Домой Плодовые деревья Какие клеточные структуры являются производными микротрубочек. Микротрубочки особенности строения. Новая молекулярно-механическая модель

Какие клеточные структуры являются производными микротрубочек. Микротрубочки особенности строения. Новая молекулярно-механическая модель

Отдельную группу белков цитоскелета составляют белки микротрубочек. К ним относятся тубулин, белки, ассоциированные с микротрубочками (МАР 1, МАР 2, МАР 4, тау и др.) и белки - транслокаторы (динеин, кинезин, динамин). Микротрубочки – это белковые трубчатые структуры диаметром около 25 нм и длиной до нескольких десятков микрометров; толщина их стенок – около 6 нм. Они являются обязательным компонентом цитоплазмы эукариотических клеток. Микротрубочки образуют веретено деления (ахроматиновую фигуру) в митозе и в мейозе, аксонему (центральную структуру) подвижных ресничек и жгутиков, стенку центриолей и базальных телец. Микротрубочкам отводится важная, если не ключевая, роль в клеточном морфогенезе и в некоторых видах клеточной подвижности.

Стенки микротрубучек построены из белка тубулина, на долю которого приходится 90% по весу. Тубулин – это глобулярный белок, существующий в виде димера α- и β-субъединиц с молекулярной массой ~55 кДа. Микротрубочка имеет форму полого цилиндра, стенка которого состоит из линейных цепочек тубулиновых димеров, так называемых протофиламентов. В протофиламентах α- субъединица предыдущего димера соединена с β-субъединицей следующего. Димеры в соседних протофиламентах смещены друг относительно друга, образуя спиральные ряды. На попереченом срезе видно 13 димеров тубулина, что соответствует 13 протофиламентам в

стенке микротрубочки (рис. 9). Каждая субъединица содержит около 450 аминокислот и аминокислотные последовательности субъединиц гомологичны друг другу примерно на 40%. Тубулин – ГТФсвязывающий белок, причем β-субъединица содержит лабильно связанную молекулу ГТФ или ГДФ, способную обмениваться с ГТФ в растворе, а α-субъединица – прочно связанную молекулу ГТФ.

Рис. 9. Строение микротрубочки.

Тубулин способен к спонтанной полимеризации in vitro . Такая полимеризация возможна при физиологических температурах и благоприятных ионных условиях (отсутствие ионов Ca2+ ) и требует наличия двух факторов: высокой концентрации тубулина и присутствия ГТФ. Полимеризация сопровождается гидролизом ГТФ, и тубулин в составе микротрубочки остается связанным с ГДФ, а неорганический фосфат выходит в раствор.

Полимеризация тубулина состоит из двух фаз: нуклеации и элонгации. При нуклеации происходит формирование затравок, а при

элонгации – их удлинение с образованием микротрубочек. Следует отметить, что при полимеризации тубулина субъединицы добавляются только по концам микротрубочек.

Противоположные концы микротрубочек различаются по скоростям роста. Быстрорастущий конец принято называть плюсконцом, а медленнорастущий – минус-концом микротрубочки (см. рис. 9). В клетке (–)-концы микротрубочек, как правило, ассоциированы с центросомой, а (+)-концы направлены к периферии и нередко доходят до самого края клетки.

Микротрубочки подвержены динамической нестабильности.

При постоянном количестве полимера происходит спонтанный рост или укорочение отдельных микротрубочек вплоть до полного их исчезновения. Из-за запаздывания гидролиза ГТФ по отношению к встраиванию тубулина на конце микротрубочки, находящейся в процессе роста, формируется ГТФ-кэп, состоящий из 9-18 молекул ГТФ-тубулина. ГТФ-кэп стабилизирует конец микротрубочки и способствует ее дальнейшему росту. Если же скорость включения новых гетеродимеров оказывается меньше скорости гидролиза ГТФ или в случае механического разрыва микротрубочки, образуется конец, лишенный ГТФ-кэпа. Такой конец обладает пониженным сродством к новым молекулам тубулина; он начинает разбираться.

Полимеризацию и деполимеризацию микротрубочек индуцируют изменениями температуры, ионных условий или использованием специальных химических агентов. Среди веществ, вызывающих необратимую разборку, широко используются индольные алкалоиды (колхицин, винбластин, винкристин и др.).

БЕЛКИ, АССОЦИИРОВАННЫЕ С МИКРОТРУБОЧКАМИ

Белки, ассоциированные с микротрубочками, делятся на две группы: структурные МАР (microtubule-associated proteins) и белки-

транслокаторы.

Структурные МАР

Общим свойством структурных МАР является их перманентная ассоциация с микротрубочками. Еще одним общим свойством этой группы белков является то, что в отличие от белков-транслокаторов при взаимодействии с тубулином все они связываются с С-концевой частью молекулы размером около 4 кДа.

Различают высокомолекулярные МАР 1 и МАР 2, белки тау с молекулярной массой порядка 60-70 кДа и МАР 4 или МАР U с молекулярной массой около 200 кДа.

Так, молекула МАР 1В (представитель группы белков МАР 1) – это стехиометрический комплекс одной тяжелой и двух легких цепей, представляет собой вытянутую палочкообразную молекулу длиной 190 нм, имеющую на одном конце глобулярный домен диаметром 10 нм (по-видимому, участок связывания с микротрубочками); его молекулярная масса составляет 255.5 кДа.

МАР 2 – термостабильный белок. Он сохраняет способность взаимодействовать с микротрубочками и оставаться в их составе в нескольких циклах сборки-разборки после нагревания до 90о С.

Структурные МАР способны стимулировать инициацию и элонгацию и стабилизировать готовые микротрубочки; сшивать микротрубочки в пучки. В таком сшивании участвуют короткие α-

спиральные гидрофобные последовательности на N-конце МАР и тау, замыкающие молекулы МАР, сидящие на соседних микротрубочках, наподобие застежки «молния». Биологическая роль такого сшивания может состоять в стабилизации структур, образованных микротрубочками в клетке.

На сегодняшний день экспериментальными исследованиями установлено, что помимо регуляции динамики микротрубочек структурные МАР имеют еще две основные функции: клеточный морфогенез и участие во взаимодействии микротрубочек с другими внутриклеточными структурами.

Белки-транслокаторы

К отличительной особенности белков этой группы относится свойство преобразовывать энергию АТФ в механическое усилие, способное перемещать частицы вдоль микротрубочек или микротрубочки вдоль субстрата. Соответственно транслокаторы являются механохимическими АТФазами, и их АТФазная активность стимулируется микротрубочками. В отличие от структурных МАР, транслокаторы ассоциированы в микротрубочками только в момент АТФ-зависимого перемещения.

Белки-транслокаторы делятся на две группы: кинезиноподобные белки (опосредуют движение от (–)-конца к (+)-концу микротрубочек) и динеинопободные белки (движение от (+)-конца к (–)- концу микротрубочек) (рис. 10).

Кинезин представляет собой тетрамер двух легких (62 кДа) и двух тяжелых (120 кДа) полипептидных цепей. Молекула кинезина

имеет форму стержня диаметром 2-4 нм и длиной 80-100 нм с двумя глобулярными головками на одном конце и веерообразным расширением на другом (рис. 11).

Рис. 10. Белки-транслокаторы.

В середине стержня находится шарнирный участок. N-Концевой фрагмент тяжелой цепи размером около 50 кДа, обладающий механохимической активностью, называется моторным доменом кинезина.

Рис. 11. Строение молекулы кинезина.

Клеточный центр состоит из двух центриолей и центросферы. Основу центриоли составляют девять триплетов микротрубочек, расположенных по окружности и формирующих полый цилиндр. Диаметр цилиндра центриоли составляет около 0,15-0,2 мкм, длина - от 0,3 до 0,5 мкм. Одна из микротрубочек каждого триплета (микротрубочка А) состоит из 13 протофиламентов, две другие (В и С) редуцированы и содержат по 11 протофиламентов. Все микротрубочки триплета плотно прилежат друг к другу. Каждый триплет по отношению к радиусу формируемого ими цилиндра микротрубочки располагается под углом около 40 градусов. В составе центриоли микротрубочки связаны поперечными белковыми мостиками, или ручками. Последние отходят от А-микротрубоч-ки и одним концом обращены в сторону центра центриоли, другим - к С-микротрубочке соседнего триплета.

Каждый триплет центриоли с внешней стороны связан с белковыми тельцами шаровидной формы - сателлитами, от которых в гиалоплазму расходятся микротрубочки, формирующие центросферу. Вокруг каждой центриоли обнаруживается тонковолокнистый матрикс, а сами триплеты погружены в аморфный материал умеренной электронной плотности, называемый муфтой центриоли.

В интерфазной клетке присутствует пара (дочерняя и материнская) центриолей, или диплосома, которая чаще располагается вблизи комплекса Гольджи рядом с ядром. В диплосоме продольная ось дочерней центриоли направлена перпендикулярно продольной оси материнской. Дочерняя центриоль в отличие от материнской не имеет перицентриолярных сателлитов и центросферы.

Центриоли выполняют в клетке функции организации сети цитоплазматических микротрубочек (как в покоящихся, так и делящихся клетках), а также образуют микротрубочки для ресничек специализированных клеток.

Микротрубочки присутствуют во всех животных клетках за исключением эритроцитов. Они образованы полимеризованными молекулами белка тубулина, который представляет собой гетеродимер, состоящий из двух субъединиц - альфа- и бета-тубулина. При полимеризации альфа-субъединица одного белка соединяется с бета-субъединицей следующего. Так формируются отдельные протофиламенты, которые, объединяясь по 13, формируют полую микротрубочку, внешний диаметр которой составляет около 25 нм, а внутренний - 15 нм.

Каждая микротрубочка имеет растущий плюс-конец и медленно-растущий минус-конец. Микротрубочки - один из наиболее динамичных элементов цитоскелета. Во время наращивания длины микротрубочки присоединение тубулинов происходит на растущем плюс-конце. Разборка микротрубочек наиболее часто происходит с обоих концов. Белок тубулин, формирующий микротрубочки, не является сократительным белком, и микротрубочки не наделены способностью к сокращению и передвижению. Однако микротрубочки цитоскелета принимают активное участие в транспорте клеточных органелл, секреторных пузырьков и вакуолей. Из препаратов микротрубочек отростков нейронов (аксонов) были выделены два белка - кинезин и динеин. Одним концом молекулы этих белков ассоциированы с микротрубочкой, другим - способны связываться с мембранами органелл и внутриклеточных везикул. С помощью кинезина осуществляется внутриклеточный транспорт к плюс-концу микротрубочки, а с помощью динеина - в обратном направлении.

Реснички и жгутики являются производными микротрубочек в клетках эпителия воздуховодных путей, женского полового тракта, семявыносяших путей, сперматозоидах.

Ресничка представляет собой тонкий цилиндр с постоянным диаметром около 300 нм. Это вырост плазмолеммы (аксолемма), внутреннее содержимое которого - аксонема - состоит из комплекса микротрубочек и небольшого количества гиалоплазмы. Нижняя часть реснички погружена в гиалоплазму и образована базальным тельцем. Микротрубочки располагаются по окружности реснички парами (дуплетами), повернутыми по отношению к ее радиусу под небольшим углом - около 10 градусов. В центре аксонемы расположена центральная пара микротрубочек. Формула микротрубочек в ресничке описывается как (9х2)+2. В каждом дуплете одна микротрубочка (А) является полной, т. е. состоит из 13 субъединиц, вторая (В) - неполной, т. е. содержит только 11 субъединиц. А-микротрубочка имеет динеиновые ручки, направленные к В-микротрубочке соседнего дуплета. С помощью нектин-связывающего белка микротрубочка А соединяется с микротрубочкой В соседнего дуплета. От А-микротрубочки к центру аксонемы отходит радиальная связка, или спица, которая оканчивается головкой на так называемой центральной муфте. Последняя окружает центральную пару микротрубочек. Центральные микротрубочки в отличие от периферических дуплетов микротрубочек располагаются отдельно друг от друга на расстоянии около 25 нм.

Базальное тельце реснички состоит из 9 триплетов микротрубочек. А- и В-микротрубочки триплетов базального тельца, продолжаясь в А- и В-микротрубочки дуплетов аксонемы, составляют вместе с ними единую структуру.

Реснички не содержат в своем составе сократительных белков, но при этом совершают однонаправленные биения, не изменяя своей длины. Это происходит за счет смещения пар микротрубочек относительно друг друга (продольного скольжения дуплетов) в присутствии АТФ.

Цитоскелет состоит из полимеров белковой природы. Каждый полимер состоит из нескольких тысяч идентичных субъединиц, связанных вместе с образованием филаментов

Цитоскелет обеспечивает движение клеток и их механическую поддержку

Клеточный цитоскелет состоит из трех типов полимеров: актиновые филаменты, промежуточные филаменты и микротрубочки

Все полимеры имеют динамическую природу; они постоянно наращивают и теряют субъединицы

Микротрубочки представляют собой полимеры субъединиц тубулина

Микротрубочки почти всегда функционируют вместе с молекулярными моторами, которые генерируют усилия, осуществляя движение везикул и других комплексов по поверхности микротрубочек

Реснички и жгутики представляют собой специализированные органеллы, состоящие из и моторных белков, которые обеспечивают движение клеток в жидкой среде или движение жидкости вдоль клеточной поверхности

Химические соединения, разрушающие микротрубочки, применяются в медицине и в сельском хозяйстве

Фотография представляет собой кадр видеоизображения.
Виден небольшой участок цитоплазмы клетки млекопитающих.
Слева внизу виден край клетки; ядро находится справа вверху и не видно в кадре.
Видеосъемка показывает, что большая часть везикул находится в постоянном движении.

Цитоплазма эукариотических клеток находится в постоянном движении, поскольку органеллы все время перемещаются с места на место. Это движение особенно заметно в цитоплазме крупных клеток удлиненной формы, таких как нейроны.

Движение цитоплазмы отмечается также и в других клетках. Движение органелл необходимо для выполнения ряда функций. Секреторные везикулы выходят из аппарата Гольджи, который расположен в середине клетки, и транспортируются к плазматической мембране, где экскретируют свое содержимое в межклеточную среду. В то же время везикулы, интернализованные в мембрану, транспортируются в эндосомы. Митохондрии все время находятся в движении, а ЭПР постоянно растягивается и реорганизуется.

В митотических клетках хромосомы вначале выстраиваются в метафазную пластинку, а затем расходятся в противоположные стороны. Движение органелл и хромосом в правильном направлении и в надлежащее время обеспечивается цитоскелетом, который представляет собой белковые структуры, формирующие рельсовую транспортную систему клетки и моторных белков, двигающихся по ним.

Цитоскелет также обладает другими важными функциями : он обеспечивает подвижность клеток, а также необходим для организации и структурной поддержки формы всех клеток. Многие клетки движутся или самостоятельно, например находясь в организме (клетки животных), или перемещаясь с током окружающей среды (одноклеточные организмы и гаметы).

Клетки, подобные белым кровяным клеткам , которые находят и разрушают патогенные бактерии, способны перемещаться по плоской поверхности. Другие, например сперматозоиды, чтобы достигнуть места назначения, передвигаются в жидкой среде. Цитоскелет обеспечивает все формы такого движения клеток и его направление. Наряду с кинематической функцией, цитоскелет обеспечивает организацию внутренней структуры клетки и формирует верхнюю и нижнюю, левую и правую, а также переднюю и заднюю ее части.

Определяя общую характеристику цитоплазмы , цитоскелет задает общую форму клетки, образуя прямоугольные эпителиальные клетки, нейроны с длинными тонкими аксонами, и дендриты, которые у человека в длину могут достигать одного метра.

Три кадра видеоизображения аксона живого нейрона.
На верхнем кадре схематически изображена вся нервная клетка.
Три везикулы, помеченные красной, желтой и голубой стрелками, наблюдались на протяжении 6 с.
Две везикулы движутся в направлении конца аксона, а одна в направлении тела клетки.

Цитоскелет состоит из трех основных типов структурных элементов : микротрубочек, микрофиламентов. Эти три типа структур, представленные на рисунке ниже, имеют много общих свойств. Каждый белок функционирует не как самостоятельная молекула, а как полимер, состоящий из множества идентичных белковых субъединиц. Подобно тому, как бусины, нанизанные на нитку, образуют ожерелье, полимеры цитоскелета выстраиваются в цитоплазме, связывая между собой тысячи белковых субъединиц. Основная особенность всех полимеров цитоскелета состоит в том, что они не представляют собой статические структуры, а постоянно наращивают и теряют субъединицы. Такая динамичная природа полимеров цитоскелета позволяет осуществлять его реорганизацию, образовывать новые или способствовать функционированию существующих транспортных путей в соответствии с внутриклеточными нуждами.

Хотя все три типа структурных белков проявляют общие свойства, каждый из них обладает уникальностью, что делает его наиболее соответствующим выполнению определенных задач в клетке. Поэтому три типа полимеров будут рассмотрены отдельно, хотя они часто функционируют совместно.

Эта и следующие статьи на сайте посвящаются микротрубочкам. Основная субъединица, образующая микротрубочки, представляет собой белок тубулин. Соединяясь между собой, молекулы тубулина образуют полые трубочки около 25 нм в диаметре. Отсюда они получили свое название. Одна микротрубочка может содержать десятки и сотни тысяч молекул тубулина и в длину достигать нескольких микрон.

Таким образом, микротрубочки способны распространяться более чем на половину длины большинства эукариотических клеток. Обычно интерфазные клетки содержат сотни длинных микротрубочек, проходящих через цитоплазму и соединяющих различные области клетки.

Почти всегда функционируют совместно с молекулярными моторами, которые по ним продвигаются. Эти моторные белки присоединяются к различным грузам, включая органеллы и везикулы, и транспортируют их по поверхности микротрубочек, подобно тому, как грузовики движутся по шоссейным дорогам. Микротрубочки и моторные белки также функционируют вместе при разделении реплицированных хромосом в митозе и образуют основу подвижных структур, которые используются клеткой для перемещения в жидкости или для обеспечения движения жидкости вдоль ее поверхности. Микротрубочки и моторные белки даже используются вирусами, например ВИЧ и аденовирусами, для того чтобы они могли быстро достигнуть ядра и реплицироваться.

Небольшие молекулы органических соединений , которые нарушают полимеризацию микротрубочек, используются в медицине и в сельском хозяйстве. Вещества, в той или иной степени способные стабилизировать микротрубочки, блокируют митоз и применяются как средства для лечения рака. Одним из таких веществ является паклитаксел (Таксол™), формула которого представлена на рисунке ниже и который используется для лечения рака яичников и молочной железы. Таксол связывается с микротрубочками и стабилизирует их, предотвращая диссоциацию субъединиц тубулина. Колхицин представляет собой еще один яд, оказывающий на микротрубочки противоположный эффект, т. е. вызывает их диссоциацию.

Препарат используется для лечения подагры, поскольку разрушение микротрубочек блокирует миграцию белых кровяных клеток, ответственных за воспалительный процесс при этом заболевании. Низкомолекулярные вещества, влияющие на тубулин, находят важное применение в сельском хозяйстве. Например, Зоксамид™ является фунгицидом, который специфически связывается с тубулинами грибков, тем самым предотвращая их рост. Препарат используется для борьбы с поздним фузариозным увяданием картофеля, грибковым заболеванием, которое вызвало массовый неурожай картофеля в Ирландии в 1850 г В настоящее время активно проводится поиск новых препаратов, способных связываться с тубулином и могущих найти применение в медицине и сельском хозяйстве.


Участок фибробласта в электронном микроскопе (слева). Видны многочисленные филаменты.
На снимке справа три типа полимеров, из которых состоит цитоскелет эукариотической клетки, выделены различным цветом.
Микротрубочки в фибробласте. Для визуализации микротрубочек клетки обрабатывали красителем, флуоресцирующим зеленым цветом.
Микротрубочки организованы вокруг центральной точки (помеченной красным цветом) и распространяются в цитоплазму.
Большинство микротрубочек обладает достаточной длиной для того, чтобы проникнуть из одной части клетки в другую.
Строение трех небольших органических молекул, нарушающих процесс сборки или разборки микротрубочек.
Паклитаксел (Таксол™) и колхицин представляют собой природные продукты, образующиеся в некоторых растениях (тихоокеанский тис и безвременник осенний соответственно).
Зоксамид является синтетическим веществом, которое было обнаружено при скрининге большого числа различных низкомолекулярных соединений по тесту нарушения функционирования микротрубочек.

С появлением электронного микроскопа быстро выяснилось, что цитоплазма клетки организована гораздо сложнее, чем предполагалось ранее, и что между органеллами, окруженными мембраной, и мелкими органеллами вроде рибосом и центриолей существует четкое разделение труда. Позже удалось выявить и еще более тонкую структуру в матриксе цитоплазмы, который до того представлялся совсем бесструктурным. Здесь была обнаружена сложная сеть фибрилл. Среди них можно было различить по меньшей мере три типа: микротрубочки, микрофиламенты и промежуточные филаменты. Их функции связаны с движением клеток или с внутриклеточным движением, а также со способностью клеток поддерживать свою форму.

Микротрубочки

Почти во всех эукариотических клетках содержатся полые цилиндрические неразветвленные органеллы, называемые микротрубочками . Это очень тонкие трубочки диаметром приблизительно 24 нм; их стенки толщиной около 5 нм построены из спирально упакованных глобулярных субъединиц белка тубулина (рис. 7.24). Рис. 7.21 дает представление о том, как выглядят микротрубочки на электронных микрофотографиях. В длину они могут достигать нескольких микрометров. Иногда от их стенок через определенные промежутки отходят выступы, образующие связи или перемычки с соседними микротрубочками, как это можно наблюдать в ресничках и жгутиках. Растут микротрубочки с одного конца путем добавления тубулиновых субъединиц. Этот рост прекращается под влиянием некоторых химических веществ, в частности под влиянием колхицина , который используют при изучении функций микротрубочек. Рост, видимо, может начаться лишь при наличии матрицы; есть основания думать, что роль таких матриц играют какие-то очень мелкие кольцевые структуры, которые были выделены из клеток и которые, как выяснилось, состоят из тубулиновых субъединиц. В животных клетках ту же функцию выполняют, очевидно, и центриоли, в связи с чем их иногда называют центрами организации микротрубочек. Центриоли содержат короткие микротрубочки (рис. 22.3).

Микротрубочки принимают участие в различных внутриклеточных процессах; некоторые мы здесь упомянем.

Центриоли, базальные тельца, реснички и жгутики. Центриоли - это мелкие полые цилиндры (длиной 0,3-0,5 мкм и около 0,2 мкм в диаметре), встречающиеся почти во всех животных клетках и клетках низших растений; они располагаются парами в характерно окрашиваемой области цитоплазмы, известной под названием центросома или центросфера . Каждая центриоль построена из девяти триплетов микротрубочек, как показано на рис. 22.3. В начале деления ядра центриоли удваиваются и две новые пары центриолей расходятся к полюсам веретена - структуры, по экватору которой выстраиваются перед своим расхождением хромосомы (разд. 22.2). Само веретено состоит из микротрубочек, при сборке которых центриоли играют, очевидно, роль центров организации. Микротрубочки регулируют расхождение хроматид или хромосом (гл. 22). В клетках высших растений центриоли отсутствуют, хотя веретено в них при делении ядра образуется. Возможно, что в этих клетках имеются какие-то очень мелкие центры организации микротрубочек, неразличимые даже при помощи электронного микроскопа. Ниже при рассмотрении внутриклеточного транспорта мы коснемся другой возможной функции центриолей в качестве центров организации микротрубочек.

Центриолям по структуре идентичны базальные тельца , именовавшиеся ранее кинетосомами или блефаропластами . Базальные тельца всегда обнаруживаются в основании ресничек и жгутиков. По-видимому, они образуются путем удвоения центриолей, предшествующих базальному тельцу. Вероятно, базальные тельца тоже действуют как центры организации микротрубочек, потому что ресничкам и жгутикам тоже свойственно характерное расположение микротрубочек ("9 + 2"; разд. 17.6 и рис. 17.31).

В веретене, а также в ресничках и жгутиках движение осуществляется за счет скольжения микротрубочек; в первом случае результатом этого скольжения является расхождение хромосом или хроматид, а во втором - биение ресничек или жгутиков. Более подробно эти процессы описаны в гл. 17 и 22.

Внутриклеточный транспорт . Микротрубочки участвуют также в перемещении других клеточных органелл, например пузырьков Гольджи, которые с их помощью направляются к формирующейся клеточной пластинке, как это видно на рис. 7.21. В клетках идет непрерывный транспорт пузырьков Гольджи и наряду с ним транспорт пузырьков, отпочковывающихся от ЭР и перемещающихся к аппарату Гольджи. Цейтраферная съемка позволяет выявить совершающиеся во многих клетках перемещения также и более крупных органелл, например лизосом и митохондрий. Такие перемещения могут быть упорядоченными или неупорядоченными; полагают, что они характерны почти для всех клеточных органелл. Перемещения приостанавливаются, если повреждена система микротрубочек. Сеть микротрубочек в клетках очень отчетливо выявляется с помощью метода иммунофлуоресцентной микроскопии, основанного на присоединении флуоресцентных маркеров к молекулам антител, специфически связывающихся с белком, распределение которого исследуется. Если воспользоваться антителами, специфичными к тубулину, то в световом микроскопе можно получить картину, аналогичную той, какая изображена на рис. 7.25.

Полагают, что микротрубочки расходятся радиально из центросферы, внутри которой располагаются центриоли. Сателлитные белки вокруг центриолей действуют как центры организации микротрубочек.

Цитоскелет . Помимо перечисленных выше функций микротрубочки выполняют в клетках еще и пассивную структурную роль: эти длинные трубчатые, достаточно жесткие структуры образуют опорную систему клетки, своего рода цитоскелет. Они способствуют определению формы клетки в процессе дифференцировки и поддержанию формы дифференцированных клеток; нередко они располагаются в зоне, непосредственно примыкающей к плазматической мембране. В аксонах нервных клеток имеются, например, продольно располагающиеся пучки микротрубочек (возможно, они участвуют также и в транспорте вдоль аксона). Отмечено, что животные клетки, в которых система микротрубочек повреждена, принимают сферическую форму. В растительных клетках расположение микротрубочек соответствует расположению целлюлозных волокон, отлагающихся при построении клеточной стенки; таким образом, микротрубочки косвенно определяют форму клетки.

Микрофиламенты

Микрофиламентами называются очень тонкие белковые нити диаметром 5-7 нм. Недавно было показано, что эти нити, присутствующие в эукариотических клетках в большом количестве, состоят из белка актина , близкого к тому, который содержится в мышцах. Во всех изученных клетках актин составляет 10-15% общего количества клеточного белка. Методом иммунофлуоресцентной микроскопии было установлено, что актиновый цитоскелет сходен с цитоскелетом из микротрубочек (рис. 7.26).

Нередко микрофиламенты образуют сплетения или пучки непосредственно под плазматической мембраной, а также на поверхности раздела между подвижной и неподвижной цитоплазмой (в растительных клетках, где наблюдается циклоз). По-видимому, микрофиламенты участвуют также в эндоцитозе и экзоцитозе. В клетке обнаруживаются также и нити миозина (другого важного мышечного белка), хотя количество их значительно меньше. Взаимодействие актина и миозина лежит в основе сокращения мышц (разд. 17.4). Это обстоятельство наряду с другими данными указывает, что роль микрофиламентов в клетке связана с движением (либо всей клетки в целом, либо отдельных ее структур внутри нее). Правда, движение это регулируется не совсем так, как в мышце, В некоторых случаях функционируют одни только актиновые филаменты, а в других - актин вместе с миозином. Последнее характерно, например, для микроворсинок (разд. 7.2.11). В клетках, которым свойственно движение, сборка и разрушение микрофиламентов идут непрерывно. В качестве последнего примера использования микрофиламентов укажем, что при цитотомии животных клеток они формируют сократительное кольцо.

Промежуточные филаменты

Третью группу структур составляют, как указывалось выше, промежуточные филаменты (8-10 нм в диаметре). Эти филаменты тоже играют роль в движении и участвуют в образовании цитоскелета.

Клеточная или цитоплазматическая мембрана окружает каждую клетку. Ядро окружено двумя ядерными мембранами: наружной и внутренней . Все внутриклеточные структуры: митохондрии, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, пероксисомы, фагосомы, синаптосомы и т.д. представляют собой замкнутые мембранные везикулы (пузырьки ). Каждый тип мембран содержит специфический набор белков – рецепторов и ферментов; вместе с тем основа любой мембраны – бимолекулярный слой липидов (липидный бислой), который во всякой мембране выполняет две главные функции:

  • барьера для ионов и молекул,
  • структурной основы (матрицы) для функционирования рецепторов и ферментов.

Микротрубочки - белковые внутриклеточные структуры, входящие в состав цитоскелета.

Микротрубочки представляют собой полые цилиндры диаметром 25 нм. Длина их может быть от нескольких микрометров до, вероятно, нескольких миллиметров в аксонах нервных клеток. Их стенка образована димерами тубулина. Микротрубочки полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных во многих клеточных процессах.

Микротрубочки - это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров α- и β-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний - около 15.

Один из концов микротрубочки, называемый плюс-концом , постоянно присоединяет к себе свободный тубулин. От противоположного конца - минус-конца - тубулиновые единицы отщепляются.

В образовании микротрубочки выделяют три фазы:

Замедленная фаза, или нуклеация . Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной.

Фаза полимеризации, или элонгация . Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счёт чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической, и скорость роста замедляется вплоть до вступления в следующую фазу.

Фаза стабильного состояния . Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома, локализованная вблизи ядра, выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки . В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена.

Функция . Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными . Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены . Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые - связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

  • цитоплазматические динеины;
  • кинезины.

Динеины перемещают груз только от плюс-конца к минус-концу микротрубочки, то есть из периферийных областей клетки к центросоме. Кинезины , напротив, перемещаются к плюс-концу, то есть к клеточной периферии.

Перемещение осуществляется за счёт энергии АТФ. Головные домены моторных белков для этого содержат АТФ-связывающие участки.

Помимо транспортной функции, микротрубочки формируют центральную структуру ресничек и жгутиков - аксонему. Типичная аксонема содержит 9 пар объединённых микротрубочек по периферии и две полных микротрубочки в центре.

Из микротрубочек состоят также центриоли и веретено деления, обеспечивающее расхождение хромосом к полюсам клетки при митозе и мейозе . Микротрубочки участвуют в поддержании формы клетки и расположения органоидов (в частности, аппарата Гольджи) в цитоплазме клеток.

Микротрубочки растений являются высокодинамическими составляющими цитоскелета, которые вовлечены в важные клеточные процессы, в частности, сегрегацию хромосом, формирование фрагмопласта, микрокомпартментализацию, внутриклеточный транспорт, а также в поддержание постоянной формы и полярности клетки. Ядро. Строение и функции ядра.

Новое на сайте

>

Самое популярное