Домой Виноград Геотермальная энергия вид природного ресурса. Геотермальная энергетика, геотермальные ресурсы дагестана. Промышленность и ЖКХ

Геотермальная энергия вид природного ресурса. Геотермальная энергетика, геотермальные ресурсы дагестана. Промышленность и ЖКХ

По мнению специалистов, тепло, выделяемое внутри планеты, сможет обеспечить работу ГеоТЭС общей мощностью до 200-250 млн кВт при глубине бурения скважин до 7 км и сроках работы станции порядка 50 лет. Также могут быть задействованы системы геотермального теплоснабжения мощностью до 1,2-1,5 млрд. кВт при глубине бурения скважин до 4 км и сроке эксплуатации 50 лет.
Мировыми лидерами в использовании геотермальных источников являются США, Филиппины, Индонезия, Италия, Новая Зеландия, Япония, Исландия. В Исландии 99% всех энергетических затрат покрывается за счет геотермальных источников.


Геотермальные источники, согласно классификации Международного энергетического агентства, подразделяются на 5 типов:
1) месторождения геотермального сухого пара: сравнительно легко разрабатываются, но довольно редки. Тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;


2) источники влажного пара (смеси горячей воды и пара): встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);


3) месторождения геотермальной воды (содержат горячую воду или пар и воду): представляют собой, так называемые, геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;


4) сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более): их запасы энергии наиболее велики;


5) магма, представляющая собой расплавленные горные породы, нагретые до 1300 °С.

Применение геотермальных источников в России является довольно перспективным направлением возобновляемой энергетики ввиду низкой стоимости вырабатываемой ими энергии. Потенциал геотермальных источников России намного превышает запасы органического топлива (по некоторым данным в 10-15 раз). Выявленные в настоящий момент запасы геотермальных вод в России температурой 40-200 0С и глубиной залегания до 3500 м могут обеспечить около 14 млн. м3 горячей воды в сутки, что составляет около 30 млн. т.у.т.

Первая геотермальная электростанция в России была построена в 1966 году на Паужетском месторождении на Камчатке с целью электроснабжения окрестных поселков и рыбоперерабатывающих предприятий. Причем, по мнению специалистов, именно благодаря использованию геотермальных источников Озерновский рыбокомбинат смог сохранить рентабельность в сложных экономических условиях. В настоящий момент камчатская геотермальная система может обеспечить энергией электростанции мощностью до 250-350 МВт. Однако данный потенциал используется только на четверть.


Геотермальные ресурсы Курильских островов на данный момент позволяет получать 230 МВт электроэнергии, что может обеспечить все потребности региона в энергетике, тепле, горячем водоснабжении.


Наиболее перспективными регионами для применения геотермальных источников в России являются юг России и Дальний Восток. Огромный потенциал геотермальной энергетики имеют Кавказ, Ставрополье, Краснодарский край. Здесь практически в любой точке возможно начать разработку месторождений геотермальных вод с температурой от 70 до 126 0С. Причем, вода выходит на поверхность под естественным давлением, что существенно сокращает расходы на насосы. В настоящее время в Дагестане 30% жилого фонда отапливается и снабжается водой благодаря геотермальным источникам. Данный показатель даже в современных условиях может быть увеличен до 70%.


В Калининградской области обнаружено геотермальное месторождение с температурой 105-120 0С, которое может быть использовано с целью получения электроэнергии.


Использование геотермальных вод в Центральной части России требует больших затрат ввиду глубокого залегания термальных вод - ниже 2 км. В данных регионах перспективным и выгодным для теплоснабжения является применение геотермальных вод с температурой 40-600С, залегающих на глубине 800 м, а также использование грунтового тепла по средствам тепловых насосов. Такая практика в России еще не получила широкого применения и используется в ряде отдельных проектов: 17-этажный дом в Москве, школа в Ярославской области, отдельные коттеджные поселки.


В Калининградской области в планах осуществление пилотного проекта геотермального тепло- и электроснабжения города Светлый на базе бинарной ГеоЭс мощностью 4 МВт.


На острове Итуруп обнаружены ресурсы двухфазного геотермального теплоносителя, мощности которого достаточно для удовлетворения энергопотребностей всего острова. На южном острове Кунашире действует ГеоЭс 2,6 МВт, запасы геотермального тепла которой уже используются для получения электроэнергии и теплоснабжения г. Южно-Курильска. Планируются строительство еще нескольких ГеоЭс суммарной мощностью 12-17 МВт. Недра северного острова Парамушир менее изучены. Однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95 °С.


В январе 2012 года в Республике Мордовия началось строительство «энергоэффективного дома», который будет отапливаться энергией геотермальных вод.


Геотермальная энергетика России ориентирована как на строительство «гигантов» (крупных объектов), так и на использование геотермальной энергии для отдельных домов, школ, больниц, частных магазинов и других объектов мощностью 0,1-0,4 МВт с использованием геотермальных циркуляционных систем.


В настоящий момент в России разведано около полусотни геотермальных месторождений. Для дальнейшего развития геотермальной энергетики необходимы инвестиции и поддержка государства. Введение геотермальной энергетики в энергобаланс страны позволит, с одной стороны, повысить энергетическую безопасность, с другой - снизить вредное воздействие на экологическую обстановку по сравнению с традиционными источниками.

Геотермальная энергия - это энергия тепла, которое выделяется из внутренних зон Земли на протяжении сотен миллионов лет. По данным геолого-геофизических исследований, температура в ядре Земли достигает 3 000-6 000 °С, постепенно снижаясь в направлении от центра планеты к ее поверхности. Извержение тысяч вулканов, движение блоков земной коры, землетрясения свидетельствуют о действии мощной внутренней энергии Земли. Ученые считают, что тепловое поле нашей планеты обусловлено радиоактивным распадом в ее недрах, а также гравитационной сепарацией вещества ядра.
Главными источниками разогрева недр планеты есть уран, торий и радиоактивный калий. Процессы радиоактивного распада на континентах происходят в основном в гранитном слое земной коры на глубине 20-30 и более км, в океанах - в верхней мантии. Предполагают, что в подошве земной коры на глубине 10-15 км вероятное значение температур на континентах составляет 600-800 ° С, а в океанах - 150-200 ° С.
Человек может использовать геотермальную энергию только там, где она проявляет себя близко к поверхности Земли, т.е. в районах вулканической и сейсмической активности. Сейчас геотермальную энергию эффективно используют такие страны, как США, Италия, Исландия, Мексика, Япония, Новая Зеландия, Россия, Филиппины, Венгрия, Сальвадор. Здесь внутреннее земное тепло поднимается к самой поверхности в виде горячей воды и пара с температурой до 300 °С и часто вырывается наружу как тепло фонтанирующих источников (гейзеры), например, знаменитые гейзеры Йеллоустонского парка в США, гейзеры Камчатки, Исландии.
Геотермальные источники энергии подразделяют на сухой горячий пар, влажный горячий пар и горячую воду. Скважину, которая является важным источником энергии для электрической железной дороге в Италии (близ г. Лардерелло), с 1904 г. питает сухой горячий пар. Два другие известные в мире места с горячей сухим паром - поле Мацукава в Японии и поле гейзеров возле Сан-Франциско, где также давно и эффективно используют геотермальную энергию. Больше всего в мире влажного горячего пара находится в Новой Зеландии (Вайракей), геотермальные поля чуть меньшей мощности - в Мексике, Японии, Сальвадоре, Никарагуа, России.
Таким образом, можно выделить четыре основных типа ресурсов геотермальной энергии:
поверхностное тепло земли, используемое тепловыми насосами;
энергетические ресурсы пара, горячей и теплой воды у поверхности земли, которые сейчас используются в производстве электрической энергии;
теплота, сосредоточенная глубоко под поверхностью земли (возможно, при отсутствии воды);
энергия магмы и теплота, которая накапливается под вулканами.

Запасы геотермальной теплоты (~ 8 * 1030Дж) в 35 млрд раз превышают годовое мировое потребление энергии. Лишь 1% геотермальной энергии земной коры (глубина 10 км) может дать количество энергии, в 500 раз превышающее все мировые запасы нефти и газа. Однако сегодня может быть использована лишь незначительная часть этих ресурсов, и это обусловлено, прежде всего, экономическими причинами. Начало промышленному освоению геотермальных ресурсов (энергии горячих глубинных вод и пара) было положено в 1916 году, когда в Италии ввели в эксплуатацию первую геотермальную электростанцию мощностью 7,5 МВт. За прошедшее время, накоплен немалый опыт в области практического освоения геотермальных энергоресурсов. Общая установленная мощность действующих геотермальных электростанций (ГеоТЭС) равнялась: 1975 г. - 1 278 МВт, в 1990 году - 7 300 МВт. Наибольшего прогресса в этом вопросе достигли США, Филиппины, Мексика, Италия, Япония.
Технико-экономические параметры ГеоТЭС изменяются в довольно широких пределах и зависят от геологических характеристик местности (глубины залегания, параметров рабочего тела, его состав и т.д.). Для большинства введенных в эксплуатацию ГеоТЭС себестоимость электроэнергии является подобной себестоимости электроэнергии, получаемой на угольных ТЭС, и составляет 1200 ... 2000 долл. США / МВт.
В Исландии 80% жилых домов обогревается с помощью горячей воды, добытой из геотермальных скважин под городом Рейкьявик. На западе США за счет геотермальных горячих вод обогревают около 180 домов и ферм. По мнению специалистов, между 1993 и 2000 гг глобальное выработки электричества с помощью геотермальной энергии выросло более чем вдвое. Запасов геотермального тепла в США существует так много, что оно может, теоретически, давать в 30 раз больше энергии, чем ее сейчас потребляет государство.
В перспективе возможно использование тепла магмы в тех районах, где она расположена близко к поверхности Земли, а также сухого тепла разогретых кристаллических пород. В последнем случае скважины бурят на несколько километров, закачивают вниз холодную воду, а обратно получают горячую.

Подсчитано, что на глубине до 5 км в недрах Земли количество сосредоточенной теплоты многократно превышает энергию, заключенную во всех ви­дах ископаемых энергоресурсов. В отдельных регионах, например, на Камчатке, в Исландии горячие воды изливаются на поверхность в виде гейзеров. Ныне доказано, что геотермальная энергия, получаемая за счет использования природного тепла земных недр, является наиболее перспективной и экологически безопасной среди возобновляе­мых видов энергии.

В настоящее время во многих странах мира (США, Россия, Ис­ландия и др.) для выработки электроэнергии и отопления зданий, по­догрева теплиц и парников используется тепло горячих источников. Теплоснабжение столицы Исландии Рейкьявика начиная с 1930 г. в основном осуществляется на основе геотермального тепла. Важно под­черкнуть при этом, что геотермальные электростанции (ГеоТЭС) по компоновке, оборудованию, эксплуатации мало отличаются от тради­ционных теплоэлектростанций.

В основном используют термальные воды неглубокого залегания с температурой 50-100°С. Так, скважина с суточным дебитом 1500 м 3 термальной воды (60°С) обеспечивает нужды в горячей воде поселка с населением 14 тыс. жителей. В северных широтах подземные термаль­ные воды используются для отопления жилищ, для лечебных целей, для выращивания овощей и даже фруктов в специальных оранжереях.

В искусственных геотермальных источниках в качестве рабочего тела применяют жидкость или газ, которые по пробуренным скважи­нам циркулируют в толще горных пород, имеющих высокие темпера­туры.

Например, в США проводятся эксперименты по закачке холод­ной воды в скважины, пробуренные до глубины 4 км в зону горячих, но трещиноватых и потому безводных пород. Примерно 3/5 закачива­емой воды через другие скважины поступает на поверхность, но уже в виде горячего пара. Этот пар может не только вырабатывать электро­энергию, приводя в движение турбины, но и использоваться для цен­трального отопления. Подобные эксперименты проводятся и в других странах.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет промышленной экологии
Наиболее массированный вред природной среде наносят промыш­ленные предприятия, энергетика и автомобильный транспорт - неотъемлемые компоненты урбанизированных и техногенно нагруженных территорий. Э

Стратегии мирового развития с учетом экологических ограничений
Обусловленные техногенной деятельностью изменения природной среды бумерангом вернулись и к их первопричине - человеку, стали негативно сказываться на самых различных сторонах общественной жизни, вы

Ничто не даётся даром
Очевидно, что вышеприведенные законы не охватывают все сто­роны взаимодействия общества и природы. Тем не менее, будучи простыми, по форме, но глубокими по содержанию, они закладывают ос­нову нравс

Цивилизационная революция XXI века
Наиболее ощутимым в смысле воздействия на среду обитания че­ловека и достаточно хорошо изученным можно считать загрязнение окружающей среды. Оно непосредственно связано с научно-техничес­ким прогре

Природное топливо
Топливо - это горючее вещество, выделяющее при окислении тепловую энергию, используемую в дальнейшем непосредствен­но в технологических процессах или преобразуемую в другие виды энергии. Т

Искусственное топливо
К искусственным топливам относятся: кокс доменных печей, ис­кусственные горючие газы, моторное топливо и др. Кокс - твердый углеродистый остаток, образующийся п

Альтернативное углеродсодержащее топливо
В связи с постепенным истощением запасов нефти и угля, а также усилением загрязнения среды обитания вредными продуктами сгора­ния развернуты работы по поиску и применению альтернативного

Теплоэнергетика и ее воздействие на природную среду
Химическое загрязнение окружающей среды. При сжигании углеродсодержащего топлива (угля, нефти, газа и др.) оно неизбежно. Рассмот­рим особенности поступления вредных вещ

Гидроэнергетика и ее воздействие на природную среду
Гидроэлектростанции: достоинства и экологические проблемы. Страны СНГ обладают огромными гидроэнергоресурсами, которые оцениваются в 3,94 трлн кВтч/год, из них экономический по

Ядерная энергетика и экология
Радиационная обстановка на Земле за последние 60-70 лет подверглась существенным изменениям: к началу Второй мировой войны во всех странах мира имелось около 10-12 г полученного в чистом виде естес

Радиационный экологический контроль
Естественные и искусственные радиоактивные вещества равномерно распределены в окружающей среде (за исключением аномальных геологических и промышленных районов повышенной радиоактивности) и являются

Территории повышенной радиоактивной загрязненности среды от проведения ядерных взрывов
В конце 1942 г. на территории Чикагского университета, в помещении зала под трибунами университетского стадиона, началась подготовка к пуску первого в мире ядерного реактора. Установка массой в нес

Особенности радиоэкологического загрязнения
В естественных природных условиях радиационное загрязнение среды, как правило, сочетается с воздействием и других техногенных факторов, прежде всего химического загрязнения. В силу этого вычленить


Помимо широкого использования невозобновляемых источников энергии (уголь, нефть, газ, ядерное топливо) активно изучается и реа­лизуется возможность получения энергии за счет альтернативных (не­трад

Использование солнечной энергии
Мощность солнечной энергии, поступающей на поверхность Зем­ли, оценивается в 20 млрд кВт, что эквивалентно 1,2-1014 т условного топлива в год. Для сравнения: мировые запасы органического

Энергия океанов и морей
Экологически чистая энергия морей и океанов может быть исполь­зована в волновых электростанциях (ВолнЭС), электростанциях мор­ских течений (ЭСМТ) и приливных электростанциях (ПЭС), где про­исходит

Ветроэнергетика
Энергия ветра в конечном итоге есть результат тепловых процессов, происходящих в атмосфере планеты. Причина активных процессов пе­ремещения воздушных масс заключается в различии плотностей нагре­то

Биоэнергетика
Биоэнергетикаоснована на получении биомассы, которая исполь­зуется в качестве топлива непосредственно или после соответствую­щей переработки. При этом выделяют три направления получения теп­

Водородная энергетика
Огромный интерес к водороду как к перспективному топливу обус­ловлен рядом неоспоримых его преимуществ, главные из которых та­ковы: 1) экологическая безопасность водорода в отличие от других топ-ли


В настоящее время удовлетворение потребностей в топливно-энергетических ресурсах нашей страны, обеспечение рациональной структуры топливно-энергетического баланса страны, поиск дополнительных источ

Приоритеты в развитии автономной и возобновляемой энергетики
В условиях Республики Беларусь достаточно эффективным может быть использование различных видов возобновляемых источников энергии, на базе которых могут быть созданы различные энергетические установ

Структура и виды транспорта
Транспорт, с помощью которого осуществляется перемещение гру­зов и пассажиров, играет уникальную роль, связывая все важнейшие сферы материального производства в единую систему хозяйственной деятель

Экологическое воздействие транспорта на природную среду и человека
Отчуждение земель. Естественно, что для размещения транспорт­ных коммуникаций нужны земля, вода, воздух, подчас огромных пло­щадей и объемов. Подсчитано, что в США площадь земель,

Сокращение выбросов автотранспорта, работающего на углеводородном топливе
Автомобильными двигателями выделяются в воздух городов более 95% оксида углерода, около 65% углеводородов и 30% оксидов азота. Расплачиваться за это приходится ухудшением здоровья людей как собстве

Планировочно-градостроительные мероприятия
Они включают специальные приемы застройки и озеленение ав­томагистралей, размещение жилой застройки по принципу зонирова­ния (в первом эшелоне застройки – от магистрали – размещаются здания понижен

Технологические мероприятия
Совершенствование двигателей внутреннего сгорания (ДВС) с искро­вым зажиганием. Известно, что наибольшее влияние на токсичность отработанных газов оказывают изменения, в

Санитарно-технические мероприятия
К таковым относится прежде всего установка каталитических нейтрализаторов. Они используются для обезвреживания выхлопных га­зов автомобиля путем химического превращения отдельных вредных веществ, с

Ужесточение стандартов на токсичность выхлопных газов
Исходя из понимания глобальной опасности стремительно разви­вающегося автотранспорта, еще 20 марта 1958 г. под эгидой ООН было достигнуто международное соглашение «О принятии единообразных условий

Новые виды топлива и транспорта
К таковому обычно относят различные спирты (метанол и этанол) и водород. Спирты.В ряде стран, особенно располагающих обширными план­тациями сахарного тростника, все в

Разработка альтернативных видов автотранспорта
К таковым относятся прежде всего электромобиль, солнечный электрический автомобиль, автомобиль с инерционным двигателем, автомобиль с гибридным двигателем. Электромобили

Природный горно-промышленный комплекс – объект изучения горной экологии
Источниками воздействия горного производства на окружающую природную среду являются открытые и под­земные горные работы, обогатительные фабрики, отвалы и хвостохранилища и др. Масштабы этого воздей

Воздействие горного производства на окружающую среду
Для всех способов разработки месторождений харак­терно воздействие на биосферу, затрагивающее практически все ее элементы: водный и воздушный бассейны, землю, не­дра, растительный и животный мир.

Охрана воздушного бассейна в горнодобывающей промышленности
Горное производство вызывает два вида загрязнений атмосферного воздуха: запыленность и загазованность. Ко­личество выбросов, их объем и вещественный состав опре­деляются источниками загрязнения. В

Влияние горного производства на гидросферу
Воздействие горного производства на водный бассейн проявляется в изменении водного режима, загрязнении и за­сорении вод. Изменение водного режима.При строительстве и э

Охрана водного бассейна в горном производстве
Под охраной водного бассейна (природных вод) пони­мается соблюдение установленного порядка пользования водами, т.е. обеспечение рационального управляемого ис­пользования, сохранения и восполнения и

Создание противофильтрационных завес
Вотличие от традиционных методов осушения месторождений полезных ископаемых, когда срабатываются статические и динамиче­ские ресурсы подземных вод, метод создания противофильт­рационных завес разли

Влияние горного производства на природный ландшафт
Специфическая особенность размещения предприятий горной промышленности заключается в том, что они могут создаваться только там, где имеются залежи полезных иско­паемых. При этом горные предприятия

Безотходное горное производство
Горное производство образует твердые, жидкие и газо­образные отходы (табл.6.3.) Большое количество отходов является наиболее объек­тивным показателем несовершенства проектируемой или приме


Все отрасли промышленности являются загрязнителями природной среды, отличаясь лишь ассортиментом, степенью опасности и объемом выбросов (сбросов), а также количеством твердых токсичных отходов (таб

Черная и цветная металлургия
По объему загрязнений одно из первых мест в народном хозяйстве занимает черная и цветная металлургия, металлообрабатывающая промышленность. Производство чугуна и стали сопровождается образованием б

Химическая и нефтехимическая промышленность
Химическая промышленность. На втором месте после металлургического производства по уровню негативного воздействия на окружающую среду находятся отрасли химической промышле

Машиностроительная промышленность
Практически в любом городе, а тем более промышленном центре имеются предприятия машиностроения. В одном случае это единичные предприятия, в других - группа различных по специализации машино

Промышленность строительных материалов
Крупным источником твердых частиц, загрязняющих природную среду, являются цементные заводы, известковые печи, установки по производству магнезита, асфальта, печи обжига кирпича. Наибольшая

Проблемы природопользования в сельском хозяйстве
Сельскохозяйственное природопользование является одним из древнейших видов природопользования, непосредственно направленным на удовлетворение потребностей человека. Качество сельхозпродукции непоср

Экологизация промышленного производства
Для уменьшения неблагоприятного воздействия промышленности на окружающую среду необходимо предпринимать меры по оптимизации и экологизации промышленного производства. Экологизация промышле

Основные пути и методы очистки сточных вод
Различают два основных пути очистки сточных вод: разбавление и очистка их от загрязнений. Разбавление не ликвидирует воздействия сточных вод, а лишь ослабляет его на локальном участке водоема. Осно

Экологически безопасные методы очистки промстоков
Термические методы. На химических предприятиях образуются сточные воды, содержащие различные минеральные соли (кальция, магния, натрия и др.), а также широкий спектр органических в

Очистка выбросов в атмосферу
Основным направлением охраны атмосферного воздуха от вредных выбросов должна быть разработка малоотходных и безотходных технологических процессов. Однако та­кую задачу следует полагать стратегическ

Основные принципы выбора метода и аппаратуры очистки газовых выбросов от твердых частиц и аэрозолей
Выбор метода и оборудования, обеспечива­ющих необходимую степень очистки, зависит от большого числа параметров, среди которых основным является эффективность работы си­стемы по отношению к преоблад

Очистка выбросов от токсичных газо- и парообразных примесей
С этой целью разработаны три основные группы методов очистки: 1) промывка выбросов растворителями содержащейся в них примеси (абсорбционный метод); 2) поглощение газообразных примесей твер­дыми тел

Реабилитация природных ландшафтов и нарушенных земель
Под мелиорацией понимается система организационно-хозяй­ственных и технических мероприятий, направленных на улучшение земель в целях создания наиболее благоприятных условий для разви­тия сельского

Виды отходов и масштабы их образования
Отходы производства и потребления - это остатки сырья, материалов, полуфабрикатов, иных изделий или продуктов, образовавшиеся в процессе производства и потребления, а также продукц

Обращение отходов
Обращение отходов - деятельность, в процессе которой обра­зуются отходы, а также деятельность по сбору, использованию, обезв­реживанию, транспортированию, размещению отходов.

Нормативы образования отходов и лимитов на их размещение
Суть этого вида экологического сопровождения деятельности пред­приятия состоит: · в установлении норматива образования отходов для действую­щего предприятия, исходя из анализа технологии п

Сбор, хранение и транспортировка отходов
Надлежащая организация сбора, хранения и транспортировки от­ходов вносит большой вклад в оздоровление ОС. В США, где норма накопления, например, твердых бытовых отходов (ТБО) в 2-3 раза выше, чем в

Полигоны для размещения твердых бытовых отходов
Закон «Об отходах производства и потребления» установил требования к объектам размещения отходов. Созда­ние таких объектов - специально оборудованных сооружений (поли­гонов, шламохранилищ, отвалов

Обращение токсичных промышленных отходов
Основными направлениями обращения твердых промышленных (ТПО) отходов являются: · захоронение на полигонах и свалках; · переработка конкретных твердых отходов по заводской техно­ло

Сегодня наблюдается настоящий подъем в применении разнообразных возобновляемых источников энергии. Их применение значительно возросло в различных областях деятельности человека. Причин такому росту использования различных много. Эпоха, где важную роль играют дешевые и привычные энергоносители уже подошла к своему завершению. Многие страны, которые имеют зависимость от энергии стараются максимально применять существующие возможности , поэтому геотермальные источники энергии - это очень перспективное и выгодное для них направление.


Помимо этого, значительная роль в данном вопросе приходится на соображения экологичности использования ресурсов планеты. Геотермальная энергия считается очень перспективным источником энергии. Эти и многие другие причины поставили использование геотермальной энергии в очень значимые задачи и направления, которые имеются в сфере энергетики большого числа стран нашей планеты. Многие государства осуществляют их при помощи принятия специальных законов и нормативов в которых определенные правила и нормы использования геотермальной энергии страны.

Особенности использования геотермальной энергии

В РФ, даже несмотря на такой важный момент, что страна считается лидером по имеющимся запасам ископаемых ресурсов, сейчас тоже идут принципиальные и значимые изменения разнообразных вопросов, которые непосредственно связаны с применением ВИЭ. Геотермальную энергию использует в разнообразных отраслях жизнедеятельности. Одной из важных причин считается рост цены органического топлива, поэтому задачи по эффективному использованию альтернативной энергии сейчас очень актуальны не только для энергозависимых стран. Страны использующие геотермальную энергию очень серьезно относятся к совершенствованию применяемых технологий и систем.

Геотермальная энергия является теплом существующих слоев земли находящихся на определенной глубине, которые имеют более высокие показатели температуры, чем существующая температура воздуха находящегося на поверхности. Главными носителями такой современной и эффективной энергии могут быть разнообразные флюиды в жидкой форме, так и паровые смеси с водой, горные породы, находящиеся на определенной глубине залегания.

Горячие недра планеты на постоянной основе выпускают определенное количество тепловой энергии на самую поверхность, и затем под его действием образуется необходимый градиент температуры, то есть геотермальный уровень.

Сейчас очень оптимально и финансово выгодно для получения этой энергии применять тепло используемых термальных возможностей, а также парогидротермов. Осуществляя производство этого вида энергии с максимально полным учетом технических и финансовых затрат, получаемые показатели температуры должны быть не меньше 100 градусов. Различных мест на нашей планете с такими температурными показателями относительно не много, поэтому к системам, которые используются для получения энергии необходимо относиться максимально серьезно.

Преимущества и недостатки использования геотермальной энергии

Еще не выявлен самый идеальный источник энергетических ресурсов для человека, поэтому ресурсы геотермальной энергии имеют свои положительные моменты, а также некоторые отрицательные, которые необходимо учитывать при использовании систем работающих на этих видах энергии. Основным преимуществом этих видов энергии считается практически неисчерпаемый их уровень и стабильность действия при использовании. Имеется возможность сделать некоторое предположение о том, что использование геотермальных источников энергии, позволит в некоторой степени уменьшить температуру самых верхних слоев нашей планеты. Тепло планеты имеется возможность использовать практически постоянно по времени, это отличает данный вид энергии от ветровой или же солнечного типа. Такие высокие показатели эффективности с минимальными финансовыми затратами, дают прекрасную перспективу на будущее в вопросах, которые связаны с получением необходимого количества энергии для удаленных районов страны.

Помимо большого числа положительных свойств, которыми обладает геотермальная энергия, она имеет и ряд недостатков. Чтобы получить достаточно большие объемы данного вида энергии требуются определенные условия и осуществить это в некоторых странах мира не представляется возможным по ряду причин.

Получать достаточно большое количество геотермальной энергии на постоянной основе смогут такие государства, которые по своему месторасположения находятся в вулканически активных областях планеты. Кроме всего этого, имеются и определенные показатели риска для экологии, которые непосредственно связаны с выбросом достаточно больших объемов отработанной жидкости.

Ресурсы планеты, которые имеются в недрах нашей планеты могут иметь некоторую опасность для организма человека, потому как в них содержатся разнообразные токсичные элементы способные оказывать негативное воздействие на организм человека. Самыми распространенными и при этом экономически выгодными областями где сейчас используется геотермальная энергия считаются такие, как: отопление, различные системы водоснабжения промышленного назначения разнообразных объектов промышленности и пр. Высокий энергетический эффект при использовании этого вида энергии, может быть создан при помощи создания современных систем отопления, а также увеличения перепада температурных показателей.

Использование геотермальной энергии в РФ

Геотермальная энергия в России является изучаемой и перспективной энергией, которую имеется возможность получать на территории страны. Поэтому в данной области задействовано большое число квалифицированных и опытных специалистов, которые непосредственно занимаются изучением различных способов ее эффективного применения.

Солнечная и геотермальная энергия в России является перспективным направлением для подробного изучения и использования в будущем. Виды применения этого практически неисчерпаемого типа энергии будет в будущем расширяться, поэтому сейчас создаются разнообразные системы, которые позволят использовать геотермальную энергию в различных областях деятельности человека. Это является приоритетным и очень важным направлением, которое будет развиваться и в будущем. Получение энергии на основе геотермальных источников возможно станет ключевым моментом в переходе на экологически безопасные и недорогие энергетические ресурсы.

На сегодняшний день на нашей планете используется около 4% общего потенциала этого вида энергии, при этом около 1% приходится на системы, которые направлены на получения тепла. имеют средний показатель мощности, который равен порядка 90%. Этот показатель в значительной степени превосходит данные, которые относятся к применению и . Если использовать солнечный источник, тогда показатели эффективности в достаточно заметной степени будут ниже, чем когда применяется геотермальная энергия. Это необходимо учитывать, потому как экономические показатели, а также показатели эффективности использования практически бесконечной геотермальной энергии считаются важным фактором в этих вопросах.

Верхне-Мутновская ГеоЭС

В России используются разнообразные виды геотермальной энергии. Развитие этого вида энергии в РФ приходится на 60-е годы прошлого столетия. Использование геотермальных источников энергии началось с созданием ГеоТЭС в 1967 г., которая располагалась на Камчатке. Первоначальные показатели мощности ГеоТЭС были относительно небольшие и составляли показатель 5-10 мВт. Использование геотермальной энергии в России сейчас осуществляется в различных отраслях промышленности и сельском хозяйстве.

Помимо этого, разрабатываются новые принципы и системы, которые дадут возможность использования этого вида энергии на постоянной основе с максимально высокими показателями эффективности. Сейчас, существующие показатели мощности современных ГеоТЭС планируется в достаточной степени увеличить благодаря использованию передовых технологий. Эти современные технологии дадут прекрасную возможность для того, чтобы получать на постоянной основе требуемое количество энергии с минимально возможными финансовыми затратами для определенного региона страны.

Менделеевская ГеоЭС

Курильские острова имеют достаточно большой потенциал для использования геотермальных ресурсов. Здесь уже осуществляется строительство современной ГеоТС. Высокое использование в РФ имеют месторождения в которых показатель температуры составляет от 110 до 190 градусов. Становление данной отрасли в РФ очень целесообразно с учетом больших территорий. Это даст прекрасную возможность для многих регионов получать необходимое количество необходимой энергии с минимальными финансовыми затратами на постоянной основе. Эти территории способны уже в скором будущем сами себя обеспечить необходимым количеством энергии для использования в разнообразных областях.

Сейчас в РФ разведано около 75 месторождений где имеется возможность получать данный вид получения энергии. Результатом подобного рода работ, стал запуск Верхне-Мутновской ГеоЭС. Имеющиеся ресурсы, которые разведаны в этой части страны, дают прекрасную возможность для того, чтобы на достаточно длительный промежуток времени обеспечить регион необходимым количеством энергии. Ресурс энергетики при использовании данного вида энергии практически неисчерпаем, и его имеется возможность использовать максимально эффективно. Для этого в России созданы специальные центры, которые осуществляют разработку надежных, эффективных, а также экономически выгодных систем, позволяющих получать дешевую и безопасную геотермальную энергию на постоянной основе.

Географические факторы развития возобновляемой энергетики

Вероятно, ответ на вопрос, в каких странах энергетика на возобновляемых источниках развита лучше, будет: «В технически и экономически передовых Северной Америке, Западной Европе, Японии, Австралии». Но это лишь отчасти так. Есть и другие закономерности развития возобновляемой энергетики, в том числе связанные с географическим положением и природными условиями. Это естественно, учитывая зависимость ВИЭ от природных факторов, таких как количество поступающей на Землю солнечной энергии, сила ветров, продуктивность биосферы, наличие геотермальных источников, речной сток в единицу времени.

Структура мирового производства электроэнергии на ВИЭ

Рассмотрим это на примере производства электроэнергии. Общие объёмы и структура мирового производства электроэнергии по источникам представлена в табл. 1. Рассмотрим ведущих мировых производителей электроэнергии на возобновляемых источниках в абсолютном выражении (табл. 2). Детализация по регионам мира и ведущим производителям электроэнергии рисует сложную картину, местами прямо противоположную представлениям о лидерстве западных стран.

Из табл. 2 мы видим, что наиболее высока доля ВИЭ в энергобалансе (более 56 %) в странах Центральной и Южной Америки. При этом доля данного региона в мировом производстве электроэнергии на ВИЭ составляет 17,4 % (820 из 4715 млрд кВт·ч), что существенно выше его доли в мировом производстве электроэнергии в целом, составляющей 6,8 % (1456 млрд из 21,532 трлн кВт·ч).

Далее, высокая доля ВИЭ (50,6 %) характерна для африканских стран, не входящих в число ведущих производителей на континенте. При этом в ряде стран континента (Конго, Эфиопия, Замбия, Мозамбик) она достигает практически 100 %.

Наиболее высока доля возобновляемых источников энергии в энергобалансе (более 56%) в странах Центральной и Южной Америки. При этом доля данного региона в мировом производстве электроэнергии на возобновляемых источниках энергии составляет 17,4 %

На страны Азии вне Ближнего Востока приходится, прежде всего, наибольший абсолютный объём производства возобновляемой электроэнергии — 1502 млрд кВт·ч или 31,9 % мирового. Примерно 2/3 этого объёма или более 1000 млрд кВт·ч приходится на Китай.

Если говорить о доле ВИЭ в энергобалансе, то он несколько ниже среднего мирового уровня (17,7 % против 21,9 %), но за счёт Японии, Южной Кореи и Тайваня. Напротив, максимальная доля ВИЭ в данном регионе принадлежит Вьетнаму (44,9 %), Пакистану (31,9 %), Филиппинам (29,6 %), а также остальным, сравнительно небольшим азиатским странам-производителям электроэнергии. Доля ВИЭ в их электроэнергетическом балансе составляет в среднем 24 %, а в ряде случаев превышает 70 % (Афганистан, Мьянма, Северная Корея) или даже 90 % (Бутан, Лаос, Непал).

Среди стран «третьего мира» также выделяется Папуа — Новая Гвинея, где доля ВИЭ составляет 32,8 %.

Доля возобновляемых источников энергии в Европе (29,1 %) существенно превосходит среднюю мировую, в то же время в Северной Америке она ниже (19,4 %), при этом в отдельно взятых США — всего 12,4 %, а в Японии и Австралии (12,7 и 10,1 %, соответственно) существенно ниже, чем в мире в среднем, и заметно ниже, чем в России (16,6 %).

Таким образом, исходя из данных цифр, приходится говорить не о лидерстве, а о среднем уровне развития возобновляемой энергетики в группе стран, считающихся экономически наиболее развитыми, в то время как лидерство принадлежит Центральной и Южной Америке и ряду стран Азии и Африки.

При этом доля ВИЭ в энергобалансе резко различается и внутри группы развитых стран — от 21-24 % в Германии и Испании и даже 50-100 % в ряде менее крупных стран (Норвегии, Исландии, Новой Зеландии, Дании) до 10-14 % (существенно ниже средних мировых показателей) в Австралии, Японии, США, Нидерландах, Бельгии.

Россия, о которой речь пойдёт более подробно в следующих материалах, также по доле ВИЭ в электроэнергетике занимает среднее положение в мире, уступая в среднем Европе, но превосходя США, Японию и Австралию.

География мировой гидроэлектроэнергетики

Данный эффект определяется учётом гидроэлектроэнергии, на которую приходится 77 % производства всей электроэнергии на основе ВИЭ.

Размещение же ГЭС подчинено, прежде всего, наличию гидроэнергетических ресурсов. Мы можем выделить несколько регионов, где они наиболее велики благодаря сочетанию геоморфологических и климатических условий, обеспечивающих полноводность и достаточно большие уклоны рек, и где производится в настоящее время основная часть гидроэлектроэнергии мира.

Как правило, это предгорные районы:

1. Территории Центральной и Южной Америки, прилегающие к Андам, Гвианскому и Бразильскому плоскогорьям в бассейнах Амазонки, Ориноко, Параны и других полноводных рек — там производится более 700 млрд кВт·ч в год или более 20 % мирового производства электроэнергии.

2. Центральная и Южная Африка в бассейнах Нила, Конго, Замбези и Лимпопо, также берущих начало в горных районах, связанных с Восточно-Африканским рифтом (Эфиопское нагорье, ВосточноАфриканское плоскогорье, Рувензори) — около 100 млрд кВт·ч или 3 % мирового.

3. Территории Южной и Восточной Азии, связанные с горными системами Памира, Тибета и Гималаев и бассейнами рек Инда, Ганга, Брахмапутры, Иравади, Янцзы, Меконга — более 1000 млрд кВт·ч или 30 % мирового.

4. Центральная и северная части Северной Америки (юго-западные, южные и юго-восточные районы Канады и северные районы США), прилегающие к Кордильерам и Лаврентийской возвышенности в бассейнах рек Колумбия, Миссури, Черчилл, Святого Лаврентия — около 500 млрд кВт·ч или 15 % мирового.

5. Скандинавский полуостров (Норвегия, Швеция и, в несколько меньшей степени, Финляндия), склоны и отроги Скандинавских гор, бассейны рек Гломма, Вефсна, Намсен, Лулеэльв, Умеэльв, Оунасйоки, Кемийоки и др. — более 230 млрд кВт·ч, что составляет 7 % мирового и 43 % европейского производства электроэнергии.

РФ относится к числу ведущих мировых производителей электроэнергии на ГЭС. На нашу страну приходится более 5 % мирового производства. По выработке гидроэлектроэнергии РФ занимает пятое место в мире

Таким образом, на этих пяти массивах, занимающих примерно 25-30 % площади земной суши, вырабатывается около 75 % мировой гидроэлектроэнергии. При этом гидроэнергетический потенциал Латинской Америки, Азии и, тем более, Африки остаётся в значительной степени неосвоенным.

Фактор общего экономического развития в объёмах производства гидроэлектроэнергии играет свою роль. Однако доля развитых стран (упомянутой выше «триады» Северная Америка, Европа,

Япония) ниже их доли в общем производстве электроэнергии в мире, и этот разрыв имеет тенденцию к некоторому увеличению на фоне общего снижения доли мировых экономических лидеров в производстве электроэнергии (рис. 1).

Можно выделить ещё ряд территории с высоким гидроэнергетическим потенциалом и существенным производством электроэнергии на ГЭС. В Европе это, прежде всего, горные и предгорные южные районы — Пиренеи, Альпы, Апеннины. К числу крупных европейских производителей энергии за счёт ГЭС относятся Швейцария, Австрия, Франция, Италия.

Среди западных стран выделяются также Исландия, где на ГЭС приходится 70 % выработки электроэнергии при 16 % в среднем в Европе и Новая Зеландия, где на ГЭС приходится более 52 % выработки электроэнергии. Это примеры небольших стран с высоким природным и технико-экономическим потенциалом ВИЭ, который они активно используют, обеспечивая себя энергией главным образом из возобновляемых источников. Соответственно, 100 и 72 % выработки электроэнергии в этих странах приходится на ВИЭ в целом. Но, как отмечалось выше, в этом же ряду находятся и далеко не самые богатые и развитые азиатские и африканские страны (рис. 2а).

Крупным производителем гидроэлектроэнергии и обладателем высокого гидроэнергетического потенциала также является Япония, на которую приходится 75 млрд кВт·ч или 2 % мирового производства электрической энергии. В то же время при общих размерах японской экономики и связанных с ней больших объёмах производства электроэнергии доля ГЭС невысока по сравнению с большинством стран со сходными природными условиями.

Что касается России, то значительные ресурсы и объёмы производства электроэнергии связаны также с территориями, соседними со Скандинавией и связанными с Балтийским щитом — Кольским полуостровом и Карелией, Кавказом и горными массивами Южной Сибири и Дальнего Востока. Отметим, что роль каскада ГЭС на Волге снижается — на них в настоящее время приходится около 3 % всей выработки электроэнергии в стране и менее 20 % гидроэлектроэнергии. Одна Саяно-Шушенская ГЭС на Енисее по мощности и потенциальной выработке электроэнергии сопоставима со всем волжским каскадом.

Россия относится к числу ведущих мировых производителей электроэнергии на ГЭС. На нашу страну приходится более 160 млрд кВт·ч в год или 5 % мирового производства. По выработке гидроэлектроэнергии Россия занимает пятое место в мире после Китая (850 млрд), Бразилии (411 млрд), Канады (377 млрд) и США (276 млрд кВт·ч). В то же время гидроэнергетический потенциал России также остаётся освоенным далеко не в полной мере — прежде всего, это относится к территориям к востоку от Урала.

Представление о масштабах недоиспользования потенциала гидроэнергии может дать сопоставление с Канадой — страной, сходной с Российской Федерацией по природным условиям и сопоставимой по территории, где общий объём производства электроэнергии на ГЭС выше в 2,3 раза, а плотность производства (в кВт·ч на 1 км 2 площади страны) — выше в 3,9 раз.

Что же касается стран бывшего СССР, то значительным гидроэнергетическим потенциалом, также далеко не полностью используемым, обладают как государства Южного Кавказа (Грузия, Армения и Азербайджан), так и Средней Азии, прилегающие к Памиру и Тянь-Шаню (Таджикистан, Киргизия, отдельные районы Казахстана и Узбекистана). На гидроэнергетику приходится 95 % всего производства электроэнергии в Таджикистане, 94 % — в Киргизии, более 75 % — в Грузии, 30 % — в Армении, 22 % — в Узбекистане, 8,8 % — в Казахстане, 8,3 % — в Азербайджане.

Если рассматривать ВИЭ без учёта ГЭС, включая только геотермальную, солнечную, ветровую и биологическую энергию, то в данном случае зависимость от уровня экономического развития страны вырисовывается отчётливее, но природно-географических закономерностей она также не отменяет

Добавим, что крупнейшие ГЭС также построены в обозначенных выше регионах мира — в частности, «Три ущелья» и Силоду на реке Янцзы в Китае (22,5 и 13,9 ГВт), Итайпу на реке Парана на границе Парагвая и Бразилии (14 ГВт), Гури на реке Карони в Венесуэле (10,2 ГВт) и др. В этом перечне самая крупная российская ГЭС (Саяно-Шушенская, 6,4 ГВт), занимает примерно 9-10 место. В этих же регионах в настоящее время проектируется и строится ещё ряд крупных и сверхкрупных ГЭС (рис. 2а).

Энергетика на ВИЭ (кроме ГЭС) - закономерности размещения

Если рассматривать ВИЭ без учёта ГЭС, включая только геотермальную, солнечную, ветровую и биологическую энергию, то в данном случае зависимость от уровня экономического развития страны вырисовывается более отчётливо, но природно-географических закономерностей она также не отменяет. Рассмотрим цифры из табл. 2, связанные с объёмами и долями производства электроэнергии на основе ВИЭ, кроме ГЭС, и табл. 3, где даётся разбивка ВИЭ по источникам энергии. В данном случае безусловного лидерства ведущих западных стран также нет. Всего на долю ВИЭ, помимо ГЭС, приходится 5 % мирового производства электроэнергии или 1069 млрд кВт·ч в 2012 году. Выделим регионы и ряд отдельных стран, где доля ВИЭ в энергетике выше среднемировой (табл. 3):

1. На первом месте с 17,3 % оказывается Центральная Америка (Белиз, Гватемала, Гондурас, Никарагуа, Коста-Рика, Панама). Высокая доля ВИЭ достигается почти в равной мере за счёт геотермальной и биоэнергетики. В силу в целом незначительного производства электроэнергии абсолютные величины производства электроэнергии на ВИЭ также невелики — 8 млрд кВт·ч в год или всего 0,8 % мирового объёма. В тоже время в мировом производстве геотермальной энергии доля региона составляет уже 6 % (4 млрд кВт·ч), а в производстве биоэнергии — около 1 % (1 млрд кВт·ч).

2. Второе место принадлежит Европе с 13 % и высокой долей использования как ветровой, так и солнечной энергии, а также биоэнергетике. При этом в Европе максимальный объём производства электроэнергии на ВИЭ в абсолютных величинах — 440 млрд кВт·ч или почти 44 % общемирового.

3. Далее следует группа стран Южной Америки — Бразилия, Чили, Уругвай, где доля ВИЭ составляет от 7,5 до 11 %, прежде всего, за счёт биоэнергетики. В данном случае это 47 млрд кВт·ч или 4,5 % мирового производства, а в биоэнергетике — более 40 млрд кВт·ч или 11 % мирового производства.

4. За ними следуют США с 5,7 % за счёт, прежде всего, ветроэнергетики (3,5 %). В абсолютных единицах они занимают второе место после Европы — 232 млрд кВт·ч в год или 22 % от мирового.

Геотермальная энергетика чётко привязана к определённым геолого-тектоническим условиям. Ветроэнергетика в наибольшей степени развита на атлантическом побережье. Развитая солнечная энергетика характерна для юга Европы и Средиземноморских стран

Кроме того, выделяется ряд отдельных стран и групп стран с высокой долей того или иного возобновляемого источника энергии в энергобалансе:

1. Группа островов Карибского моря (Аруба, Гваделупа, Ямайка) с долей ВИЭ 5,6-9,1 % (в случае Арубы за счёт ветроэнергии, на Гваделупе за счёт геотермальной энергии, на Ямайке за счёт ветроэнергии и биоэнергии примерно равны).

2. Фолклендские острова с 16,7 % за счёт ветровой энергии.

3. Кения в Африке с 23,8 %, прежде всего, за счёт геотермальной энергии, а также за счёт биоэнергии.

4. Группа восточноафриканских островных и континентальных стран — Маврикий, Реюньон, Судан (с Южным Суданом) с долей ВИЭ от 5,3 до 19,0 %, прежде всего, за счёт биоэнергии.

5. Группа стран Юго-Восточной Азии и Океании — Индонезия (5,2 %), Филиппины (15,1 %), Папуа — Новая Гвинея (11,9 %), Новая Зеландия (20,6 %), где высокая доля ВИЭ связана главным образом с геотермальными источниками, хотя в Новой Зеландии заметное место занимают и ветроэлектростанции.

Отдельно следует рассмотреть Европу — регион мира с наиболее развитой энергетикой на ВИЭ и, в то же время, неоднородный (табл. 4).

Абсолютные объёмы производства электроэнергии на ВИЭ в странах Европы в высокой степени коррелируют с общим объёмом производства электроэнергии по странам. В частности, первая пятёрка производителей электроэнергии в целом также лидирует в производстве электроэнергии на ВИЭ.

В то же время есть свои пространственные различия. В частности, лидерами (с большими абсолютными объёмами и высокой долей в структуре) производства по видам источников являются: геотермальная (Исландия, Италия), ветровая (Испания, Германия, Великобритания, Италия, Дания, Португалия, Ирландия), солнечная (Германия, Италия, а также Испания) и биоэнергия (Германия, Великобритания, Италия, Швеция, Финляндия, Дания, Польша, Нидерланды).

Геотермальная энергетика чётко привязана к определённым геолого-тектоническим условиям. Ветровая энергетика в наибольшей степени развита на атлантическом побережье. Развитая солнечная энергетика в большей степени характерна для юга Европы и Средиземноморских стран. Биоэнергетика в большей степени развита в Центральной и Северной Европе, что можно связать с развитым сельским и лесным (в Финляндии и Швеции) хозяйством.

Германия, занимающая центральное положение в Европе, отличается равномерно высоким развитием всех типов энергетики на возобновляемых источниках, кроме геотермальной. При этом геотермальная энергетика практически полностью отсутствует где-либо, кроме Исландии и Италии, а солнечная отсутствует в странах Северной Европы.

Кроме того, наиболее высокая доля ВИЭ в энергобалансе характерна для небольших стран — Дания (50,7 %), Португалия (31,7 %), Исландия (29,9 %).

Таким образом, в общей структуре мирового производства электроэнергии на ВИЭ (без учёта ГЭС) на Западную Европу и Северную Америку приходится более 65 % мирового производства, с Японией, Южной Кореей и Австралией — более 70 %, хотя этот показатель вместе с общей долей этих стран в производстве электроэнергии постепенно снижается. Тем не менее, в отличие от гидроэнергии (рис. 1), фактор общего экономического развития страны играет ключевую роль, и доля ведущих стран мира в производстве ветровой, солнечной и биоэнергии выше их доли в общем мировом производстве электрической энергии (рис. 3).

В то же время, мы видим, что существуют и природно-географические факторы, создающие сложную мозаичную картину, приведённую выше. Для её упорядочения привяжем регионы к источникам энергии (табл. 5). Наиболее чётко проявляется привязка к определённым природным условиям у геотермальной энергетики. Основная её часть привязана к Огненному поясу Земли или Тихоокеанскому вулканическому кольцу — окаймляющей Тихий океан зоне разломов повышенной сейсмической и вулканической активности и высокого теплового потока из недр, что создаёт благоприятные условия для развития на этой территории геотермальной энергетики.

В нашем случае это острова Восточной и Юго-Восточной Азии и Океании на западном побережье Тихого океана и Америка (Центральная и западная часть Северной, в частности, запад США) на противоположной его стороне. Сюда же входит Япония, где на данный момент на геотермальную энергетику приходится 3 млрд кВт·ч выработки электроэнергии или 4,4 % мирового объёма. Также сюда входят российские Сахалин, Курильские острова и Камчатка, где геотермальная энергетика хорошо развита в местном масштабе (обеспечивая, в частности, около 40 % энергопотребления Камчатского края), и продолжается строительство новых геотермальных станций.

Три других заметных очага развития геотермальной энергетики отличаются сходными геолого-тектоническими условиями. Это Исландия, где повышенный потенциал геотермальной энергии связан со Срединно-Атлантическим хребтом, Италия, находящаяся в Альпийско-Гималайской зоне высокой тектонической активности, и Кения, где геотермальная энергия привязана к Восточно-Африканскому рифту. К той же зоне, что Италия, относится и Кавказ. Как следствие, до некоторой степени геотермальная энергетика развита в Турции и российской части Кавказа, где геотермальные воды используются, главным образом, для отопления, и также идёт строительство новых мощностей. В свою очередь, перспективы и планы развития геотермальной энергетики существуют не только в Кении, но и других восточноафриканских странах.

Более сложная картина в биоэнергетике, где уровень развития определяется комбинацией высокой естественной продуктивности биосферы, развитого сельского хозяйства и, в ряде случаев, лесопромышленного комплекса и общим уровнем технико-экономического развития страны. Ведущие позиции в биоэнергетике занимают Европа (прежде всего Северная и Центральная) и Северная Америка (прежде всего, США), Центральная и Южная Америка и восточноазиатский кластер, включающий Китай и Японию.

Более сложная картина в биоэнергетике, где уровень развития определяется комбинацией высокой естественной продуктивности биосферы, развитого сельского хозяйства, лесопромышленного комплекса и общим уровнем технико-экономического развития страны

Европу и Северную Америку можно объединить в Северный пояс развития биоэнергетики. Сюда же включается и территория России — прежде всего северо-западные районы, а в последние годы также юг Сибири и Дальнего Востока. Биоэнергия в данный момент не играет какой-либо роли в производстве электроэнергии в нашей стране. Однако Российская Федерация является одним из ведущих мировых производителей (наряду с Канадой, США и скандинавскими странами) древесных пеллет на базе развитого лесопромышленного комплекса, основная часть которых в настоящее время идёт на экспорт в страны Западной Европы, а в последнее время также и Восточной Азии .

В то же время при улучшении внутренней конъюнктуры возможно и развитие внутреннего рынка с существенным ростом доли биоэнергии в энергетическом балансе России.

В Центральной и Южной Америке выделяется, прежде всего, Бразилия. Благодаря комбинации высокой доли гидроэлектроэнергии (см. выше) и биоэнергии Бразилия отличается наиболее высокой (около 85 %) долей ВИЭ в электроэнергетическом балансе среди крупных мировых производителей электроэнергии.

Восточная Азия (Китая и Япония) на данный момент объединяет преимущества западных (развитая экономика) и латиноамериканских (благоприятные естественные предпосылки) стран в биоэнергетике, и, вероятно, в регионе следует ожидать дальнейшего роста данного сегмента.

Свои перспективы развития биоэнергетики имеет и Африка, как мы видим на примере некоторых стран континента (табл. 3), но, вероятно, в силу общего экономического и политического неблагополучия региона, масштабное развитие следует считать делом сравнительно отдалённого будущего.

Развитие ветроэнергетики в ещё большей степени определяется общим экономическим лидерством страны или региона. В то же время наблюдается определённая неравномерность внутри группы развитых стран. Ветроэнергетические мощности, например, Европы концентрируются, прежде всего, в странах атлантического побережья, в зонах стабильных и сильных ветров. В дополнение к этому обозначается очаг развития ветроэнергетики на Антильских островах (табл. 3) и других островных территориях (Фолклендские острова), что имеет те же естественные предпосылки.

В целом, наиболее перспективно использование ветроэнергии в прибрежных зонах, которые не ограничены Северной Атлантикой, а также на открытых континентальных пространствах (в частности, в степях).

Что касается солнечной энергетики, то она, на данный момент, вероятно, в наибольшей степени привязана к общим экономическим и политическим факторам. В 2012 году почти 60 % мирового производства солнечной электроэнергии приходилось на три европейские страны — Германию (27 %), Италию (20 %) и Испанию (13 %). В то же время мы видим, что внутри группы развитых стран производство солнечной энергии смещено в зоны с более высокой солнечной энергией (в Средиземноморье) и практически отсутствует в Северной Европе. Дальнейшее развитие солнечной энергетики, в частности, в Средиземноморском бассейне, вероятно, следует считать делом сравнительно близкого будущего. В условный средиземноморский пояс можно включить и юг европейской части России; более того, большая часть проектов солнечной энергетики и имеющихся мощностей в нашей стране сосредоточена именно там (Республика Крым, Краснодарский край, Ставропольский край и сопредельные территории).

С географических позиций можно выделить следующие частично перекрывающиеся крупные мировые зоны или пояса развития различных типов возобновляемой энергетики, помимо гидроэнергетики (рис. 2б):

1. Тихоокеанский геотермальный (связанный с Тихоокеанским огненным кольцом Земли).

2. Три биоэнергетических — Северный, Центрально-Южноамериканский и Восточноазиатский.

3. Североатлантический ветровой.

4. Средиземноморский солнечный.

Следует сделать оговорку — в наибольшей степени природные физикогеографические и геологические факторы действуют в отношении гидроэнергетики, геотермальной и биоэнергетики.

В солнечной и ветроэнергетике — отраслях со сравнительно недавней историей масштабного развития — на первое место выходят факторы общего экономического и технологического развития в сочетании с целенаправленной государственной политикой стимулирования. В то же время географические аспекты в распределении мощностей и производство ветровой и солнечной энергии проявляются уже сейчас и, вероятно, будут усиливаться в дальнейшем.

Потенциально дальнейшее развитие энергетики на основе возобновляемых источников энергии может быть связано как с этими поясами, так и с освоением новых территорий с благоприятными естественными предпосылками. Вероятно, географический фактор развития возобновляемой энергетики будет усиливаться. Это связано как с диффузией технологий из стран технологического Центра («триада» Северная Америка, Европа, Япония) на Полупериферию и Периферию , так и с общими тенденциями развития возобновляемой энергетики, о которых говорилось в одной из предыдущих статей , связанными с ростом прагматизма в отношении развития отрасли.

Дальнейшее развитие энергетики на основе возобновляемых источников энергии может быть связано как с мировыми поясами применения ВИЭ, так и с освоением новых территорий с благоприятными естественными предпосылками. Вероятно, географический фактор развития ВИЭ будет усиливаться. Это связано как с диффузией технологий из стран технологического Центра, так и с общими тенденциями развития идеологии применения возобновляемых источников энергии

С большой вероятностью в силу удачного сочетания природно-ресурсных и экономических предпосылок лидирующее положение в энергетике на основе ВИЭ захватят, как это уже произошло или происходит в целом ряде сфер, страны Восточной и Юго-Восточной Азии. В частности, уже в 2014 году доля Китая в мировом производстве солнечных батарей превысила 60 %, и с этой продукцией Китай доминирует не только на внутреннем, но и на европейском рынке, вытесняя местных производителей. По общему количеству установленных мощностей ветроэлектростанций Китай вышел на первое место в мире, а по темпам роста энергетики на основе ВИЭ также занимает лидирующие позиции.

Что касается России, то наш потенциал развития энергетики на основе ВИЭ, как природный, так и технико-экономический, также использован далеко не в полной мере, и у нас есть свои ниши для развития возобновляемой энергетики по ряду направлений. Об этом подробнее в следующих статьях.

Новое на сайте

>

Самое популярное