большого времени распада, при синтезе не образуются совсем. Другая проблема заключается в том, что выделяемую энергию уносят в основном нейтроны. Эти не имеющие электрического заряда частицы не замечают электромагнитного поля и вообще плохо взаимодействуют с веществом, так что отобрать у них энергию непросто.

Реакции синтеза без трития, например с участием дейтерия и гелия-3, практически радиационно безопасны, так как в них используются только стабильные ядра и не производятся неудобные нейтроны. Однако, чтобы "зажечь" такую реакцию, нужно, компенсируя более низкую скорость синтеза, нагреть плазму в десять раз сильнее - до миллиарда градусов (одновременно решив задачу ее удержания)! Поэтому сегодня подобные варианты рассматривают как основу будущих термоядерных реакторов второго, следующего за дейтерий-тритиевым, поколения. Однако идея этой альтернативной термоядерной энергетики приобрела и неожиданных союзников. Сторонники колонизации космоса считают гелий-3 одной из основных экономических целей лунной экспансии, которая должна обеспечить потребности человечества в чистой термоядерной энергии.

ГДЕ? ИЛИ СОЛНЕЧНЫЙ ГОСТЬ

На первый взгляд проблем с тем, где взять гелий, быть не должно: он второй по распространенности во Вселенной элемент, а относительное содержание в нем легкого изотопа составляет немногим меньше одной тысячной доли. Однако для Земли гелий - экзотика. Это очень летучий газ. Земля не может удержать его своим тяготением, и почти весь первичный гелий, попавший на нее из протопланетного облака при образовании Солнечной системы, вернулся из атмосферы обратно в космос. Даже обнаружен гелий был сначала на Солнце, почему и получил название в честь древнегреческого бога Гелиоса. Позже его нашли в минералах, содержащих радиоактивные элементы, и, наконец, выловили в атмосфере среди других благородных газов. Земной гелий имеет в основном не космическое, а вторичное, радиационное, происхождение: при распаде радиоактивных химических элементов вылетают альфа-частицы - ядра гелия-4. Гелий-3 так не образуется, и поэтому его количество на Земле ничтожно и исчисляется буквально килограммами.

Запастись гелием космического происхождения (с относительно большим содержанием гелия-3) можно в атмосферах Урана или Нептуна - планет достаточно больших, чтобы удержать этот легкий газ, или на Солнце. Оказалось, что к солнечному гелию подобраться проще: все межпланетное пространство заполнено солнечным ветром, в котором на 70 тысяч протонов приходится 3000 альфа-частиц - ядер гелия-4 и одно ядро гелия-3. Ветер этот чрезвычайно разрежен, по земным меркам он представляет собой самый настоящий вакуум, и "сачком" его поймать невозможно (см. Наука и жизнь" № 7, 2001 г.). Зато солнечная плазма оседает на поверхности небесных тел, не имеющих магнитосферы и атмосферы, например на Луне, и, значит, можно опустошить какую-нибудь природную ловушку, исправно пополнявшуюся последние четыре миллиарда лет. В результате плазменной бомбардировки на Луну за это время выпало несколько сотен миллионов тонн гелия-3. Если бы весь солнечный ветер оставался на поверхности Луны, то кроме 5 граммов гелия-3 на каждом квадратном метре поверхности оказалось бы в среднем еще 100 килограммов водорода и 16 - гелия-4. Из этого количества можно было бы создать вполне приличную атмосферу, лишь немногим более разреженную, чем марсианская, или океан жидкого газа двухметровой глубины!

Однако ничего подобного на Луне нет, и лишь очень малая доля ионов солнечного ветра навсегда остается в верхнем слое лунного грунта - реголите. Исследования лунного грунта, привезенного на Землю советскими станциями "Луна" и американскими "Аполлонами", показали, что гелия-3 в нем примерно 1/100-миллионная часть, или 0,01 грамма на 1 тонну. А всего на Луне около миллиона тонн этого изотопа, по земным меркам очень много. При современном уровне мирового энергопотребления лунного топлива хватило бы на 10 тысяч лет, что примерно в десять раз больше, чем энергетический потенциал всего извлекаемого химического топлива (газа, нефти, угля) на Земле.

КАК? ИЛИ "В ГРАММ ДОБЫЧА, В ГОД ТРУДЫ"

К сожалению, никаких "озер" гелия на Луне нет, он более или менее равномерно рассеян по всему приповерхностному слою. Тем не менее с технической точки зрения процесс добычи довольно прост и в подробностях разработан энтузиастами колонизации Луны (см., например, www.asi.org).

Чтобы обеспечить современную годовую потребность Земли в энергии, необходимо завезти с Луны всего лишь около 100 тонн гелия-3. Именно это количество, соответствующее трем-четырем рейсам космических челноков - шаттлов, и завораживает своей доступностью. Однако сначала надо перекопать около миллиарда тонн лунного грунта - не такое уж большое количество по меркам горной промышленности: например, угля за год в мире добывают два миллиарда тонн (в России - около 300 миллионов тонн). Конечно, содержание гелия-3 в породе не слишком велико: например, разработка месторождений считается экономически эффективной, если золота в них содержится не менее нескольких граммов, а алмазов - не менее двух каратов (0,4 г) на тонну. В этом смысле гелий-3 можно сравнить разве что с радием, которого с начала ХХ века было получено всего лишь несколько килограммов: после обработки тонны чистого урана получается только 0,4 грамма радия, не говоря уже о проблемах добычи самого урана. В начале прошлого века, в период романтического отношения к радиоактивности, радий был довольно популярен и известен не только физикам, но и лирикам: вспомним фразу В. В. Маяковского: "Поэзия - та же добыча радия. В грамм добыча, в год труды". Зато гелий-3 дороже практически любого вещества, используемого человеком, - одна тонна стоила бы как минимум миллиард долларов, если пересчитать энергетический потенциал гелия в нефтяной эквивалент по бросовой цене 7 долларов за баррель.

Газ легко выделяется из реголита, нагретого до нескольких сотен градусов, скажем, при помощи зеркала-концентратора солнечных лучей. Не забудем, что еще надо отделить гелий-3 от гораздо большего количества других газов, в основном от гелия-4. Это делают, охлаждая газы до жидкого состояния и пользуясь незначительной разницей температур кипения изотопов (4,22 К для гелия-4 или 3,19 К для гелия-3). Другой изящный способ разделения основан на использовании свойства сверхтекучести жидкого гелия-4, который может самостоятельно перетечь через вертикальную стенку в соседнюю емкость, оставив после себя только несверхтекучий гелий-3 (см. "Наука и жизнь" № 2, 2004 г.).

Увы, заниматься всем этим придется в безвоздушном пространстве, не "в тепличных" условиях Земли, а на Луне. Придется переселить туда несколько шахтерских городов, что, в сущности, означает колонизацию Луны. Сейчас за безопасностью нескольких космонавтов на околоземной орбите следят сотни специалистов и в любой момент экипаж может вернуться на Землю. Если в космосе окажутся десятки тысяч человек, им придется жить в условиях вакуума самостоятельно, без детального присмотра с Земли, и обеспечивать себя водой, воздухом, топливом, основными строительными материалами. Впрочем, водорода, кислорода и металлов на Луне достаточно. Многие из них могут быть получены как побочный продукт добычи гелия. Тогда, вероятно, гелий-3 сможет стать выгодным товаром для торговли с Землей. Но поскольку люди, находящиеся в столь сложных условиях, будут нуждаться в гораздо большем количестве энергии, чем земляне, лунные запасы гелия-3 могут показаться нашим потомкам не такими уж безграничными и привлекательными.

Кстати, на этот случай есть и альтернативное решение. Если уж инженеры и физики найдут способ справиться с удержанием в десять раз более горячей, чем нужно для современного токамака, гелиевой плазмы (задача, кажущаяся сейчас совершенно фантастической), то, увеличив температуру еще всего лишь в два раза, мы "зажжем" и реакцию синтеза с участием протонов и бора. Тогда все проблемы с топливом будут решены, причем за гораздо меньшую цену: бора в земной коре больше, чем, например, серебра или золота, он широко используется как добавка в металлургии, электронике, химии. Различных боросодержащих солей горнообогатительные комбинаты выпускают сотни тысяч тонн в год, а если нам не хватит запасов на суше, то в каждой тонне морской воды содержится несколько граммов бора. И тот, у кого в домашней аптечке припасен пузырек борной кислоты, может считать, что у него есть собственный энергетический резерв на будущее.

Литература

Бронштейн М. П. Солнечное вещество. - Терра-книжный клуб, 2002.

Лунный грунт из моря изобилия. - М.: Наука, 1974.

Подписи к иллюстарциям

Илл. 1. Гелиевый цикл реакций ядерного синтеза начинается со слияния двух протонов в ядро дейтерия. На следующих этапах образуются более сложные ядра. Выпишем несколько первых наиболее простых реакций, которые понадобятся нам в дальнейшем.
p + p → D + e - + n
D + D → T + p или
D + D → 3 He + n
D + T → 4 He + n
D + 3 He → 4 He +2p
p + 11 Be → 3 4 He
Скорость реакции определяется вероятностью преодоления электростатического барьера при сближении двух положительно заряженных ионов и вероятностью собственно слияния ядер (так называемым сечением взаимодействия). В частности, чем выше кинетическая энергия ядра и чем меньше его электрический заряд, тем больше шансов пройти электростатический барьер и тем выше скорость реакции (см. график). Ключевой параметр теории термоядерной энергетики - критерий зажигания реакции - определяет, при какой плотности и температуре плазменного топлива энергия, выделяемая при синтезе (пропорциональная скорости реакции, умноженной на плотность плазмы и время горения), превысит затраты на нагрев плазмы с учетом потерь и коэффициента полезного действия. Наибольшая скорость у реакции дейтерия и трития, и, чтобы достичь зажигания, плазму с концентрацией около 10 14 см -3 необходимо нагреть до полутора сотен миллионов градусов и удерживать 1-2 секунды. Чтобы добиться положительного баланса энергии в реакциях на других компонентах - гелии-3 или боре, меньшую скорость надо компенсировать, в десятки раз увеличивая температуру и плотность плазмы. Зато при удачном столкновении двух ядер выделяется энергия, в тысячу раз превосходящая энергию, потраченную на их нагрев. Начальные реакции гелиевого цикла, образующие дейтерий и тритий в солнечном ядре, идут настолько медленно, что соответствующие кривые в поле этого графика не попали.

Илл. 2. Солнечный ветер - это поток разреженной плазмы, постоянно истекающей с солнечной поверхности в межпланетное пространство. Ветер уносит всего лишь около 3х10 -14 солнечной массы в год, но именно он оказывается основным компонентом межпланетной среды, вытесняющим межзвездную плазму из окрестностей Солнца. Так создается гелиосфера - своеобразный пузырек радиусом примерно в сто астрономических единиц, движущийся вместе с Солнцем через межзвездный газ. К ее границе сейчас, как надеются астрономы, подлетают американские спутники "Вояджер-1" и "Вояджер-2", которые скоро станут первыми космическими аппаратами, покинувшими пределы Солнечной системы. Впервые солнечный ветер обнаружила советская межпланетная станция "Луна-2" в 1959 году, однако косвенные свидетельства о наличии корпускулярного потока, идущего от Солнца, были известны и ранее. Именно солнечному ветру жители Земли обязаны магнитными бурями (см. "Наука и жизнь" № 7, 2001 г.). У орбиты Земли ветер содержит в среднем всего лишь шесть ионов на один кубический сантиметр, движущихся с умопомрачительной скоростью 450 км/с, что, впрочем, по масштабам Солнечной системы не так уж и быстро: на путешествие до Земли уходит трое суток. Солнечный ветер на 96% состоит из протонов и на 4% из ядер гелия. Примесь других элементов незначительна.

Илл. 3. Лунный реголит - это довольно рыхлый слой на поверхности Луны толщиной в несколько метров. В основном он состоит из мелких обломков со средним размером меньше миллиметра, накопившихся в течение миллиардов лет в результате разрушения лунных пород при перепадах температуры и ударах метеоритов. Исследования лунного грунта показали, что, чем больше в реголите окислов титана, тем больше и атомов гелия.

Илл. 4. Наличие титана в приповерхностном слое достаточно легко обнаруживается при дистанционном спектроскопическом анализе (красный цвет на правом изображении рисунка, полученном спутником "Клементина"), и, таким образом, получается карта "месторождений" гелия, которые, в общем, совпадают с расположением лунных морей.

Илл. 5. Чтобы добыть одну тонну гелия-3, нужно переработать поверхностный слой реголита на площади не менее 100 квадратных километров. Попутно удастся получить и значительное количество других газов, которые пригодятся для обустройства жизни на Луне. Рисунки взяты с сайта

Гелий 3 - энергия будущего

Все мы знаем, что нефть у нас не бесконечная, а исследования доказали еще ее органическое происхождение – это значит нефть относится к невозобновляемым ресурсам. Нефть - горючая маслянистая жидкость, являющаяся смесью углеводородов, красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть, имеет специфический запах, распространена в осадочной оболочке Земли; одно из наиважнейших полезных ископаемых. Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть - жидкие углеводороды. Нефть занимает ведущее место в мировом топливно-энергетическом балансе: доля ее в общем потреблении энергоресурсов составляет 48 %.Именно поэтому нефть как источник энергии, так важна для человечества.

На текущий момент основными источниками энергии являются: ТЭЦ, ТЭС, АЭС.

На графике четко видно что лидирующем положением может похвастаться только ТЭЦ, которые в качестве топлива используют невозобновляемые ресурсы такие как: нефть (все виды топлива получаемые из нефти), уголь, газ.

На долю ГЭС приходится лишь 20%, при этом даже если в мире начнуть использовать максимальное количество рек под ГЭС, суммарная выделяемая энергия всеми гидроэлектростанциями не способна будет удовлетворить потребности человества.

Атомные электростанции занимают лишь 17% мирового энергопроизводства, использование реакции деления атома влечет за собой серьезные последствия в виде радиации.

Сейчас активно в качестве альтернативных сырьевых ресурсов используются газ, уголь, торф, энергия деления атома (атомная энергетика).Но мы прекрасно понимаем что они не способны заменить полностью нефть как сырья для получения энергии. Да и запасы того же природного газа не бесконечны, используя данные альтернативные сырьевые ресурсы мы лишь отсрочим энергетический кризис.

Ученые прекрасно осознают наступающую на пятки проблему, и создают и изучают альтернативные источники энергии. На текущий момент ученые работают над проектами подразумевающие использование:

• Биогаза

• Биодизельного топливо

• Биоэтанола

• Ветроэнергетики

• Водородная энергетики

• Геотермальная энергии

• Солнечных элементов

• Атомной энергетики

• Термоядерная энергетика (на основе использования Гелия 3)

Основная часть

Итак, рассмотрим каждую альтернативу в отдельности.

2.1.Биогаз

Биометан – газ, полученный при брожении органических отходов (биогаз). Наиболее целесообразной сферой применения биогаза является отопление животноводческих ферм, жилых помещений и технологических участков. Также биогаз можно использовать в качестве моторного топлива. Излишки полученного топлива можно перерабатывать в электроэнергию с помощью дизельных генераторов.

Биометан имеет низкую объемную концентрацию энергии. При нормальных условиях теплота сгорания 1 л. биометана составляет 33 - 36 кДж.

Биометан имеет высокую детонационную стойкость, что позволяет снижать концентрацию вредных веществ в отработанных газах и уменьшать количество отложений в двигателе.

Биометан как моторное топливо должен применяться в транспортных двигателях либо в сжатом, либо в сжиженном состоянии. Однако основным сдерживающим фактором широко применения сжатого биометана в качестве моторного топлива, как и в случае со сжатым природным газом, является транспортировка значительной массы топливных баллонов.

За рубежом проблеме получения и использования биогаза уделяют большое внимание. За короткий срок во многих странах мира возникла целая индустрия по производству биогаза: если в 1980 г. в мире насчитывалось около 8 млн. установок для получения биогаза суммарной мощностью 1,7-2 млрд. куб. м в год, то в настоящее время данные показатели соответствуют производительности по биогазу только одной страны - Китая.

К примуществам биогаза можно отнести:

• Получение энергии без дополнительной эмиссии CO 2 .

• Закрытые системы не пропускают или незначительно пропускают запахи.

• Улучшение торговой ситуации и снижение зависимости от импортёров энергии.

• Электричество на биогазе можно вырабатывать 24 часа в сутки.

• Отсутствие зависимости от ветра/воды/электричества.

• Улучшение удобряемости почвы.

2.2 Биодизельное топливо

Биодизель - топливо на основе растительных или животных жиров (масел), а также продуктов их этерификации. Применяется на автотранспорте в виде различных смесей с дизельным топливом.

Экологические аспекты применения:

Биодизель, как показали опыты, при попадании в воду не причиняет вреда растениям и животным. Кроме того, он подвергается практически полному биологическому распаду: в почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля, что позволяет говорить о минимизации загрязнения рек и озёр.

К преимуществам биодизеля можно отнести:

• увеличение цетанового числа и смазывающей способности, что продлевает жизнь двигателя;

• значительное снижение вредных выбросов (включая СО, СО2, SO2, мелкие частицы и летучие органические соединения);

• способствование очистке инжекторов, топливных насосов и каналов подачи горючего.

Недостатки

В холодное время года необходимо подогревать топливо идущее из топливного бака в топливный насос или применять смеси 20% БИОДИЗЕЛЯ 80% солярки.

2.3.Биоэтанол

Биоэтанол – это жидкое спиртовое топливо, пары которого тяжелее воздуха. Он вырабатывается из сельскохозяйственной продукции, содержащей крахмал или сахар, например, из кукурузы, зерновых или сахарного тростника. В отличие от спирта, из которого производятся алкогольные напитки, топливный этанол не содержит воды и производится укороченной дистилляцией (две ректификационные колонны вместо пяти) поэтому содержит метанол и сивушные масла, а также бензин, что делает его непригодным для питья.

Топливный биоэтанол производится почти так же, как и обычный пищевой спирт для производства алкогольных напитков, но есть несколько существенных отличий.

Этанол можно производить из любого сахаро- и крахмало-содержащего сырья: сахарного тростника и свеклы, картофеля, топинамбура, кукурузы, пшеницы, ячменя, ржи и тд.

К примуществам биоэтанола можно отнести:

Этанол имеет высокое октановое число

Биоэтанол разлагаем и не загрязняет природные

водные системы

10% этанола в бензине снижает токсичность выхлопа

снизить выбросы СО на 26%, выбросы оксидов азота

на 5%, аэрозольных частиц на 40%.

Этанол является единственным возобновляемым

жидким топливом, использование которого в

качестве добавки к бензину не требует изменение

конструкции двигателей

Особо ярко выраженных недостатков не имеет.

2.4. Ветроэнергетика

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра, фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогененератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности энергонагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует ее дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т.п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

Преимущества:

• Экологически чисто.

• Безопасно для человека (нет радиации, отходов).

Основные недостатки:

Низкая плотность энергии, приходящейся на единицy площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц.

2.5. Водородная энергетика

Водородная энергетика - направление выработки и потребления энергии человечеством, основанное на использования водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в кругооборот водородной энергетики). Существует несколько способов производства водорода:

• Из природного газа

• Газификация угля:

• Электролиз воды (*обратная реакция)

• Водород из биомассы

Преимущества:

• экологическая чистота водородного топлива.

• возобновляемость.

• чрезвычайно высокий КПД - 75%, что почти в 2,5 раза выше, чем у самых современных установок, работающих на нефти и газе.

Есть у водорода и более серьезные недостатки. Во-первых, в свободном газообразном состоянии он в природе не существует, то есть его нужно добывать. Во-вторых, водород, как газ, довольно опасен. Его смесь с воздухом сначала незримо "горит", то есть выделяет тепло, а потом легко детонирует от малейшей искры. Классический пример водородного взрыва - чернобыльская авария, когда в результате перегрева циркония и попадания на него воды образовался водород, который потом и сдетонировал. В-третьих, водород нужно где-то хранить, причем в больших емкостях, поскольку он имеет низкую плотность. А сжимать его можно только под очень высоким давлением, приблизительно в 300 атмосфер.

2.6. Геотермальная энергия

Извержение вулканов наглядно свидетельствует об огромном жаре внутри планеты. Ученые оценивают температуру ядра Земли в тысячи градусов Цельсия. Эта температура постепенно снижается от горячего внутреннего ядра, где, как полагают учёные, металлы и породы могут существовать только в расплавленном состоянии, до поверхности Земли. Геотермальная энергия может быть использована двумя основными способами - для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятий. Для какой из этих целей она будет использоваться, зависит от формы, в которой она поступает в наше распоряжение. Иногда вода вырывается из-под земли в виде чистого “сухого пара”, т.е. пара без примеси водяных капелек. Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии. Конденсационную воду можно возвращать в землю и при ее достаточно хорошем качестве - сбрасывать в ближний водоем.

Преобразование термальной энергии океана.

Идея использования разности температур океанских вод для производства электроэнергии возникла около 100 лет назад, а именно в 1981 году. Французский физик Жак Д, Арсонваль опубликовал работу о солнечной энергии морей. В то время было уже известно многое о способности океана принимать и аккумулировать тепловую энергию. Был известен и механизм рождения океанских течений и основные закономерности образования температурных перепадов между поверхностными и глубинными слоями воды.

Использование перепада температур возможно по трём основным направлениям: непосредственное преобразование на основе термоэлементов, преобразование теплоты в механическую энергию в тепловых машинах и превращение в механическую энергию в гидромашинах с использованием разности плотностей тёплой и холодной воды.

Преимущества:

• они практически не нуждаются в техническом обслуживании.

• Одно из преимуществ геотермальной электростанции состоит в том, что по сравнению с электростанцией, сжигающей органическое топливо, она выделяет примерно в двадцать раз меньше углекислого газа при производстве такого же объёма электричества, что снижает её влияние на глобальную окружающую среду.

• Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Какие проблемы возникают при использовании подземных термальных вод? Главная из них заключается в необходимости обратной закачки отработанной воды в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (например, бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что исключает сброс этих вод в природные водные системы, расположенные на поверхности.

2.7. Солнечные элементы

Принципы работы солнечных элементов:

Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния.

В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные СЭ из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются.

Преимущества:

• Энергия солнца почти бесконечна

• Экологически чисто

• Безопасно для человека и природы

Недостатки: Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может резко и неожиданно колебаться из-за смены погоды. Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30-50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения.

2.8.Атомная энергетика

Ядерная энергия (атомная энергия), внутренняя энергия атомных ядер, выделяющаяся при ядерных превращениях (ядерных реакциях). Использование ядерной энергии основано на осуществлении цепных реакций деления тяжелых ядер и реакций термоядерного синтеза - слияния легких ядер; и те, и другие реакции сопровождаются выделением энергии.К примеру при делении одного ядра выделяется около 200 МэВ. При полном же делении ядер, находящихся в 1 г урана, выделяется энергия 2,3*104 кВтч. Это эквивалентно энергии, получаемой при сгорании 3 т угля или 2,5 т нефти. Управляемая реакция деления ядер используется в ядерных реакторах.

Преимущества:

• низкие и устойчивые (по отношению к стоимости топлива) цены на электроэнергию;

• среднее воздействие на экологическую среду.

Недостатки атомных станций:

• Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

• Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

• При низкой вероятности инцидентов, последствия их крайне тяжелы

• Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Все выше перечисленные альтернативы нефти имеют один, но очень существенный недостаток, они НЕ способны ПОЛНОСТЬЮ заменить нефть как источник энергии. Лишь применением термоядерной энергии может помочь в данной ситуации.

2.9.Термоядерная энергетика

Термоядерная энергия с участием гелия 3 – это безопасная и качественная энергия.

Термоядерные реакции. Выделение энергии при слиянии ядер легких атомов дейтерия, трития или лития с образованием гелия происходит в ходе термоядерных реакций. Эти реакции называются термоядерными, так как могут протекать лишь при очень высоких температурах. В противном случае, силы электрического отталкивания не позволяют ядрам сблизиться настолько, чтобы начали действовать ядерные силы притяжения. Реакции ядерного синтеза являются источником звездной энергии. Эти же реакции протекают при взрыве водородной бомбы. Осуществление управляемого термоядерного синтеза на Земле сулит человечеству новый, практически неисчерпаемый источник энергии. Наиболее перспективна в этом отношении реакция слияния дейтерия и трития.

Если использовать в термоядерном реакторе дейтерия с изотопом гелия-3 вместо применяемых материалов в ядерной энергетике. Интенсивность нейтронного потока падает в 30 раз - соответственно, можно без труда обеспечить срок службы реактора в 30-40 лет (соответственно уменьшается количество выделяемой радиации). После окончания эксплуатации гелиевого реактора высокоактивные отходы не образуются, а радиоактивность элементов конструкции будет так мала, что их можно захоронить буквально на городской свалке, слегка присыпав землей.

Так в чем же проблема? Почему мы до сих пор не используем такое выгодное термоядерное топливо?

Прежде всего, потому, что на нашей планете этого изотопа чрезвычайно мало. Рождается он на Солнце, отчего иногда называется «солнечным изотопом». Его общая масса там превышает вес нашей планеты. В окружающее пространство гелий-3 разносится солнечным ветром. Магнитное поле Земли отклоняет значительную часть этого ветра, а потому гелий-3 составляет лишь одну триллионную часть земной атмосферы - примерно 4000 т. На самой Земле его еще меньше - около 500 кг.

На Луне этого изотопа значительно больше. Там он вкрапляется в лунный грунт «реголит», по составу напоминающий обычный шлак. Речь идет об огромных - практически неисчерпаемых запасах!

Анализ шести образцов грунта, привезенных экспедициями «Аполлон», и двух образцов, доставленных советскими автоматическими станциями «Луна», показал, что в реголите, покрывающем все моря и плоскогорья Луны, содержится до 106 т гелия-3, что обеспечило бы потребности земной энергетики, даже увеличенной по сравнению с современной в несколько раз, на тысячелетие! По современным прикидкам, запасы гелия-3 на Луне на три порядка больше - 109 т.

Кроме Луны, гелий-3 можно найти в плотных атмосферах планет-гигантов, и, по теоретическим оценкам, запасы его только на Юпитере составляют 1020 т, чего хватило бы для энергетики Земли до скончания времен.

Проекты добычи гелия-3

Реголит покрывает Луну слоем толщиной в несколько метров. Реголит лунных морей богаче гелием, чем реголит плоскогорий. 1 кг гелия-3 содержится приблизительно в 100 000 т реголита.

Следовательно, для того, чтобы добыть драгоценный изотоп, необходимо переработать огромное количество рассыпчатого лунного грунта.

С учетом всех особенностей технология добычи гелия-3 должна включать следующие процессы:

1. Добыча реголита.

Специальные «комбайны» будут собирать реголит с поверхностного слоя толщиною около 2 м и доставлять его на пункты переработки или перерабатывать непосредственно в процессе добычи.

2. Выделение гелия из реголита.

При нагреве реголита до 600?С выделяется (десорбируется) 75% содержащегося в реголите гелия, при нагреве до 800?С - почти весь гелий. Нагрев пыли предлагается вести в специальных печах, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами.

3. Доставка на Землю космическими кораблями многоразового использования.

При добыче гелия-3 из реголита извлекаются также многочисленные вещества: водород, вода, азот, углекислый газ, азот, метан, угарный газ, - которые могут быть полезны для поддержания лунного промышленного комплекса.

Проект первого лунного комбайна, предназначенного для переработки реголита и выделения из него изотопа гелия-3, был предложен еще группой Дж.Кульчински. В настоящее время частные американские компании разрабатывают несколько прототипов, которые, видимо, будут представлены на конкурс после того, как НАСА определится с чертами будущей экспедиции на Луну.

Понятно, что, кроме доставки комбайнов на Луну, там придется возвести хранилища, обитаемую базу (для обслуживания всего комплекса оборудования), космодром и многое другое. Считается, тем не менее, что высокие затраты на создание развитой инфраструктуры на Луне окупятся сторицей в плане того, что грядет глобальный энергетический кризис, когда от традиционных видов энергоносителей (уголь, нефть, природный газ) придется отказаться.

Если учесть, что нефть кончится через 35-40 лет, то у нас достаточно времени, чтобы реализовать подобный проект. И именно та страна, которая сможет его реализовать, в будущем будет лидером, а если объединить усилия можно добиться большего результата и в более быстрые сроки.

И так, почему термоядерная энергия? Потому что это:

Крупномасштабный источник энергии с избыточным и доступным всюду топливом.

Очень низкое глобальное воздействие на окружающую среду – Нет эмиссии СО2.

- "Повседневное действие" электростанции не требует транспортировки радиоактивных материалов.

Электростанция безопасна, без возможности “расплавления” или “неуправляемой реакции”.

Нет радиоактивных отходов, что не создает проблему для будущих поколений.

Это Выгодно: Для производства 1 Гвт энергии требуется приблизительно 100 кг дейтерия и 3 тонны природного лития, чтобы использовать в течение целого года, производя приблизительно 7 миллиардов Квт час

3.Заключение

И так, энергия – это важный ресурс необходимый для комфортного существования человечества. А добыча энергии – одна из главных проблем человечества. Сейчас активно используется нефть –как источник электрической и топливной энергии.Но она не бесконечна, и запасы ее с каждым годом только уменьшаются. А текущие разработанные альтернативы – не позволяют полностью заменить нефть или же обладают серьезными недостатками.

Единственным на сегодняшний день источником энергии, способным давать необходимое количество энергии для всего человечества и при этом не иметь серьезные недостатков – является термоядерная энергия на основе использования гелия 3. Технология получения энергии из данной реакции трудоемка и требует больших вложений, но получаемая таким образом энергия – экологически чистая и исчисляется в миллиардах киловатт.

Если получать дешевую и экологически чистую энергию, можно максимально заменить нефть, к примеру отказаться от бензиновых двигателей в пользу электрических, производить тепло с использование электричества и пр.Тем самым нефти – как сырьевого ресурса для химического производства, хватит человечеству еще на долгие столетия.

Поэтому на луне (которая является основным источников гелия 3) необходимо создать промышленность. Чтобы создать промышленность, нужно иметь план развития, а это дело нескольких лет и чем раньше начать – тем лучше. Потому что, если придется делать это уже в безвыходной ситуации (во время энергетического криза – к примеру), срочно, это обернется совсем другими расходами.

А та страна, которая быстрее будет развиваться в этом направлении – в будущем станет лидером. Т.к за энергией – будущее.

4.Список использованной литературы

1. http://ru.wikipedia.org/ - всемирная энциклопедия

2. http://www.zlev.ru/61_59.htm - Журнал «Золотой Лев» № 61-62 - издание русской консервативной мысли, Когда кончится нефть?

3. http://www.vz.ru/society/2007/11/25/127214.html -ВЗГЛЯД / Когда кончится нефть

4. http://vz.ru/economy/2007/11/1/121681.html - ВЗГЛЯД / В мире кончается нефть

5. http://bio.fizteh.ru/departments/physchemplasm/topl_element.html ->Альтернатива нефти?. Факультет молекулярной и биологической физики МФТИ. "Физтех- Портал", "Физтех-центр"

6. http://encycl.accoona.ru/?id=74848 - ЯДЕРНАЯ ЭНЕРГИЯ - Интернет-энциклопедия, толковый словарь.

7. http://www.vepr.ru/show.html?id=7 -Откуда берется электричество (история возникновения)

8. http://www.bioenergy.by/mejdu_1.htm -Энергия биомассы. Проект ПРООН/ГЭФ BYE/03/G31 в Беларуси

9. http://bibliotekar.ru/alterEnergy/37.htm - Достоинства и недостатки ветроэнергетики. Принципы преобразования ветровой энергии. Ветроэнергетика

10. http://www.smenergo.ru/hydrogen_enegry/ - Водородная энергетика. Энергия и энергетика.

11. http://works.tarefer.ru/89/100323/index.html Первичные источники питания и термоядерная энергия

12. http://tw.org.ua/board/index.php?showtopic=162 -Термоядерная энергия

13. http://www.helium3.ru/main.php?video=yes - Гелий -3, Helium-3

14. http://razrabotka.ucoz.ru/publ/4-1-0-16 - ГЕЛИЙ-ТРИ - ЭНЕРГИЯ БУДУЩЕГО - лунная программа - Каталог статей - Разработка

15. http://www.fp7-bio.ru/presentations/fisheries/bioetanol.pdf/at_download/file - энергия будущего

16. http://www.scienmet.net/ - Ветрогенератор, ветроэнергетика

17. http://oil-resources.info - топливные ресурсы

18.http://ru.wikipedia.org/wiki/Водородная_энергетика.

19.http://www.ruscourier.ru/archive/2593 -недостатки водорода

20. http://www.intersolar.ru/geothermal/pressa/rbsgeo.html - Энергия из глубин - www.intersolar.ru

21.http://web-japan.org/nipponia/nipponia28/ru/feature/feature09.html - НИППОНИЯ No.28 15 марта 2004г.

22. http://www.kti.ru/forum/img/usersf/pic_41.doc - альтернативные источники энергии

23. http://www.rosnpp.org.ru/aes_preimush.shtml - атомные электростанции

24. http://www.atomstroyexport.ru/nuclear_market/advantage/ - атомная энергия

25. http://solar-battery.narod.ru/termoyad.htm - термоядерная энергия в действии

26.http://business.km.ru/magazin/view.asp?id=7B07CB0288D54DC0AC68C60AF246D693 - Бизнес KM.RU. Будущее российской энергетики - за биотопливом и термоядерной энергией


Наверное мало чего в области термоядерной энергетики окружено мифами, как Гелий 3. В 80х-90х он был активно популяризирован, как топливо, которое решит все проблемы управляемого термоядерного синтеза, а так же как один из поводов выбраться с Земли (т.к. на земле его буквально считанные сотни килограмм, а на луне миллиард тонн) и заняться, наконец, освоением солнечной системы. Все это базируется на очень странных представлениях о возможностях, проблемах и потребностях несуществующей сегодня термоядерной энергетики, о чем мы и поговорим.

Машина для добычи гелия3 на луне уже готова, дело за малым - найти ему применение.

Когда говорят про гелий3, то имеют в виду реакции термоядерного слияния He3 + D -> He4 + H или He3 + He3 -> 2He4 + 2H . По сравнению с классической D + T -> He4 +n в продуктах реакции нет нейтронов, а значит нет активации сверхэнергичными нейтронами конструкции термоядерного реактора. Кроме того, проблемой считается тот факт, что нейтроны из “классики” уносят из плазмы 80% энергии, поэтому баланс самонагрева наступает при бОльшей температуре. Еще одним записываемым гелиевому варианту преимуществом является то, что электроэнергию можно снимать прямо с заряженных частиц реакции, а не нагревом нейтронами воды - как в старых угольных электростациях.

Так вот, все это - неправда, точнее очень маленькая часть правды.

Начнем с того, что при одинаковой плотности плазмы и оптимальной температуре реакция He3 + D даст в 40 раз меньше энерговыделение на кубометр рабочей плазмы. При этом температура, нужная для хотя бы 40 кратного разрыва будет в 10 раз выше - 100 кЭв (или один миллиард градусов ) против 10 для D +T. Сама по себе, такая температура вполне достижима (рекорд токамаков на сегодня - 50 кЭв, всего в два раза хуже), но что бы завязать энергобаланс (скорость остывания VS скорость нагрева в т.ч. самонагрева) нам нужно поднять в 50 раз энерговыделение с кубометра He3 +D реакции, что можно сделать только подняв плотность в те же в 50 раз. В сочетании с выросшей в 10 раз температурой это дает увеличение давления плазмы в 500 раз - с 3-5 атм до 1500-2500 атм, и такое же увеличение противодавления, что бы эту плазму удержать.

Зато картинки вдохновляющие.

Помните, я писал, что магниты тороидального поля ИТЭР, которые создают противодавление плазме - абсолютно рекордные изделия, единственные по параметрам в мире? Так вот, поклонники He3 предлагают сделать магниты в 500 раз мощнее.

Ок, забудем про сложности, может преимущества этой реакции их окупают?

Разные термоядерные реакции, которые применимы для УТС. He3 + D дает слегка больше энергии, чем D + T, но на преодалевание кулоновского отталкивания тратится очень много энергии (заряд 3 а не 2), поэтому реакция идет медленно.

Начнем с нейтронов. Нейтроны в промышленном реакторе будут представлять собой серьезную проблему, повреждать материалы корпуса, греть все элементы обращенные к плазме настолько, что их придется охлаждать приличным расходом воды. А главное - активация материалов нейтронами приведут к тому, что и через 10 лет после остановки термоядерного реактора у нем будет тысячи тонн радиоактивных конструкций, которые невозможно разбирать руками, и которые будут вылеживаться уже в хранилище сотни и тысячи лет. Избавление от нейтронов очевидно бы облегчило задачу создания термоядерной электростанции.

Доля энергии, уносимая нейтронами. Если добавить побольше He3 в реактор, то можно снизить ее до 1%, но это еще ужесточит условия зажигания.

Ок, ну а как насчет прямого преобразования энергии заряженных частиц в электричество? Опыты показывают, что поток ионов с энергией 100 кЭв можно преобразовать в электричество с 80% кпд. У нас же тут нет нейтронов…. ну в смысле они не уносят всю энергию, которую мы можем получить только в виде тепла - давайте избавимся от паровых турбин и поставим ионные коллекторы?

Да, технологии прямого преобразования энергии плазмы в электроэнергию есть, они активно исследовались в 60х-70х, и показали кпд в районе 50-60% (не 80, надо заметить). Однако эта идея слабо применима как в D +T реакторах, так и в He3 +D. Почему это так, помогает понять вот эта картинка.

На ней показаны потери тепла плазмой по разным каналам. Сравните D+T и D + He3. Transport - это то, что можно использовать для прямого преобразования энергии плазмы в электричество. Если в D + T варианте у нас все забирают мерзкие нейтроны, то в случае He3 + D все забирает электромагнитное излучение плазмы, в основном синхротронное и рентгеновское тормозное (на картинке Bremsstrahlung). Ситуация практически симметричная, все равно надо отводить тепло от стенок и все равно прямым преобразованием мы не может вытащить больше 10-15% энергии термоядерного горения, а остальное - по старинке, через паросиловую машину.

Иллюстрация в исследовании по прямому преобразованию энергии плазмы на крупнейшей открытой ловушке Gamma-10 в японии.

Кроме теоретических ограничений есть и инженерные - в мире (в т.ч. в СССР) были потрачены гигантские усилия на создание установок прямого преобразования энергии плазмы в электричество для обычных электростанций, что позволяло поднять кпд с 35% до 55%. В основном на базе МГД-генераторов. 30 лет работы больших коллективов закончились пшиком - ресурс установки составлял сотни часов, когда энергетикам нужны тысячи и десятки тысяч. Гигантское количество ресурсов, потраченное на эту технологию привело, в частности, к тому, что наша страна отстала в производстве энергетических газовых турбин и установок парогазотурбинного цикла (которые дают ровно такое же повышение кпд - с 35 до 55%!).

Кстати, мощные сверхпроводящие магниты нужны и для МГД-генераторов. Здесь показаны СП магниты для 30 мегаваттного МГД-генератора.

Имеющего в составе два протона и два нейтрона.

Энциклопедичный YouTube

    1 / 5

    ✪ Гелий - СВЕРХТЕКУЧИЙ И САМЫЙ ХОЛОДНЫЙ ЭЛЕМЕНТ!

    ✪ Сверхтекучий гелий. Штутгартский университет

    ✪ Перспективы термоядерной энергетики (рассказывает физик Антон Тюлюсов)

    ✪ Операция "Гелий"

    ✪ Операция "Гелий". 3-я серия

    Субтитры

    хочу порекомендовать вам канал андрея сте пени на он снимает видео курс по органической химии для 10 класса сейчас на его канале доступно более 40 видео по 12 темам подписывайтесь на канал андрея издавать и игре на 100 баллов и так сегодня я расскажу вам о самом распространенном благородному газе в обозримой вселенной который к тому же ещё может приобретать уникальные сверхтекучие свойства при крайне низких температурах встречайте гелий в периодической таблице этот элемент находится в верхнем правом углу его очень легко найти под номером 2 я думаю что с этим инертным газом сегодня люди знакомятся самого детства так как из-за своей легкости относительно воздуха гелий отлично подходит для надувания праздничных шариков которые так нравятся детям это все из за того что молярная масса гелия примерно в семь раз меньше молярные массы воздуха но все же по распространенности гели на земле крайне редок в воздухе его находится всего лишь одна часть на миллион основная доля получаемого гелия для тех же шариков приходится на природный газ в котором концентрация гелия может достигать до семи процентов по массе все потому что в результате радиоактивного распада урана или тория в земной коре гелий может накапливаться в подземных пустотах с природным газом и не улетучиваться в атмосферу однако если брать более масштабно то во всей обозримой вселенной или займет почетное второе место по распространенности среди всех элементов уступив только водороду и образуя при этом примерно четверть от всех атомов вы только представьте себе что все атомы тяжелее гель образует всего лишь два процента от массы всей массы материи здесь можно почувствовать насколько мы малы в масштабах вселенной основная часть деле находится в составе звезд или же в атмосфере газовых гигантов в которых как и во всей вселенной содержится около 20 процентов деле по массе по сегодняшним данным основная часть геля находящаяся в космосе образовалась во время большого взрыва около 14 миллиардов лет назад давайте теперь вернемся с небес на землю и рассмотрим свойства этого газа в более осязаемых эксперимент у меня есть небольшая ампул с гелия который находится при очень низком давлении примерно одна сотая от атмосферного видно что гель и не имеет цвета кроме этого он еще не имеет ни вкуса ни запаха это вы могли узнать если когда-нибудь пробовали дышать этим газом однако такие опыты крайне опасны так как наши клетки не дышит гелия им нужен кислород для этого это даже заставила нынешних продавцов гелевых баллонов для шариков добавлять в них до 20 процентов кислорода что вы висели на вечеринках стала более безопасным если через окулус гелем пропустить высокочастотный разряд высокого напряжения то он начнет светиться тусклый оранжевым цветом яркость которого будет зависеть от напряжения и от диаметра ампулы я использовал в качестве источника напряжения генератора дпла знал об и что дало мне возможность держать ампулу прямо в руке и за наличие электрической емкости у моего тела в принципе как у любого другого в отличие от неё на или ксенона гелий загорается уже на расстоянии от провода генератора так как имеет меньше энергию ионизации к сожалению с химической точки зрения деле совсем не блещет интересными свойствами он не реагирует практически ни с одним веществом хотя все же в виде плазмы похоже на то что вы видите в ампуле гели может образовывать крайне нестабильное соединение с водородом дейтерием или же некоторыми металлами а при большом давлении что тысяч атмосфер даже образуются особые вещества кларт от и гелиос азота который виде кристаллов можно вырастить на алмазные подложки жаль только что все эти вещества очень нестабильны и их практически невозможно увидеть при обычных условиях но не нужно расстраиваться ведь гель обладает самыми интересными и уникальными физическими свойствами из всех газов дело в том что при охлаждении до температуры в 42 кельвина деле становится самой легкой а также холодной жидкостью плотность которой почти в 10 раз меньше плотности воды в градусах цельсия жидкий гелий получается при сумасшедших минус двести шестьдесят восемь градусов что очень холодно настолько холодно что некоторые металла при такой температуре становится сверх проводниками например ртуть или ниобий чтобы поддерживать такую низкую температуру жидкий гелий находится в двойном сосуде дьюара который ещё снаружи охлаждают жидким азотом такую же технологию охлаждения жидкого гелия используют и в современных аппаратах для создания ядерно магнитного резонанса в них сверхпроводники соединение ниобия охлаждают жидким гелием который из-за высокой дороговизны в свою очередь охлаждают более дешевом жидким азотом таким образом жидкий гель и служит медицине а также для исследования ученых но самое интересное еще впереди до этого я рассказывала вам о первой форме жидкого гелия так называемый гелий 1 если же ее начать охлаждать с помощью понижения давления в сосуде то жидкий гелий в конце концов перейдет так называемую линда. а именно остынет ниже температуры вдвое семнадцать сотых кельвинов и станет второй формы жидкого гелия после этого кипения жидкости мгновенно прекращается и жидкий гелий кардинально меняет свои свойства при такой температуре теплопроводной жидкого гелия увеличиваться в миллионы раз и становимся выше чем у меди или серебра поэтому жидкость и не кипит так как тепло передается мгновенно и равномерно по всему объему кроме этого при достижении лямбда точки гелий становимся сверхтекучий жидкостью то есть теряет абсолютно все вязкость а именно сопротивление одной части жидкости движению относительно другой есть отличный эксперимент который это доказывает если налить в небольшую подвешенную чашечку сверх текущего гелия то сможет подниматься по стенки емкости в виде тонкой пленки и вытекать из чашки кроме того он с легкостью проходит через слой керамики с величиной пор около одного микрона и чем ниже температура жидкого гелия тем проще эта жидкость проходит через барьер удивительно еще то что у жидкого гелия в таком охлажденном виде все же есть вязкость которую видно на 2 пути превращение цилиндра слои жидкости все же передают вращение на лопасти сверху так как это может быть а здесь уже играют роль другие квантовые механизмы чье поведение и на да кардинально отличается от законов классической механики вязкость она как бы есть но я и одновременно нет вот как это можно в принципе охарактеризовать и кстати впервые явления сверхтекучести жидкого гелия открыл советский ученый петр капица 1938 году а уже в 1962 году лев ландау разработал теорию этого эффекта думайте это все а вот и нет нас вновь ждет тема звезд и космических полетов до этого я рассказывал вам о самом распространенном изотопе гели и гелий 4 у которого есть два протона и два нейтрона однако есть еще крайне редки изотопа гелий-3 у которого два протона и один нейтрон дело в том что этот изотоп отлично подходит для проведения реакций термоядерного синтеза с дейтерием и в теории этот процесс может помочь человечеству отказаться от ископаемого топлива но вот проблема в том что на земле этот изотоп невероятно редок так как сразу же улетучивается из атмосферы а вот на луне у которой атмосфера нет этот изотоп гораздо лучше сохраняется гипотетически люди могли бы добывать гелий-3 из лунной пыли реголита и использовать как источник энергии на земле но пока что это всего лишь кажется фантастикой на эту тему сняли даже отличный фильм луна 2112 рекомендую к просмотру и в итоге можно сказать что такое обычность виду газ гелий обладает удивительными свойствами при низких температурах его свойства сейчас используется повсеместно например в медицине или для научных исследований в которой например газообразный гелий используется как газ носитель в хроматографии ну а если вам понравилось это видео не забудьте подписаться на канал и нажать на колокольчик и поставить лайк чтобы в будущем узнать ещё много нового и интересного

Распространённость

Открытие

Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университете в . Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в .

Физические свойства

Получение

В настоящее время гелий-3 не добывается из природных источников (на Земле доступны незначительные количества гелия-3, чрезвычайно трудные для добычи), а создаётся при распаде искусственно полученного трития .

Стоимость

Средняя цена гелия-3 в 2009 году составляла, по некоторым оценкам, порядка 930 USD за литр .

Планы добычи гелия-3 на Луне

Гелий-3 является побочным продуктом реакций, протекающих на Солнце , и в некотором количестве содержится в солнечном ветре и межпланетной среде. Попадающий в атмосферу Земли из межпланетного пространства гелий-3 быстро диссипирует обратно , его концентрация в атмосфере чрезвычайно низка

Гипотетически, при термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия , высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 (по максимальным оценкам) могло бы хватить примерно на пять тысячелетий . Основной проблемой остаётся реальность добычи гелия из лунного реголита . Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать на месте не менее 100 млн тонн грунта.

Использование

Счётчики нейтронов

Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов . Это наиболее распространённый метод измерения нейтронного потока. В них происходит реакция

n + 3 He → 3 H + 1 H + 0,764 МэВ.

Заряженные продукты реакции - тритон и протон - регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера-Мюллера.

Получение сверхнизких температур

Путём растворения жидкого гелия-3 в гелии-4 достигают милликельвиновых температур .

Медицина

Гелий-3 как ядерное топливо

Реакция 3 Не + D → 4 Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4 Не + n. К этим преимуществам относятся:

  1. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
  2. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии, например, в МГД-генераторе ;
  3. Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
  4. При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю.

К недостаткам гелий-дейтериевой реакции следует отнести значительно более высокий температурный порог. Необходимо достигнуть температуры приблизительно в 10 9 К из-за Кулоновского барьера , чтобы она могла начаться. А при меньшей температуре термоядерная реакция слияния ядер дейтерия между собой протекает гораздо охотнее, и реакции между дейтерием и гелием-3 не происходит.

В искусстве

В фантастических произведениях (играх, фильмах, аниме) гелий-3 иногда выступает в качестве основного топлива и как ценный ресурс, добываемый в том числе на Луне.

Основой сюжета британского научно-фантастического фильма 2009 года «Луна 2112 », является работа горнодобывающего комплекса компании «Лунар». Комплекс обеспечивает добычу изотопа гелий-3, с помощью которого удалось остановить катастрофический энергетический кризис на Земле.

В политической комедии «Железное небо », лунный гелий-3 стал причиной международного ядерного конфликта за право добычи.

В аниме «Planetes » гелий-3 используется как топливо для двигателей ракет и т. д.

Литература

  • Dobbs E. R. Helium Three. - Oxford University press, 2000. ISBN 0-19-850640-6
  • Галимов Э. М. Если у тебя есть энергия, ты можешь извлечь всё - Редкие земли. 2014. № 2. С. 6-12.
  • The Helium-3 Shortage: Supply, Demand, and Options for Congress // FAS, December 22, 2010 (англ.)

Примечания

  1. Audi G. , Wapstra A. H. , Thibault C.

ГИПОТЕЗЫ, ФАКТЫ, РАССУЖДЕНИЯ

Лунный Гелий-3 - термоядерное горючее будущего.

Комментарий автора сайта: С активацией американской Лунной космической программы всё чаще приходится слышать о том, что наряду с наличием воды, на Луне находятся огромные запасы изотопа гелия-3 - топлива ядерной энергетики будущего. Так ли это, какие перспективы это сулит человечеству, нужно ли вообще нам исследовать Луну и каким образом это можно осуществить - вот только небольшой перечень вопросов, ответы на которые Вы узнаете в данной статье, являющейся главой "Гелий-3" из книги академика РАН Эрика Михайловича Галимова "Замыслы и просчёты: Фундаментальные космические исследования в России последнего двадцатилетия. Двадцать лет бесплодных усилий."

Тот факт, что Луна обогащена гелием-3, известен с тех пор, как на Землю было впервые доставлено лунное вещество. В образцах лунного грунта, привезенных американскими астронавтами в ходе экспедиций «Аполлон» и доставленных советскими автоматическими аппаратами «Луна», относительная концентрация изотопа гелия 3 Не (отношение 3 Не/ 4 Не) оказалась в тысячу раз выше, чем в земном гелии. Это - результат облучения незащищенной атмосферой поверхности Луны корпускулярным излучением Солнца. В течение миллиардов лет в поверхностный пылевидный слой (реголит) Луны внедряются атомы элементов, испускаемых Солнцем, больше всего - водород и гелий в изотопном соотношении, присущем Солнцу. Другой факт - что 3 Не является эффективным термоядерным горючим - известен был физикам ещё раньше. Однако никакого практического вывода из этих фактов в те годы не делалось. Земная энергетика обеспечивалась за счёт быстро развивающейся добычи нефти и газа. Атомная энергетика базировалась на доступном урановом сырье. Управляемый термоядерный синтез не был осуществлен даже на более простой реакции дейтерия с тритием. На Земле гелий-3 в промышленных количествах отсутствует.

В конце 80-х - начале 90-х гг. появились публикации о возможном использовании Луны в качестве источника энергии для Земли. Предлагались, например, проекты передачи на Землю собранной на поверхности Луны солнечной энергии в форме сфокусированного высокочастотного луча. Высказывалась и идея добычи и доставки лунного гелия-3. Энтузиастом этой идеи, в частности, был побывавший на Луне американский астронавт Гарольд Шмидт. Он написал серьезную книгу о возможности использования гелия-3.

Призывая вернуться к исследованиям Луны, я помимо конкретной и актуальной задачи исследования внутреннего строения Луны, постоянно упоминал в качестве задачи, которую нужно иметь в виду в качестве отдаленной перспективы, освоение ресурсов лунного гелия-3.

Я думаю, что сегодня мы не предвидим в полной мере того, что даст нам освоение Луны, и потому приступаем к этому неуверенно, робко и с задержкой. Мне не раз приходилось писать о том, что исследование Луны имеет большое значение для фундаментальной геологии. Реконструкция ранней истории Земли, возникновения на ней атмосферы, океанов и жизни, невозможна без изучения Луны. Хотя бы просто потому, что следы первых 500-600 млн. лет истории Земли полностью стерты в ее геологической летописи, а на Луне они сохранились. И потому что Луна и Земля представляют генетически единую систему.

Новое на сайте

>

Самое популярное