Домой Виноград Совершенствование котельного оборудования. Показатели работы котельных установок. Модернизация трубной обвязки котлов

Совершенствование котельного оборудования. Показатели работы котельных установок. Модернизация трубной обвязки котлов

Описание:

Стоимость энергии составляет значительную часть эксплуатационных расходов для любого коммерческого здания. Модернизация инженерных систем позволяет сократить эти расходы. Капитальные вложения в модернизацию котельного оборудования во многих случаях имеют короткий срок окупаемости.

Экономическая эффективность модернизации котельной

Стоимость энергии составляет значительную часть эксплуатационных расходов для любого коммерческого здания. Модернизация инженерных систем позволяет сократить эти расходы. Капитальные вложения в модернизацию котельного оборудования во многих случаях имеют короткий срок окупаемости.

Высокоэффективное регулирование

Одним из лучших путей, гарантирующим эффективную эксплуатацию котельной, является высокоэффективное регулирование, которое возможно применить и для паровых, и для водогрейных котельных. Высокоэффективное регулирование позволяет сэкономить в среднем от 4 до 5 % используемой тепловой энергии и окупается в течение года.

Как можно добиться повышения эффективности работы котла? Известно, что при определенном соотношении расходов воздуха и топлива происходит наиболее полное сгорание внутри котла. При этом следует добиваться ведения топочного процесса с минимальным количеством избыточного воздуха, однако при обязательном условии обеспечения полного сгорания топлива. Если в топку подается избыточный воздух в большем количестве, чем требуется для нормального ведения топочного процесса, то излишний воздух не сгорает и лишь бесполезно охлаждает топку, что может в свою очередь повести к потерям вследствие химической неполноты сгорания топлива.

Необходимо также контролировать температуру уходящих газов. При завышенной температуре дымовых газов на выходе из котла значительно снижается КПД агрегата за счет выброса в атмосферу лишней теплоты, которую можно было бы использовать по назначению. В тоже время при работе на жидких видах топлива нельзя допускать снижения температуры дымовых газов на выходе из котла ниже 140 °С при содержании в топливе серы не более 1 % и ниже 160 °С при содержании в топливе серы не более 2–3 %. Значения данных температур обусловлены точкой росы для дымовых газов. При этих температурах начинается процесс выпадения конденсата в дымогарных трубах и дымосборной камере. При контакте содержащейся в топливе серы с конденсатом вследствие химической реакции образуется сначала сернистая, а затем серная кислота. Результатом чего является интенсивная коррозия поверхностей нагрева.

Для достижения большей эффективности высокоточной регулировки необходимо предварительно произвести базисную очистку топки и дымоходов. Для уменьшения избыточного воздуха и уменьшения температуры уходящих газов необходимо:

– устранить негерметичность камеры сгорания;

– произвести контроль тяги дымохода, при необходимости установить в дымовой трубе шибер;

– повысить или понизить номинальную подводимую мощность котла;

– вести контроль соответствия количества воздуха для горения;

– оптимизировать модуляции горелки (если горелка снабжена этой функцией).

Для газовых котлов с помощью газового счетчика и секундомера можно выяснить, подается ли к горелке необходимое количество топлива. Если котел работает на мазуте, то проверяется, соответствует ли расход, измеренный расходомерным соплом, и давление, создаваемое мазутным насосом, подходящими для эффективной работы котла.

Для оценки эффективности сгорания используется анализатор уходящих газов. Измерения производятся до и после регулировки.

Наиболее подходящими для высокоэффективной регулировки являются котлы с надувными газовыми топками и мазутными топками. Менее подходящими являются котлы с комбинированными горелками для двух видов топлива, а также газовые котлы с атмосферными горелками.

Для комбинированных горелок режим для одного вида топлива часто является компромиссом для сохранения работоспособности на другом виде топлива. А регулировка газовых котлов с атмосферной горелкой ограничено техрегламентом и физическими характеристиками оборудования.

Регулирование пропусками

Для чугунных котлов в отопительных системах при регулировании теплоподачи в систему отопления по температуре внутреннего воздуха в контрольном помещении здания (регулирование «по отклонению») оно может осуществляться за счет периодического отключения системы (регулирование «пропусками») с помощью температурного датчика. Это позволит экономить от 10 до 15 % потребляемой тепловой энергии и окупится в течение двух лет.

Для стальных котлов такой способ регулирования температуры воды нежелателен. С точки зрения прочностных характеристик для стального котла большой температурный перепад нестрашен, но эксплуатировать котел с температурой воды в обратном трубопроводе (на входе в котел) ниже 55 °С не следует. Дело в том, что при такой температуре котловой воды температура дымовых газов в местах соприкосновения со стенкой дымогарной трубы может оказаться ниже температуры точки росы, что вызовет выпадение конденсата на стенках дымогарных труб и приведет к их преждевременной коррозии. Поэтому чаще применяют регулировку температуры воды с помощью трехходового клапана с температурным датчиком, минус этого способа – долгий срок окупаемости, от 5 лет и выше. Как альтернативу можно применить регулирование пропусками в сочетании с термостатическим датчиком температуры обратной воды. Такой способ менее экономичен и окупится в течение 4–5 лет.

Регулирование выключением

В повсеместной практике осенью с наступлением отопительного периода служба эксплуатации запускает систему отопления и выключает только весной. Это приводит к тому, что даже в теплые дни котел не отключается и продолжает работать.

Автоматическое регулирование выключением при достижении наружной температуры +8 °С может сохранить от 3 до 5 % потребляемой тепловой энергии и окупится за 2–3 года.

Регулирование циклов котла

Если работа котла регулируется «пропусками» в зависимости от температуры наружного воздуха, часто возникает следующая проблема: в переходные периоды, когда наружная температура в течение суток резко изменяется, цикл включения/выключения котла обычно короткий, трубы и отопительные приборы не успевают как следует прогреться и это приводит к недогреву здания; зимой же, когда холодная температура держится постоянно, цикл включения/выключения котла чрезмерно долгий, что приводит к излишнему перегреву здания. Для устранения этой проблемы рекомендуется установить контроллер, регулирующий минимальное и максимальное время включения котла. Это экономит от от 3 до 5% потребляемой тепловой энергии и окупится примерно за 3 года.

Статья подготовлена Н. А. Шониной , старшим преподавателем МАрхИ


Федеральное государственное бюджетное образовательное учреждение
Высшего профессионального образования
Липецкий Государственный Технический Университет

Кафедра промышленной теплоэнергетики

Реферат
«Повышение эффективности котельных агрегатов и котельных»

Выполнил: Бондарева П.М.
Принял: Дождиков В.И.

Липецк 2011
Содержание
Введение

    Энергоаудит котельной …………………………………………………...3
    Контроль за температурой уходящих газов и избытком воздуха в них. 9
    Составление режимных карт …………………………………………….12
    Высокоэффективное регулирование ……………………………………14
    Использование вторичных излучателей ………………………………..18
    Установка модернизированной подовой щелевой горелки в холодной воронке котла (для котлов ПТВМ-100 и ПТВМ-50 ……………………20
    Комплексные технологии повышения эффективности котельных коммунальной энергетики ……………………………………………….22
    Библиографический список ……………………………………………...28

Введение
Вопросам экономии топливно-энергетических ресурсов придается большое значение во всех отраслях народного хозяйства и особенно в энергетике – основной топливопотребляющей отрасли. На каждой станции, в котельной разрабатываются организационно-технические мероприятия по совершенствованию технологических процессов, модернизации оборудования, повышению квалификации персонала.
Ниже будут рассмотрены некоторые пути повышения эффективности котельного агрегата и котельной в целом.

    Энергоаудит котельной
Энергосбережение в котельной конечно же начинается с энергетического обследования (энергоаудита) котельной, которое покажет реальную оценку эффективности использования существующего оборудования котельной и системы отопления в целом, а также определит потенциал энергосберегающих мероприятий и способы реализации.
Основной задачей энергетического обследования котельной являются определение:
    Фактических показателей эффективности работы оборудования котельной.
    Сравнение существующих показателей эффективности работы котельной с нормированными значениями.
    Выявление и анализ причин несоответствия между фактическими значениями эффективности работы котельной и нормируемыми.
    Пути достижения энергоэффективной работы котельной.
Энергетическое обследование котельной состоит из следующих этапов:
    сбор и документирование информации - определение основных характеристик объекта исследования: сведения об оборудовании котельной, динамики потребления энергоносителей, сведения о потребителях тепла и т.п. Также определяются объемы и точки замеров тепловой и электроэнергии.;
    инструментальное обследование - восполняет недостающую информацию по количественным и качественным характеристикам потребления энергоресурсов и позволяет оценить существующую энергоэффективность работы котельной;
    обследование и обработка результатов, и их анализ - измерения с помощью уже существующих узлов учета, или при их отсутствии переносными специализированными приборами.;
    разработка рекомендаций по энергосберегающим мероприятиям и оформление отчета.
При инструментальном исследовании котельной обычно используются следующие измерительные приборы и системы:
    Анализатор продуктов горения
    Тепловизор (тепловизионная съемка)
    Цифровой измеритель температуры
    Термометр инфракрасный бесконтактный
    Трехфазный анализатор электропотербления
    Ультразвуковой расходомер жидкости
    Ультразвуковой толщинометр
Набор из вышеперечисленных приборов позволяет выполнить практически все необходимые замеры вовремя проведении энергоаудита в котельной.
При разработке мероприятий необходимо:
1) определить техническую суть предполагаемого усовершенствования
и принципы получения экономии;

2) рассчитать потенциальную годовую экономию в физическом и денежном выражении;
3) определить состав оборудования, необходимого для реализации рекомендации, его примерную стоимость, стоимость доставки, установки и ввода в эксплуатацию;
4) оценка общего экономического эффекта от применения предполагаемых мероприятий с учетом вышеперечисленных пунктов.
После оценки экономической эффективности все рекомендации классифицируются по трем критериям:
1) беззатратные и низко-затратные - осуществляемые в порядке текущей
деятельности котельной;

2) среднезатратные - осуществляемые, как правило, за счет собственных средств котельной;
3) высокозатратные - требующие дополнительных инвестиций.
В табл. 1 приведены наиболее широко распространенные рекомендации с ориентировочной оценкой их эффективности.
Энергосберегающие мероприятия
п/п Мероприятие Оценка эффективности мероприятия
1 Составление руководств и режимных карт эксплуатации, управления и обслуживания оборудования и периодический контроль со стороны руководства учреждения за их выполнением 5-10 % от потребляемого топлива
2 Поддержание оптимального значения коэффициента избытка воздуха 1-3%
3 Установка водяного поверхностного экономайзера за котлом до 5-6%
4 Применение за котлоагрегатами установок глубокой утилизации тепла, установок использования скрытой теплоты парообразования уходящих дымовых газов (контактный теплообменник) до 15%
5 Повышение температуры питательной воды на входе в барабан котла 2% на каждые 10 °C
6 Подогрев питательной воды в водяном экономайзере 1% на каждые 6 °C
7 Содержание в чистоте наружных и внутренних поверхностей нагрева котла до 10 %
8 Использование тепловыделений от котлов путем забора теплого воздуха из верхней зоны котельного зала и подачей его во всасывающую линию дутьевого вентилятора 1-2%
9 Теплоизоляция наружных и внутренних поверхностей котлов и теплопроводов, уплотнение тракта и клапанов котлов (тепмпература на поверхности обмуровки не должна превышать 55 °C) до 10 %
10 Перевод котельных на газовое топливо в 2-3 раза снижается стоимость 1 Гкал
11 Установка систем учета расходов топлива, электроэнергоэнергии, воды и отпуска тепла до 20 %
12 Автоматизация управления работой котельной до 30 %
13 Модернизация котлов типа ДКВР для работы в водогрейном режиме увеличение КПД до 94%
14 Применение частотного привода для регулирования скорости вращения насосов, вентиляторов и дымососов до 30% от потребляемой ими электроэнергии
Существует ряд общих рекомендаций по энергосбережению в котельных к которым относятся:
1. Назначение в котельной ответственных за контролем расходов энергоносителей и проведения мероприятий по энергосбережению.
2. Совершенствование порядка работы котельной и оптимизация работы систем освещения, вентиляции, водоснабжения, теплоснабжения.
3. Соблюдение правил эксплуатации и обслуживания систем энергоиспользования и отдельных энергоустановок, введение графиков включения и отключения систем освещения, вентиляции, тепловых завес и т.д.
4. Организация работ по эксплуатации светильников, их чистке, своевременному ремонту оконных рам, оклейка окон, ремонт санузлов и т.п.
5. Ведение разъяснительной работы с рабочими котельной по вопросам энергосбережения.
6. Проведение периодических энергетических обследований.
7. Ежеквартальная проверка и корректировка договоров на энерго- и ресурсопотребление с энергоснабжающими организациями.
Энергосберегающие мероприятия в промышленных котельных

Мероприятия по энергосбережению в водогрейных котельных на газе

    Регулярно проводить РНИ.
    В межналадочный период регулярно делать ускоренные испытания и анализы дымовых газов на предмет соответствия режимным картам.
    Отпуск тепла производить в соответствии с тампературными графиками.
    Уменьшить мощность сетевых насосов по результату наладки сетей.
    Уменьшить потери через дефекты изоляции.
    Замена оборудования на более экономичное.
    Ликвидация откратых схем и срезок графика путем совершенствования схемы теплоснабжения.
    Борьба с утечками.
    Учет и анализ всего.
    Перевод паровых котлов на водогрейный режим.
    Применение частотно-регулируемого электропривода.
    Применение горелок, работающих с незначительным коэффициентом избытка воздуха.
    Забор дутьевого воздуха из котельной.
    Устранение присосов у котлов, работающих с разрежением в топке.
    Установка экономайзера или теплоутилизатора.
    Применение деаэрации воды.
    Повышение температуры питательной воды.
    Очистка поверхностей нагрева с обеих сторон.
Наименование мероприятия Срок
окупаемости,
лет
Ожидаемая
экономия ТЭР
Затраты
на
внедрение
Гкал тыс.
кВт.ч
тут Всего
тут
Всего,
дол. США
11 Установка системы аварийной защиты котла по уровню воды в барабане 1.5 до 5% до 1500 дол. США
22 Оптимизация водно-химического режима паровых котлов 0.3 увеличение КПД до 5% до 20000 дол. США Наладочные работы до 5000 дол.США
33 Обеспечение работы ВПУ на номинальной нагрузке 0.3 до 20000 дол. США
44 Использование тепла конденсата на котельной для предварительного подогрева воды для ХВО 1.5 Снижение затрат на ВПУ
55 Использование эффективных загрузочных материалов (катионитов) для водоподготовительных установок 0.5 Мнижение затрат на катионит в 2 раза 2.9 дол.США за кг
66 Автоматические системы периодической инепрерывной продувок котлов 2-3 Снижение величины продувки в 2-3 раза до 3000 дол.США
77 Внедрение генераторов газовоздушной смеси (смешивание пара и дым.газов) мгновенного действия 2-5 Уведичение КПД использования топлива на 30% 40-140дол. США на 1 кВт установленной тепловой мощности

Энергосберегающие мероприятия по котельным и топочным в частных домах и зданиях с общей площадью не более 2000 м.кв.
Модернизация и автоматизация котельных малой и средней мощности:
    повышение энергетической эффективности котельных агрегатов при
    использовании низкотемпературных и конденсационных котлов;

    использование новых принципов сжигания топлива в котельных
    агрегатах;

    повышение надежности работы котельных агрегатов;
    использование современных горелочных устройств;
    автоматизация работы котельных агрегатов;
    автоматизация распределения теплоносителя по нагрузкам;
    химводоподготовка теплоносител;
    теплоизоляция трубопроводов;
    установка экономайзеров на дымоходы;
    погодо-зависимое управление контурами;
    современные жаро-газотрубных котельные агрегаты.
    2.Контроль за температурой уходящих газов и избытком воздуха в них.
Ведение оптимальных воздушных режимов топки является основным условием обеспечения экономичной работы котла. Топочные потери q 3 и q 4 сильно зависят от избытков воздуха в горелках (? г) и в топке (? т). Необходимо сжигать топливо при избытках воздуха, обеспечивающих полное выгорание топлива. Эти избытки устанавливаются в процессе наладочных испытаний. Значительное воздействие на экономичность и температурный уровень горения оказывают присосы в топке. Рост количества присосов снижает избытки воздуха в горелках, эффективность перемешивания топлива и продуктов сгорания с воздухом, увеличивает потери q 3 и q 4 . Чтобы избежать увеличения топочных потерь, повышают общие избытки воздуха в топке, что также неблагоприятно. Пути повышения эффективности топочного процесса – устранение присосов в топке, организация оптимального режима горения, проведение испытаний, позволяющих находить эти условия.
Наибольшими потерями в котле являются потери с уходящими газами. Их величина может быть снижена при уменьшении избытков воздуха в уходящих газах, температуры уходящих газов, а также при повышении температуры воздуха, забираемого из окружающей среды.
Наибольшее внимание следует уделять уменьшению? ух. Оно обеспечивается работой топочной камеры на минимально допустимых (по условиям выжига топлива) избытках воздуха в топке и при устранении присосов в топке и газоходах. Снижение? ух позволяет также снижать потери на собственные нужды по газовоздушному тракту и влечет понижение температуры уходящих газов. Присосы воздуха в топку газомазутных котлов производительностью 320 т/ч и ниже не должны превышать 5%, выше 320 т/ч – 3%, а для пылеугольных котлов той же производительности соответственно 8 и 5%. Присосы воздуха в газовом тракте на участке от выхода из пароперегревателя до выхода из дымососа не должны превышать (без учета золоуловителей) при трубчатых воздухоподогревателях 10%, при регенеративных 25%.
При работе котла одним из основных параметров, требующих постоянного контроля и исправности приборов, являются избытки воздуха в топке или за одной из первых поверхностей нагрева. Источником повышенных присосов воздуха в газоходах является износ или коррозия труб в трубчатых воздухоподогревателях (преимущественно холодных кубов), что также является причиной повышения расхода электроэнергии на тягу и дутье и приводит к ограничению нагрузки.
Температура уходящих газов? ух зависит как от избытков воздуха, так и от эффективности работы поверхностей нагрева. При появлении на трубах загрязнений снижается коэффициент теплоотдачи от газов к трубам и повышается? ух. Для удаления загрязнений следует проводить регулярную очистку поверхностей нагрева. При модернизации котла с целью понижения? ух следует, однако, помнить, что это может вызвать конденсацию паров на стенках труб холодных кубов воздухоподогревателя и их коррозию.
Воздействовать на температуру окружающего воздуха возможно, например, путем переключения отбора воздуха (с улицы или из котельного цеха). Но при этом следует помнить, что при отборе воздуха из котельного помещения усиливается его вентиляция, появляются сквозняки, а в зимнее время из-за понижения температур возможно размораживание трубопроводов, приводящее к появлению аварийных ситуаций. Поэтому забор воздуха из котельного помещения в зимнее время опасен. Естественно, в этот период потери q 2 объективно возрастают, так как воздух может иметь и отрицательную температуру. Машинист должен поддерживать температуру воздуха на входе в воздухоподогреватель на коррозионнобезопасном уровне, применяя подогрев в калориферах или рециркуляцию горячего воздуха.
Рост потерь теплоты в окружающую среду может происходить при разрушениях обмуровки, изоляции и соответствующем обнажении высокотемпературных поверхностей, при неправильном выборе и монтаже обмуровки. Все неполадки должны выявляться при обходе котла машинистом, заноситься в журнал дефектов и своевременно устраняться.
Хорошее перемешивание топлива и окислителя при вихревой схеме сжигания позволяет эксплуатировать котёл с пониженными (по сравнению с прямоточно- факельным процессом) избытками воздуха на выходе из топки (?”=1.12…1.15) без увеличения содержания горючих в золе уноса и без увеличения концентрации СО величина которой не превышает 40-80 мг/нм 3 (?=1.4).
Таким образом, снижение температуры и избытка воздуха в уходящих газах за счёт повышения эффективности работы топки позволяет уменьшить потери тепла с уходящими газами, а, следовательно, увеличить коэффициент полезного действия “брутто” котлоагрегата на 1…3% даже на котлах, проработавших до модернизации 30..40 лет.
      Составление режимных карт
Для обеспечения грамотной экономичной эксплуатации для вахтенного персонала разрабатываются режимные карты, которыми он должен руководствоваться в своей работе.
Режимная карта – документ, представленный в виде таблицы и графиков, в котором для различных нагрузок и сочетаний оборудования указаны значения параметров, определяющих работу котла, которые необходимо соблюдать. Режимные карты составляются на базе результатов испытаний по оптимальным, наиболее экономичным и надежным режимам при различных нагрузках, качестве поступающего топлива и различном сочетании работающего основного и вспомогательного оборудования. В случае установки на станции однотипного оборудования испытания повышенной сложности проводятся на одном из котлов, а для остальных котлов испытания могут не проводиться или проводятся в сокращенном объеме (используется режимная карта испытанных котлов). Режимные карты должны регулярно пересматриваться и изменяться (при необходимости). Уточнения и изменения вносятся при переходе на новые виды топлива, после ремонтных и реконструкционных работ.
Для характерных диапазонов нагрузок в режимную карту в качестве определяющих параметров вводят: давление и температуру пара основного и промежуточного перегрева, температуру питательной воды, уходящих газов, количество, а иногда и конкретное указание сочетания работающих мельниц, горелочных устройств, дутьевых вентиляторов и дымососов; состав продуктов сгорания за поверхностью нагрева, после которой впервые обеспечивается достаточное перемешивание газов (конвективный пароперегреватель или водяной экономайзер II ступени); показатели надежности работы отдельных поверхностей или элементов котла и показатели, облегчающие управление котлом или наиболее быстро реагирующие на отклонение режима и возникновение аварийных ситуаций. В качестве последних показателей достаточно часто используются: температура газов в районе наименее надежно работающей поверхности нагрева (например, в поворотной камере, перед загрязняемой или шлакуемой конвективной поверхностью и т.д.); сопротивление (перепад давлений) загрязняемых, шлакуемых и корродируемых поверхностей нагрева (КПП; воздухоподогреватель); расход воздуха на мельницы и их амперажная нагрузка – особенно но топливах переменного состава; температура среды и металла в некоторых наиболее опасных с точки зрения перегрева поверхностях нагрева.
Кроме того, в режимной карте находят отражение периодичность включения средств очистки поверхностей нагрева и особые условия работы отдельных элементов и оборудования (например, степень открытия отдельных регулирующих воздушных и газовых шиберов, соотношение степени открытия шиберов первичного и вторичного воздуха горелок; условия работы линии рециркуляции газов и рабочей среды и т.д.).
При сжигании мазута в режимные карты дополнительно вносится температура его предварительного подогрева, при которой обеспечивается надежный транспорт мазута по мазутопроводам и его распыл в форсунках.
Наряду с определением состава газов для выявления оптимальности топочного режима необходимо регулярно определять присосы газов в топке и в конвективных газоходах.
Бытующее мнение о недостаточной опасности присосов воздуха в топке, о возможности использования этого воздуха в процессе горения неверно и опасно. Дело в том, что большая часть воздуха, поступающего в топку с присосами, проникает через неплотности стен топочной камеры относительно небольших размеров и не может глубоко проникать внутрь топочной камеры.
Двигаясь вблизи экранов, в зоне относительно невысоких температур, этот воздух в горении участвует слабо. В основной же зоне горения воздуха не хватает, часть топлива, не выгорая, выносится из топки, поднимая там температуры и создавая восстановительную среду. Повышение температуры частиц топлива (а следовательно, золы) и восстановительная среда усиливают процесс шлакования и загрязнения труб.
Ввиду важности поддержания оптимального воздушного режима топочного процесса эксплуатационный персонал станции должен постоянно следить за исправностью приборов газового состава и вести текущий контроль плотности топки и конвективных газоходов путем наружного осмотра и определения присосов.
Параметры, входящие в режимную карту, используются при настройке защит и систем автоматического регулирования.
      Высокоэффективное регулирование
Одним из лучших путей, гарантирующим эффективную эксплуатацию котельной, является высокоэффективное регулирование, которое возможно применить и для паровых, и для водогрейных котельных. Высокоэффективное регулирование позволяет сэкономить в среднем от 4 до 5 % используемой тепловой энергии и окупается в течение года.
Как можно добиться повышения эффективности работы котла? Известно, что при определенном соотношении расходов воздуха и топлива происходит наиболее полное сгорание внутри котла. При этом следует добиваться ведения топочного процесса с минимальным количеством избыточного воздуха, однако при обязательном условии обеспечения полного сгорания топлива. Если в топку подается избыточный воздух в большем количестве, чем требуется для нормального ведения топочного процесса, то излишний воздух не сгорает и лишь бесполезно охлаждает топку, что может в свою очередь повести к потерям вследствие химической неполноты сгорания топлива.
Необходимо также контролировать температуру уходящих газов. При завышенной температуре дымовых газов на выходе из котла значительно снижается КПД агрегата за счет выброса в атмосферу лишней теплоты, которую можно было бы использовать по назначению. В тоже время при работе на жидких видах топлива нельзя допускать снижения температуры дымовых газов на выходе из котла ниже 140 °С при содержании в топливе серы не более 1 % и ниже 160 °С при содержании в топливе серы не более 2–3 %. Значения данных температур обусловлены точкой росы для дымовых газов. При этих температурах начинается процесс выпадения конденсата в дымогарных трубах и дымосборной камере. При контакте содержащейся в топливе серы с конденсатом вследствие химической реакции образуется сначала сернистая, а затем серная кислота. Результатом чего является интенсивная коррозия поверхностей нагрева.
Для достижения большей эффективности высокоточной регулировки необходимо предварительно произвести базисную очистку топки и дымоходов. Для уменьшения избыточного воздуха и уменьшения температуры уходящих газов необходимо:
– устранить негерметичность камеры сгорания;
– произвести контроль тяги дымохода, при необходимости установить в дымовой трубе шибер;
– повысить или понизить номинальную подводимую мощность котла;
– вести контроль соответствия количества воздуха для горения;
– оптимизировать модуляции горелки (если горелка снабжена этой функцией).

Для газовых котлов с помощью газового счетчика и секундомера можно выяснить, подается ли к горелке необходимое количество топлива. Если котел работает на мазуте, то проверяется, соответствует ли расход, измеренный расходомерным соплом, и давление, создаваемое мазутным насосом, подходящими для эффективной работы котла.
Для оценки эффективности сгорания используется анализатор уходящих газов. Измерения производятся до и после регулировки.
Наиболее подходящими для высокоэффективной регулировки являются котлы с надувными газовыми топками и мазутными топками. Менее подходящими являются котлы с комбинированными горелками для двух видов топлива, а также газовые котлы с атмосферными горелками.
Для комбинированных горелок режим для одного вида топлива часто является компромиссом для сохранения работоспособности на другом виде топлива. А регулировка газовых котлов с атмосферной горелкой ограничено техрегламентом и физическими характеристиками оборудования.
Регулирование пропусками
Для чугунных котлов в отопительных системах при регулировании теплоподачи в систему отопления по температуре внутреннего воздуха в контрольном помещении здания (регулирование «по отклонению») оно может осуществляться за счет периодического отключения системы (регулирование «пропусками») с помощью температурного датчика. Это позволит экономить от 10 до 15 % потребляемой тепловой энергии и окупится в течение двух лет.
и т.д................. Опубликовано: 15.11.2009 | |

4. Методы повышения эффективности распределения тепловой энергии

Сокращение расхода топлива может быть обеспечено за счёт качественного его сжигания и сокращения нерациональных потерь теплоты. Качественное автоматическое регулирование процессов генерации и распределения теплоты обеспечивает значительную экономию топливно-энергетических ресурсов. Значительной экономии тепловой энергии и улучшения эксплуатационных характеристик оборудования можно также добиться произведя модернизацию гидравлической схемы .

Гидравлическая схема существенно влияет на процесс генерации и распределения теплоты и срок службы котельного оборудования. Поэтому при её рассмотрении необходимо учитывать следующие параметры - почасовую динамику изменения температур, расходы по отдельным контурам и относительный коэффициент объёма котловой воды к общему объёму воды в системе отопления f о.

Важным параметром также является температура обратной воды. Для исключения образования конденсата в котле и дымовых газах, температура обратной воды должна всегда поддерживаться выше точки росы, т.е в среднем от +50 до +70 °С. Исключением являются котлы конденсационного типа, в которых при низких температурах обратной воды происходит интенсификация процесса конденсации и как следствие повышение КПД.

При этом, если f о ≤ 10% необходимо проводить дополнительные мероприятия по обеспечению поддержания заданной температуры обратной воды. Такими мероприятиями является организация подмеса, разделение контуров теплообменными аппаратами, установка смесительных клапанов и гидравлического разделителя (стрелки). Кроме того важным фактором снижения расходов топлива и электрической энергии является определение расхода теплоносителя через котёл (группу котлов) и определение оптимального протока (pис. 9 ).

Модернизация трубной обвязки котлов

Для модернизации трубной обвязки котлов могут быть рекомендованы несложные мероприятия и устройства, которые могут быть изготовлены силами эксплуатационного персонала. Это создание дополнительных контуров в системе теплоснабжения; установка гидравлического разделителя (рис. 10 a ), позволяющего корректировать температуру и давление теплоносителя и схема параллельных потоков (рис. 10 б ), обеспечивающая равномерное распределение теплоносителя. Температура теплоносителя должна постоянно корректироваться в зависимости от изменения температуры наружного воздуха, чтобы поддерживать желаемую температуру в подключенных контурах. В связи с этим, важным резервом экономии топлива является максимально возможное количество контуров теплоснабжения и автоматизация процесса регулирования.

Размер гидравлического разделителя выбирается так, чтобы при полной нагрузке разность давлений между подающей и обратной линией не превышала 50 мм вод. ст. (примерно 0,5 м/с). Гидравлический разделитель может монтироваться вертикально либо горизонтально, при монтаже (рис. 10 a ) в вертикальном положении имеется ряд дополнительных преимуществ: верхняя часть работает как воздухоотделитель, а нижняя часть используется для отделения грязи.

При каскадном подключении котлов необходимо обеспечить равные расходы теплоносителя через котлы одинаковой мощности. Для этого гидравлическое сопротивление всех параллельных контуров также должно быть одинаковым, что особенно важно для водотрубных котлов. Таким образом, обеспечиваются равные условия работы водогрейных котлов, равномерное охлаждение котлов и равномерный теплосъём с каждого котла в каскаде. В связи с этим следует обратить внимание на трубную обвязку котлов, обеспечив параллельное направление движения прямой и обратной воды.

На рис. 10 б приведена схема параллельных потоков, которая применяется для обвязки котлов работающих в каскаде без индивидуальных насосов котлового контура и арматуры регулирующей расход теплоносителя через котёл. Это простое и дешёвое мероприятие позволяет исключить образование конденсата в котлах, а также частые старты и выключения горелок, которое приводит сокращению электроэнергии и продлевает срок службы котла и горелочного устройства.

Предлагаемая схема «параллельных потоков» применяется также в протяжённых горизонтальных системах и при подключении солнечных коллекторов и тепловых насосов в одну общую систему.

5. Технические решения по обеспечению эвакуации дымовых газов

Борьба за экономию топлива, в наших экономических условиях, нередко сводится к изменению режимов эксплуатации котельного оборудования. Однако это часто приводит к его преждевременному выходу из строя и дополнительным материальным и финансовым затратам, связанным с ремонтом оборудования. Большую проблему при работе на малых нагрузках создаёт влага в продуктах сгорания, которая образуется в процессе реакции горения, за счёт химической кинетики. При этом при температуре дымовых газов около 50…60 °С на стенках дымохода и оборудования образуется конденсат.

Содержание влаги в зависимости от точки росы приведено на рис. 11 a , это приводит к необходимости поддерживать высокие температуры в топке и снижать КПД котла за счёт повышения температуры уходящих газов. Данное утверждение не распространяется на котлы конденсационного типа, где используется принцип получения дополнительной теплоты за счёт фазового перехода при конденсации водяных паров. На рис. 11 б показана прямая зависимость точки росы (Т р) от коэффициента избытка воздуха а для различных видов топлива. Наличие водяных паров в продуктах сгорания и их конденсация на стенках негативно отражаются на эксплуатации дымовых труб приводя к корозии металлических поверхностей и разрушению кирпичной кладки.

Конденсат имеет кислую среду с рН ≈ 4, что обусловлено наличием в нём угольной кислоты, следов азотной, а при сжигании жидкого топлива и серной кислоты.

Для исключения в процессе эксплуатации негативных последствий в ходе проектирования и выполнения пусконаладочных работ особое внимание необходимо уделить вопросам безопасной эксплуатации котельного оборудования, оптимизации работы горелочного устройства, исключению возможности отрыва пламени в топке и образования конденсата в дымовых трубах.

Для этого на дымовых трубах могут быть дополнительно установлены огранечители тяги, аналогичные ограничителям немецкой фирмы Kutzner + Weber , которые снабжены гидравлическим тормозом и системой грузов, позволяющими отрегулировать их автоматическое открытие в процессе работы котла и вентиляцию трубы при его останове (рис. 12 ).

Работа клапана основана на физическом принципе разрыва струи и не требует дополнительного привода. Основное требования при установке ограничителей давления это, то что данные устройства можно располагать в помещении котельной, либо, как исключение, в соседних помещениях, при условии что разница давления в них не превышает 4,0 Па. При толщине стенки дымовой трубы - 24 мм и более устройство крепится непосредственно на дымовую трубу, либо на выносную консоль. Допустимая максимальная температура дымовых газов - 400 °С, давление срабатывания предохранительного клапана от 10 до 40 мбар, производительность по воздуху до 500 м 3 /час, диапазон регулирования от 0,1 до 0,5 мбар. Применение ограничителей давления повышает надёжность эксплуатации котлов и дымоходов, продлевает ресурс эксплуатации оборудования, не требует дополнительных расходов на обслуживание. Экспериментальная проверка показывает отсутствие условий для образования конденсата в дымовых трубах, после установки на дымоход клапана ограничения давления при параллельном сокращении концентрации вредных выбросов в атмосферу.

6. Новые методы водоподготовки для повышения эффективности эксплуатации котельного оборудования

Химический состав и качество воды в системе оказывают непосредственное влияние на срок службы котельного оборудования работу и системы отопления в целом.

Отложения, возникающие из-за содержащихся в воде солей Са 2+ , Мg 2+ и Fe 2+ - наиболее распространенная проблема, с которой мы сталкиваемся в быту и в промышленности. Растворимость солей под воздействием высокой температуры и повышенного давления приводит к образованию твёрдых (накипь) и мягких (шлам) осадков. Образование отложений приводит к серьезным потерям энергии. Эти потери могут достигать 60%. Рост отложений существенно снижает теплоотдачу, они могут полностью блокировать часть системы, привести к закупориванию и ускорить коррозию. Известно, что накипь толщиной в 3,0 мм снижает коэффициент полезного действия котловой установки на 2,0…3,0%. На рис. 13 приведены зависимости увеличения расхода топлива от толщины накипи.

Наличие в воде кислорода, хлора, двухвалентного железа и солей жёсткости увеличивают количество аварийных ситуаций, приводят к увеличению расхода топлива и снижают срок службы оборудования.

Отложения карбонатной жёсткости формируются при невысоких температурах и легко удаляются. Отложения образованные растворёнными в воде минералами, например сульфатом кальция, откладываются на поверхностях теплообмена при высоких температурах.

Отложения накипи приводят к тому, что даже «Межведомственными нормами сроков службы котельного оборудования в Украине» предусмотрено увеличение расхода топлива на 10% уже через 7 лет эксплуатации оборудования. Отложения особенно опасны для устройств автоматического регулирования, теплообменников, счётчиков тепла, радиаторных термостатических вентилей, водомеров. Для обеспечения надлежащей работы системы необходимо применять умягчители воды.

В так называемых «мёртвых зонах» ситемы могут образовываться стационарные пузыри сложного химического состава, в которых кроме кислорода и азота могут присутствовать метан и водород. Они вызывают точечную коррозию металла и образование илистых отложений, негативно сказывающихся на работе системы. В связи с этим необходимо использовать автоматические воздухоотводчики, которые устанавливаются в верхних точках системы и зонах слабой циркуляции теплоносителя.

При использовании для подпитки городской водопроводной воды необходимо следить за концентрацией хлоридов. Она не должна превышать 200 мг/л. Повышенное содержание хлоридов приводит к тому, что вода становится более коррозиционно- агресивной, в том числе и из-за неправильной работы фильтров умягчения воды. В последнии годы качество исходной, водопроводной и сетевой воды в целом улучшилось благодаря применению специальной арматуры, сильфонных компенсаторов и переходу от гравитационных систем центрального отопления к системам центрального отопления замкнутого типа.

Проблемы отложений решаются с использованием как физических, так и химических методов. Сегодня химикаты широко используются в борьбе с отложениями. Однако высокие затраты и сложность технологического процесса, а также возрастающее понимание в необходимости защиты окружающей среды, не оставляет никакого выбора, кроме как поиска физических методов. Однако способ приготовления воды для них и в дальнейшем не гарантирует защиты от коррозии и жесткости воды.

Для предотвращения отложений применяют разного типа фильтры, отстойники, магниты, активаторы и их комбинации. В зависимости от осадка, элементы системы защищают или только от постоянных коррозийных компонентов и котлового камня, или от всех вредных компонентов вместе с магнетитами.

Простейшее устройства физической очистки воды - сетчатые фильтры . Они устанавливаются непосредственно перед котлом и имеют сетчатый вкладыш из нержавеющей стали с необходимым количеством отверстий - 100…625 на 1 см 2 . Эффективность такой очистки составляет 30% и зависит от размеров фракций осадка.

Следующее устройство - гидроциклонный фильтр , принцип действия которого базируется на законе инерции при вращающемся движении. Эффективность такой очистки очень высокая, но нужно обеспечить высокое давление 15…60 бар в зависимости от объёма воды в системе. По этой причине данные фильтры применяют редко.

Илоотделитель - это вертикальный цилиндрический сборник с перегородкой, которая ритормаживает поток воды. Благодаря этому отделяются большие частички. Функцию фильтра выполняет горизонтально расположенная сетка с количеством отверстий 100… 400 на 1 см 2 . Эффективность такой очистки составляет 30…40%.

Очистка воды усложняется, если из нее нужно убрать котловый камень.

Илоотделители задерживают преимущественно только большие фракции карбонатно-кальциевых соединений, которые оседают на сетке. Остаток циркулирует и оседает в системе центрального отопления.

Широкое распространение получили различные устройства магнитной и электромагнитной обработки воды использующие постоянное и переменное магнитное поле. Магнитная обработка приводит к тому, что вещества, вызывающие отложения, под воздействием полей поляризуются и сохраняются во взвешенном состоянии.

Простейшее устройство основанное на данном принципе - магнитизатор . Как правило, он представляет собой металлической цилиндр с магнитным стержнем внутри. С помощью фланцевого соединения он устанавливается непосредственно в трубопровод. Принцип действия магнитизатора состоит в изменении электрофизического состояния молекул жидкости и растворённых в ней солей под влиянием магнитного поля. В результате котловый камень не образовывается, а карбонатные соли выпадают в виде мелкокристаллического ила, который больше не оседает на поверхностях теплообмена.

Преимущество данного метода - постоянная поляризация вещества, благодаря чему растворяются даже старые отложения котлового камня. Однако этот, без сомнения, экологически чистый метод с низкими експлуатационными затратами имеет важный недостаток.

Повышение гидравлического сопротивления системы приводит к увеличению расхода электроэнергии и дополнительной нагрузке на насосное оборудование, в замкнутых циркуляционных системах иловые отложения оседают в радиаторах, арматуре и фасонных частях трубопроводов, в связи с чем необходимо устанавливать дополнительные фильтры, магнитный стержень в устройстве активно корродирует.

Эффективность такой очистки доходит до 60% и зависит от размеров фракций осадка, химического состава растворённых солей и напряжённости магнитного поля от внешних источников.

В последнее десятилетие ведётся активный поиск новых способов физической обработки воды, основанных на современных нанотехнологиях. Большое распространение получили активаторы воды , которые используют принцип витализации воды (повышение её энергетической активности) и защиту оборудования от накипи и коррозии. Примером могут служить приборы австрийских фирм BWT и EWO , немецких ELGA Berkelfeld и MERUS® , американской Kinetico .

Все они используют различные конструктивные решения и материалы, оригинальные методы обработки, имеют длительные сроки эксплуатации и не требуют дополнительных капиталовложений на техническое обслуживание, электроэнергию и расходные материалы.

На рис. 14 , показаны приборы немецкой фирмы MERUS® , которые изготавливаются с использованием специального производственного процесса прессовки различных материалов, таких как алюминий, железо, хром, цинк, кремний.

Данная технология позволяет получать уникальный сплав, обладающий свойством к «запоминанию» напряжённости магнитного поля при последующей технологической обработке. Прибор состоит из двух полуколец, которые одеваются на трубопровод и соединяются двумя стяжными болтами. Прибор эффективно концентрирует электромагнитные поля из окружающей среды и воздействует на растворенные в воде анионы гидрокарбоната, удерживая их в коллоидной форме, а также переводит ржавчину в магнетит - электромагнитными импульсами, производя действие подобное воздействию аккустических сигналов на воду (ультразвук). Это вызывает процесс кристаллизации непосредственно в объеме воды, а не на стенках труб или других поверхностях теплообмена. Этот процесс более известен в химии, как «кристаллизация в объеме».

В отличии от других способов физической обработки воды, приборы MERUS® не требуют источников энергии, затрат на эксплуатационное обслуживание и установку прибора.

Производимое прибором воздействие на воду сохраняется до 72 часов и позволяет проводить обработку воды на магистральных трубопроводах до 10 км.

Благодаря новому принципу воздействия - основанному на активации воды, за счёт разрыва водородных межмолекулярных связей приборы MERUS® эффективно используются даже в тех случаях, когда известные методы обработки воды неэффективны. Например, на конденсатопроводах, прямоточных технологических пароперегревателях, работающих на водопроводной воде без возврата конденсата, электротермических печах, при установке на пластиковых трубах и пр.

Эффективность такой обработки достигает 90%, позволяя умягчать воду без химических компонентов, сократить расход соли при натий-катионировании и угнетая рост болезнетворных бактерий, таких как палочка Коха и легионелла.

При этом химический состав воды не изменяется, что часто бывает важно для фармацевтической и пищевой промышленности, обработки воды в бассейнах и пр.

7. Выводы

    На техническое состояние котельного оборудования коммунальной энергетики Украины, это в первую очередь влияет отсутствие достаточного финансирования и несовершенная правовая законодательная база.

    Определение эффективности работы котельного оборудования должно начинаться с проведения энергоаудита.

    Повышения эффективности работы и сроков службы котельного оборудования можно достичь путём установки вторичных излучателей, которые обеспечат улучшение аэродинамических и кинетических процессов протекающих в топке.

    Значительной экономии тепловой энергии и улучшения эксплуатационных характеристик оборудования можно добиться произведя модернизацию гидравлической схемы.

    Установка огранечителей тяги на дымовых трубах приводит к стабилизации горения, вентиляции дымовых труб, исключению возможности образования конденсата и их надёжной эксплуатации на малых нагрузках котлоагрегатов.

    В процессе эксплуатации котельного оборудования необходимо уделить внимание качественной водоподготовке и деаэрации теплоносителя. ■

Литература

    Тепловой расчёт котельных агрегатов (нормативный метод) / Под ред. Н. В. Кузнецова. - М.: «Энергия», 1973. - 296 с.

    Басок Б.И., Демченко В.Г., Мартыненко М.П. Численное моделирование процессов аэродинамики в топке водогрейного котла с вторичным излучателем //Промышленная теплотехника. - № 1. - 2006.

    Рабочие характеристики, указания по подключению и гидравлические схемы котлов средней и большой мощности. De Dietrich, 1998. - 36c.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

1.2.2.1 Необходимость применения общекотловой автоматики, технологической сигнализации и диспетчеризации

1.4 Цель и задачи проектирования

2. Технологический процесс котельной на УКПГ-8

2.1.2.3 Регулирование разряжения в топке

2.1.3 Регулирование перегрева пара

2.1.4 Регулирование питания и водного режима барабанных паровых котлов

2.1.4.1 Схемы регулирования

2.2 Газомазутные паровые котлы типа ДЕ

2.2.1 Преимущества паровых котлов типа ДЕ

2.2.2 Технические характеристики паровых котлов типа ДЕ

2.3 Принцип работы котла ДЕ-10-14 Г

2.4 Выбор технологического оборудования для котельной установки

2.4.1 Заслонка дроссельная с электроприводом БГ4.08.00

2.4.2 Клапан отсечной быстродействующий (ПЗК) 1256.100.00-02

2.4.3 Клапан электромагнитный нормально открытый 1256.20.00

2.4.4 Клапан электромагнитный нормально закрытый 1256.15.00

2.4.5 Заслонка дроссельная ЗД 80-11.00

2.4.6 Клапан трехходовой для манометра КМ 1.00

2.4.7 Заслонка дроссельная воздушная двухпоточная

2.4.8 Электрозапальник

2.4.9 Исполнительные механизмы однооборотные МЭО-16 и МЭО-40

3. Создание АСУ на УКПГ-8 Медвежьего газового месторождения

3.1 Анализ существующих контроллеров

3.1.1 Требования предъявляемые к контроллерам

3.1.1.1 Требования к информационным потокам

3.1.2 Выбор контроллера

3.1.2.1 Контроллер «Ремиконт Р-110»

3.1.2.2 Контроллер «GE-Fanuc»

3.1.2.3 Контроллер «TREI-5B-05»

3.1.2.4 Контроллер «ТЭКОН-17»

3.1.3 Результаты исследований

3.2 Программное обеспечение для контроллера «ТЭКОН-17»

3.2.1 Дополнительное алгоритмическое обеспечение для среды «ISaGRAF PRO»

3.2.2 Программное обеспечение для операторского интерфейса

3.2.3 Прикладное ПО для контроллера «ТЭКОН-17»

3.2.3.1 «Журнал учета»

3.2.3.2 «ТЭКОН-Имена»

3.2.3.3 «Пульт»

3.2.3.4 «Принт-Диалог»

3.2.3.5 «Hayes-ТЭКОН»

3.2.3.6 «Диалог-ТЭКОН»

3.2.3.7 «Телемост»

3.2.3.8 Программа настройки адаптера Ethernet

3.3 Разработка функциональной схемы автоматизации

3.3.1 Общие данные

3.3.2 Описание функциональной схемы автоматизации

3.4 Система управления котлом

3.4.1 Функциональные возможности ПТК «АМАКС»

3.5 Программное обеспечение для АСУ ТП

4. Расчет технико-экономических показателей

4.1 Экономическая целесообразность автоматизации котельной установки

4.2 Исходные данные для расчета экономической эффективности

4.3 Расчет затрат на электроэнергию

4.4 Капитальные вложения

4.5 Расчет расходов по содержанию и эксплуатации оборудования

4.6 Расчет фонда оплаты труда

4.7 Калькуляция себестоимости

4.8 Технико-экономические показатели

5. Безопасность труда

5.1 Анализ и обеспечение безопасных условий труда

5.2 Расчет тяжести труда диспетчера и его интегральная оценка

5.3 Возможные чрезвычайные ситуации

5.3.1 Расчет эвакуационных путей и выходов

Заключение

Список использованных источников

Введение

Автоматизация - это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Автоматизация производственных процессов приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин, дает экономию материалов, улучшает условия труда и техники безопасности.

Автоматизация освобождает человека от необходимости непосредственного управления механизмами. В автоматизированном процессе производства роль человека сводится к наладке, регулировке, обслуживанию средств автоматизации и наблюдению за их действием.

По уровню автоматизации теплоэнергетика занимает одно из ведущих мест среди других отраслей промышленности. Теплоэнергетические установки характеризуются непрерывностью протекающих в них процессов. При этом выработка тепловой и электрической энергии в любой момент времени должна соответствовать потреблению (нагрузке). Почти все операции на теплоэнергетических установках механизированы, а переходные процессы в них развиваются сравнительно быстро. Этим объясняется высокое развитие автоматизации в тепловой энергетике.

Автоматизация параметров дает значительные преимущества:

Обеспечивает уменьшение численности рабочего персонала, т.е. повышение производительности его труда;

Приводит к изменению характера труда обслуживающего персонала;

Увеличивает точность поддержания параметров вырабатываемого пара;

Повышает безопасность труда и надежность работы оборудования;

Увеличивает экономичность работы парогенератора.

Автоматизация котельных установок включает в себя автоматическое регулирование, дистанционное управление, технологическую защиту, теплотехнический контроль, технологические блокировки и сигнализацию.

Автоматическое регулирование обеспечивает ход непрерывно протекающих процессов в парогенераторе (питание водой, горение, уровень воды в барабане котла, перегрев пара и других)

Дистанционное управление позволяет дежурному персоналу пускать и останавливать парогенерирующую установку, а так же переключать и регулировать ее механизмы на расстоянии, с пульта, где сосредоточены устройства управления.

Теплотехнический контроль за работой котельных установок и оборудования осуществляется с помощью показывающих и самопишущих приборов, действующих автоматически. Приборы ведут непрерывный контроль процессов, протекающих в парогенераторной установке, или же подключаются к объекту измерения обслуживающим персоналом или информационно-вычислительной машиной. Приборы теплотехнического контроля размещают на панелях, щитах управления по возможности удобно для наблюдения и обслуживания.

Технологические блокировки выполняют в заданной последовательности ряд операций при пусках и остановках механизмов котельной установки, а так же в случаях срабатывания технологической защиты. Блокировки исключают неправильные операции при обслуживании парогенераторной установки, обеспечивают отключение в необходимой последовательности оборудования при возникновении аварии. Устройства технологической сигнализации информируют дежурный персонал о состоянии оборудования (в работе, остановлено и тому подобное.), предупреждают о приближении параметра к опасному значению, сообщают о возникновении аварийного состояния парогенератора и его оборудования. Применяются звуковая и световая сигнализация.

1. Анализ состояния вопроса и задачи исследования

1.1 Газовое месторождение «Медвежье»

Газовое месторождение «Медвежье» расположено в Надымском районе Ямало-Ненецкого национального округа, в 340 км к востоку от г. Салехарда. В 1967 году на нем было начато поисково-разведочное бурение и установлена газоносность отложений этого месторождения.

В геологическом строении месторождения участвуют песчано-глинисто-алевритовые породы верхнемелового, палеогенового и четвертичного возраста. В основании разреза бурением вскрыты отложения верхней части покурской серии, являющиеся продуктивными. Общая вскрытая мощность отложений составляет около 1200 метров. Структура месторождения приурочена к Ненецкому своду и представляет собой крупную брахиантиклинальную складку субмеридионального простирания, прослеживающегося по всему разрезу осадочного чехла. Она имеет размеры 33 х 10 км.

На месторождении промышленные залежи газа установлены в верхней части отложений покурской серии. Скважина № 1 на северной периклинали структуры вскрыла продуктивные отложения. Разрез газонасыщенной части слагается песчано-алевритовыми породами с подчиненными прослоями глин и известняков. Этаж газоносности достигает здесь высоты около 100 м. При опробовании скважины получен мощный фонтан газа дебитом 2500000 м 3 /сутки. Пластовое давление предполагается равным 110 кгс/см 2 . Площадь газонасыщенности месторождения «Медвежье» определена по положению контура газоносности и составляет 910 км 2 . Средневзвешенная эффективная газонасыщенная мощность принята равной 20 м. Запасы газа месторождения оцениваются в 1000 миллиардов кубических метров.

Газовое месторождение «Медвежье» является одним из крупнейших в мире, на долю которого приходится 86 % от общего объема отобранного газа, ежегодно здесь добывают 30 миллиардов кубических метров газа. Это первенец газовой промышленности Тюменского Севера, первое крупное месторождение газовой промышленности России и Союза. На данный момент из этого месторождения добыто свыше 80 % запасов газа. На сегодня на месторождении работают девять газовых промыслов.

С 1972 года «Медвежье» эксплуатирует ООО «Надымгазпром». Уже в начальном периоде эксплуатации стало ясно, что уточненные данные по величине и плотности распределения запасов, пластовым перетокам приведут к изменению в целом стратегии разработки месторождения. Первоочередно был изменен принцип распределения уровня годовой добычи по так называемой площади газоносности на различных участках. Затем пробурены десятки новых эксплуатационных скважин на периферийных зонах, укрупнены мощности установок комплексной подготовки газа (УКПГ), построены дожимные компрессорные станции (ДКС). Это позволило увеличить отбор газа до девяти миллиардов кубических метров в год и «растянуть» период постоянной добычи на несколько лет. И сейчас «Надымгазпром» тоже идет с превышением плановых показателей.

Сейчас ООО «Надымгазпром» ведет доразведку месторождения. Несмотря на то, что в настоящее время компания, в первую очередь, занимается подготовкой к освоению перспективных месторождений углеводородного сырья на полуострове Ямал, без должного внимания предприятия не остаются и месторождения Надым-Пур-Тазовского нефтегазоносного района. В планы компании на 2007 год входит запуск масштабных работ по реконструкции добывающих промыслов на месторождении «Медвежье». Для разработки проекта реконструкции выделены необходимые средства и уже сформирован проект, одобренный ОАО «Газпром» и прошедший государственную экспертизу. В то же время на месторождении ведутся геолого-разведочные работы, которые уже дали обнадеживающие результаты. Первый этап реконструкции будет включать в себя, в частности, модернизацию газосборных сетей. Второй будет состоять из оптимизации работы дожимного комплекса. Окончание работ планируется на 2020 год, при этом учитываются не только выработка промышленной добычи газа, но и работа с нижележащими пластами.

1.2 Описание технологического процесса

Паровым котлом называется комплекс агрегатов, предназначенных для получения водяного пара . Этот комплекс состоит из ряда теплообменных устройств, связанных между собой и служащих для передачи тепла от продуктов сгорания топлива к воде и пару. Исходным носителем энергии, наличие которого необходимо для образования пар из воды, служит топливо.

Основными элементами рабочего процесса, осуществляемого в котельной установке, являются:

Процесс горения топлива;

Процесс теплообмена между продуктами сгорания или самим горящим топливом с водой;

Процесс парообразования, состоящий из нагрева воды, ее испарения и нагрева полученного пара.

Во время работы в котлоагрегатах образуются два взаимодействующих друг с другом потока: поток рабочего тела и поток образующегося в топке теплоносителя.

В результате этого взаимодействия на выходе объекта получается пар заданного давления и температуры.

Одной из основных задач, возникающей при эксплуатации котельного агрегата, является обеспечение равенства между производимой и потребляемой энергией. В свою очередь процессы парообразования и передачи энергии в котлоагрегате однозначно связаны с количеством вещества в потоках рабочего тела и теплоносителя.

Горение топлива является сплошным физико-химическим процессом. Химическая сторона горения представляет собой процесс окисления его горючих элементов кислородом, проходящий при определенной температуре и сопровождающийся выделением тепла. Интенсивность горения, а так же экономичность и устойчивость процесса горения топлива зависят от способа подвода и распределения воздуха между частицами топлива. Условно принято процесс сжигания топлива делить на три стадии: зажигание, горение и дожигание. Эти стадии в основном протекают последовательно во времени, частично накладываются одна на другую.

Расчет процесса горения обычно сводится к определению количества воздуха, необходимого для сгорания единицы массы или объема топлива количества и состава теплового баланса и определению температуры горения.

Значение теплоотдачи заключается в теплопередаче тепловой энергии, выделяющейся при сжигании топлива, воде, из которой необходимо получить пар, или пару, если необходимо повысить его температуру выше температуры насыщения. Процесс теплообмена в котле идет через водогазонепроницаемые теплопроводные стенки, называющиеся поверхностью нагрева. Поверхности нагрева выполняются в виде труб. Внутри труб происходит непрерывная циркуляция воды, а снаружи они омываются горячими топочными газами или воспринимают тепловую энергию лучеиспусканием. Таким образом, в котлоагрегате имеют место все виды теплопередачи: теплопроводность, конвекция и лучеиспускание. Соответственно поверхность нагрева подразделяется на конвективные и радиационные. Количество тепла, передаваемое через единицу площади нагрева в единицу времени носит название теплового напряжения поверхности нагрева. Величина напряжения ограничена, во-первых, свойствами материала поверхности нагрева, во-вторых, максимально возможной интенсивностью теплопередачи от горячего теплоносителя к поверхности, от поверхности нагрева к холодному теплоносителю.

Интенсивность коэффициента теплопередачи тем выше, чем выше разности температур теплоносителей, скорость их перемещения относительно поверхности нагрева и чем выше чистота поверхности.

Образование пара в котлоагрегатах протекает с определенной последовательностью. Уже в экранных трубах начинается образование пара. Этот процесс протекает при больших температуре и давлении. Явление испарения заключается в том, что отдельные молекулы жидкости, находящиеся у ее поверхности и обладающие высокими скоростями, а, следовательно, и большей по сравнению с другими молекулами кинетической энергией, преодолевая силовые воздействия соседних молекул, создающее поверхностное натяжение, вылетают в окружающее пространство. С увеличением температуры интенсивность испарения возрастает. Процесс обратный парообразованию называют конденсацией. Жидкость, образующуюся при конденсации, называют конденсатом. Она используется для охлаждения поверхностей металла в пароперегревателях.

Пар, образуемый в котлоагрегате, подразделяется на насыщенный и перегретый. Насыщенный пар в свою очередь делится на сухой и влажный. Так как на теплоэлектростанциях требуется перегретый пар, то для его перегрева устанавливается пароперегреватель, в данном случае ширмовой и коньюктивный, в которых для перегрева пара используется тепло, полученное в результате сгорания топлива и отходящих газов. Полученный перегретый пар при температуре Т = 540 °С и давлении Р = 100 атмосфер идет на технологические нужды.

1.2.1 Описание конструкции объекта

Паровые котлы типа ДЕ паропроизводитсльностью 10 т/ч, с абсолютным давлением 1,4 МПа (14 кгс/см 2) предназначены для выработки насыщенного или перегретого пара, используемого для технологических нужд промышленных предприятий, на теплоснабжение систем отопления и горячего водоснабжения. Котлы двухбарабанные вертикально-водотрубные выполнены по конструктивной схеме «Д», характерной особенностью которой является боковое расположение конвективной части котла относительно топочной камеры.

Основными составными частями котлов являются верхний и нижний барабаны, конвективный пучок и образующие топочную камеру левый топочный экран (газоплотная перегородка), правый топочный экран, трубы экранирования фронтальной стенки топки и задний экран.

Снизу в топку подается нужный для сгорания топлива воздух посредством дутьевых вентиляторов. Процесс горения топлива протекает при высоких температурах, поэтому экранные трубы котла воспринимают значительное количество тепла путем излучения.

Продукты сгорания топлива, называемые иначе газами, поступают в котельные газоходы, при этом обогревается поверхность пароперегревателя, омывают трубы экономайзера, в котором происходит подогрев питательной воды до температуры, близкой к 200 єС, поступающей в барабаны котла. Далее дымовые газы проходят в дымоход и поступают в воздухоподогреватель. Из него газы через дымовую трубу выходят в атмосферу. Вода в котел подается по трубопроводу, газотрубопроводу. Пар из барабана котла, минуя пароперегреватель, поступает на паропровод.

Одним из важнейших показателей конструкции котлоагрегата является его циркуляционная способность. Равномерная и интенсивная циркуляция воды и паровой смеси способствует смыванию со стены пузырьков пара и газа, выделяющихся из воды, а так же препятствует отложению на стенках накипи, что в свою очередь обеспечивает невысокую температуру стенок - до (200-400) єС, ненамного превышающую температуру насыщения и еще не опасную для прочности котельной стали. Паровой котел ДЕ -10-14 Г принадлежит к котлам естественной циркуляцией, основные технологические параметры котла представлены в таблице 1.1 .

Таблица 1.1 - Технологические параметры котла ДЕ -10-14 Г

Параметр

Производительность

Температура перегретого пара

Давление в барабане котла

Температура питательной воды после экономайзера

Расход природного газа

Температура отходящих газов

Давление газа перед горелками

Разрежение в топке

мм водного столба

Уровень в барабане

Расход питательной воды

Давление питательной воды

1.2.2 Обоснование необходимости автоматизации котельной установки

Котельные относятся к опасным производственным объектам и лавное требование к ним это обеспечение должного уровня безопасности Эксплуатация котлов должна обеспечивать надежную и эффективную выработку пара требуемых параметров.

Исходя из этих требований стали широко применяться автоматизированные системы управления технологическими процессами (АСУ ТП), которые без постоянного присутствия человека поддерживают оптимальность технологического процесса и повышают эффективность, они базируются на использовании современных средств вычислительной и микропроцессорной техники, то есть - это совокупность аппаратно-программных средств, осуществляющих контроль и управление технологическим процессом. АСУ ТП поддерживает обратную связь и воздействует на ход процесса при отклонении его от заданных режимов .

Схема автоматизации регулирования и контроля парового котлоагрегата должна предусматривать следующие системы:

Система автоматического регулирования и контроля тепловой нагрузки котла;

Система автоматического регулирования и контроля питания котла;

Система автоматического регулирования и контроля соотношения газ-воздух;

Система автоматического регулирования и контроля разрежения в топке котла;

Система автоматического контроля давления;

Система автоматического контроля температуры;

Система автоматической отсечки газа.

Использование программно-логических контроллеров позволяет изменить и подстроить алгоритм работы котельной при помощи ввода новой программы, либо простой коррекцией запрограммированной программы.

Опыт автоматизации промышленных котельных свидетельствует о том, что регулирование процесса горения и питание котлов дает до 8 % экономии топлива, увеличивает к. п. д. котла на (7-8) %, обеспечивает работу топки с избытками воздуха, близкими к оптимальным, сокращает расходы электроэнергии на дутье и тягу, уменьшает объем ремонтных работ и повышает культуру обслуживания.

1.2.2.1 Необходимость применения общекотловой автоматики, технологической сигнализации и удаленной диспетчеризации

Автоматизация позволяет работать без постоянного присутствия обслуживающего персонала. Для этого в автоматизированных котельных кроме обязательной котловой автоматики должна быть общекотловая автоматика, технологическая сигнализация и удаленная диспетчеризация.

Общекотловая автоматика должна в отсутствии людей управлять всей котельной, то есть:

Автоматически производить ротацию (попеременную работу) котлов;

При отключении котла его насос должен работать еще примерно 10 минут;

Автоматически производить ротацию (попеременную работу) насосовотопления, вентиляции, горячего водоснабжения (технологического процесса);

В зависимости от нагрузки автоматически включать (отключать) дополнительный котел;

Автоматически поддерживать температуру (заданную заводом изготовителем котла) теплоносителяна обратном трубопроводе котла;

Автоматически осуществлять подпитку системы при понижении давления теплоносителя;

Автоматически поддерживать температурный график теплоносителя в системе отопления, вентиляции, горячего водоснабжения, технологического процесса.

Технологическая сигнализация должна фиксировать все аварийные ситуации и выдавать световую и звуковую сигнализацию. В технологическую сигнализацию входят сигналы:

Утечка газа (метан);

Появление угарного газа (СО);

Понижение либо повышение давления газа (выход за уставки);

Понижение либо повышение давления теплоносителя (выход за уставки);

Понижение, повышение (выход за уставки) либо пропадание фазы питающей сети;

Авария котла;

Удаленная диспетчеризация должна дублировать состояние технологической сигнализации в помещении дежурного и включать звуковую и световую сигнализацию.

1.2.2.2 Обоснование необходимости контроля, регулирования и сигнализации технологических параметров

Автоматическое регулирование процесса горения значительно повышает экономичность газоиспользующих установок. Применение автоматики обеспечивает безопасность использования газа, улучшает условия труда обслуживающего персонала и способствует повышению его технического уровня.

Регулирование питания котельных агрегатов и регулирование давления в барабане котла главным образом сводится к поддержанию материального баланса между отводом пара и подачей воды. Параметром, характеризующим баланс, является уровень воды в барабане котла. Надежность работы котельного агрегата во многом определяется качеством регулирования уровня. При повышении давления снижение уровня ниже допустимых пределов может привести к нарушению циркуляции в экранных трубах, в результате чего произойдет повышение температуры стенок обогреваемых труб и их пережег.

Повышение уровня также ведет к аварийным последствиям, так как возможен заброс воды в пароперегреватель, что вызовет выход его из строя. В связи с этим, к точности поддержания заданного уровня предъявляются очень высокие требования. Качество регулирования питания также определяется равенством подачи питательной воды. Необходимо обеспечить равномерное питание котла водой, так как частые и глубокие изменения расхода питательной воды могут вызвать значительные температурные напряжения в металле экономайзера.

Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются изменение расхода питательной воды, изменение паросъема котла при изменении нагрузки потребителя, изменение паропроизводительности при изменении нагрузки топки, изменение температуры питательной воды.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1,1. При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть, чтобы поддерживать постоянство разряжения (примерно 4 мм водного столба). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам - твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.

Сигнализация параметров и защиты, действующие на останов котла, физически необходимы, так как оператор или машинист котла не в силах уследить за всеми параметрами функционирующего котла. Вследствие этого может возникнуть аварийная ситуация. Например, при упуске воды из барабана, уровень воды в нем понижается, вследствие этого может быть нарушена циркуляция и вызван пережег труб донных кранов. Сработавшая без промедления защита, предотвратит выход из строя парогенератора. При уменьшении нагрузки парогенератора, интенсивность горения в топке снижается. Горение становится неустойчивым и может прекратиться. В связи с этим предусматривается защита по погашению факела. Надежность защиты в значительной мере определяется количеством, схемой включения и надежностью используемых в ней приборов. По своему действию защиты подразделяются на: действующие на останов парогенератора (снижение нагрузки парогенератора), выполняющие локальные операции.

1.3 Классификация котельных установок

Котельными установками называется комплекс оборудования, предназначенный для превращения химической энергии топлива в тепловую с целью получения горячей воды или пара заданных параметров.

В зависимости от назначения котельная установка состоит из котла соответствующего типа и вспомогательного оборудования, обеспечивающего его работу. Котел - это конструктивно объединенный в одно целое комплекс устройств для получения пара или для нагрева воды под давлением за счет теплоты сжигаемого топлива, при протекании технологического процесса или преобразовании электрической энергии в тепловую.

Классификация котельных установок представлена на листе 1 графического материала дипломного проекта.

По роду вырабатываемого теплоносителя котельные установки разделяют на три основных класса :

Паровые, предназначенные для производства водяного пара;

Водогрейные, предназначенные для получения горячей воды и смешанные (оборудованные паровыми и водогрейными котлами), предназначенными для получения пара и горячей воды;

По характеру теплоносителя:

Энергетические, вырабатывающие пар для паровых двигателей;

Производственно-отопительные, вырабатывающие пар для технологических целей производства, отопления и вентиляции;

Отопительные, вырабатывающие пар для отопления, вентиляции и горячего водоснабжения производственных, жилых и коммунально-бытовых помещений;

Смешанные, вырабатывающие пар для снабжения одновременно паровых двигателей, технологических нужд, отопительно-вентиляционных установок и горячего водоснабжения.

По роду основного вида сжигаемого топлива:

Угольные;

Газовые;

Мазутные.

По размерам обслуживания:

Индивидуальные,

Групповые;

Районные.

Более подробная классификация представлена на первом листе графической части.

Котельные установки состоят из котлоагрегата и вспомогательного оборудования. Котельных агрегатов бывает не менее двух, а вспомогательное оборудование общее для всей котельной. Основное оборудование котельной установки представлено на рисунке 1.1.

Рисунок 1.1 - Технологическая схема котельной установки: В - вентилятор, Д - дымосос, ЭК - экономайзер, Фил - фильтры химической обработки воды, Дэаэр - деаэратор, Пн - питательный насос, НСВ - насос сырой воды, РО - регулирующий орган, ИМ - исполнительный механизм, РУ - редукционная установка.

Котлоагрегат включает топочное устройство, трубную систему с барабанами, пароперегреватель, водяной экономайзер, воздухонагреватель, дымосос, вентилятор, запорно-регулировочную арматуру, контрольно-измерительные приборы и регуляторы.

К вспомогательному оборудованию относятся редукционная установка, фильтры химической обработки воды, деаэратор, насосы сырой воды и питательные насосы, мазутное хозяйство, газорегуляторная станция, арматура, контрольно-измерительные приборы и регуляторы.

Рабочими телами, участвующими в процессе получения горячей воды или пара для производственно - технических целей и отопления, служат вода, топливо и воздух.

Паровой котел является основным элементом котлоагрегата, он представляет собой теплообменное устройство, через металлические стенки которого происходит передача тепла от горячих продуктов горения топлива к воде для получения пара.

Паропроизводительность котельной установки или ее мощность представляет собой сумму паропроизводительностей отдельных котлоагрегатов, входящих в её состав. Паропроизводительность котлоагрегата определяется количеством килограммов или тонн пара, производимого им в час, обозначается буквой D и измеряется в кг/ч или т/ч.

Топочное устройство котлоагрегата служит для сжигания топлива и превращения его в химической энергии в тепло наиболее экономичным способом.

Пароперегреватель предназначен для перегрева пара, полученного в котле за счет передачи ему тепла дымовых газов. Водяной экономайзер служит для подогрева поступающей в котел питательной воды теплом уходящих из котла дымовых газов.

Воздухоподогреватель предназначен для подогрева поступающего в топочное устройства воздуха теплом уходящих газов.

Топливный склад предназначен для хранения топлива; его оборудуют механизмами для разгрузки и подачи топлива в котельную или к топливоподготовительному устройству. Топливоподготовительное устройство в котельных, работающих на пылевидном топливе, служит для измельчения топлива до пылевидного состояния; его оборудуют дробилками, сушилками, мельницами, питателями, вентиляторами, а также системой транспортеров и пылегазопроводов.

Устройство для удаления золы и шлаков состоит из механических приспособлений: вагонеток или транспортеров или тех и других, вместе взятых.

Устройство для подготовки питательной воды состоит из аппаратов и приспособлений, обеспечивающих очистку воды от механических примесей и растворенных в ней накипеобразующих солей, а также удаления из неё газов.

Питательная установка состоит из питательных насосов для подачи воды в котел под давлением, а также соответствующих трубопроводов.

Тягодутьевое устройство состоит из дутьевых вентиляторов, системы газовоздуховодов, дымососа и дымовой трубы, обеспечивающих подачу необходимого количества воздуха в топочное устройство, движение продуктов сгорания по газоходам и удаления продуктов сгорания за пределы котлоагрегата.

Устройство теплового контроля и автоматического управления состоит из контрольно - измерительных приборов и автоматов, обеспечивающих бесперебойное и согласованную работу отдельных устройств котельной установки для выработки необходимого количества пара определенно температуры и давления.

Котлы классифицируют в зависимости от вида соответствующего тракта и его оборудования. По виду сжигаемого топлива и соответствующего топливного тракта различают котлы для газообразного, жидкого и твердого топлива.

По газовоздушному тракту различают котлы с естественной и уравновешенной тягой и с наддувом. В котле с естественной тягой сопротивление газового тракта преодолевается под действием разности плотностей атмосферного воздуха и газа в дымовой трубе. Если сопротивление газового тракта (так же, как и воздушного) преодолевается с помощью дутьевого вентилятора, то котел работает с наддувом. В котле с уравновешенной тягой давление в топке и начале газохода поддерживается близким к атмосферному совместной работой дутьевого вентилятора и дымососа. В настоящее время стремятся все выпускаемые котлы, в том числе и с уравновешенной тягой, производить газоплотными.

По виду пароводяного тракта различают барабанные (рисунок 1.2, а, б) и прямоточные (рисунок 1.2, в) котлы. Во всех типах котлов через экономайзер 1 и перегреватель 6 вода и пар проходят однократно. В барабанных котлах пароводяная смесь в испарительных поверхностях нагрева 5 циркулирует многократно (от барабана 2 по опускным трубам 3 к коллектору 4 и барабану 2). Причем в котлах с принудительной циркуляцией (рисунок 1.2, б) перед входом воды в испарительные поверхности 5 устанавливают дополнительный насос 8. В прямоточных котлах (рисунок 1.2, б) рабочее тело по всем поверхностям нагрева проходит однократно под действием напора, развиваемого питательным насосом 7.

Рисунок 1.2 - Схемы пароводяного тракта котла: 1 - экономайзер, 2 - барабан, 3 - отпускные трубы, 4 - коллектор, 5 - испарительный экран, 6 - перегревательный экран, 7 - питательный насос, 8 - дополнительный насос, а - барабанный котел с естественной циркуляцией; б - барабанный котел с принудительной циркуляцией; в - прямоточный котел; г - прямоточный котел с принудительной циркуляцией

В прямоточных котлах докритического давления испарительные экраны 5 располагают в нижней части топки, поэтому их называют нижней радиационной частью (НРЧ). Экраны, расположенные в средней и верхней частях топки, преимущественно являются перегревательными 6. Их соответственно называют средней радиационной частью (СРЧ) или верхней радиационной частью (ВРЧ).

Для увеличения скорости движения воды в некоторых поверхностях нагрева (как правило, НРЧ) при пуске прямоточного котла или работе на пониженных нагрузках обеспечивают принудительную рециркуляцию воды специальным насосом 8 (рисунок 1.2, г). Это котлы с рециркуляцией и комбинированной циркуляцией.

По фазовому состоянию выводимого из топки шлака различают котлы с твердым и жидким шлакоудалением. В котлах с твердым шлакоудалением (ТШУ) шлак из топки удаляется в твердом состоянии, а в котлах с жидким шлакоудалением (ЖШУ) - в расплавленном.

Стационарные котлы характеризуются следующими основными параметрами: номинальной паропроизводительностью, давлением, температурой пара (основного и промежуточного перегрева) и питательной воды. Под номинальной паропроизводительностью понимают наибольшую нагрузку (в т/ч или кг/с) стационарного котла, с которой он может работать в течение длительной эксплуатации при сжигании основного вида топлива или при подводе номинального количества теплоты при номинальных значениях пара и питательной воды с учетом допускаемых отклонений.

Номинальные значения давления и температуры пара должны быть обеспечены непосредственно перед паропроводом к потребителю пара при номинальной паропроизводительности котла (а температура также при номинальном давлении и температуре питательной воды).

Номинальная температура промежуточного перегрева пара - это температура пара непосредственно за промежуточным перегревателем котла при номинальных значениях давления пара, температуры питательной воды, паропроизводительности и остальных параметров пара промежуточного перегрева с учетом допускаемых отклонений.

Номинальная температура питательной воды - это температура воды, которую необходимо обеспечить перед входом в экономайзер или другой подогреватель питательной воды котла (или при их отсутствии - перед входом в барабан) при номинальной паропроизводительности.

По давлению рабочего тела различают котлы низкого (менее 1 МПа), среднего ((1-10) МПа), высокого ((10-22,5) МПа) и сверхкритического давления (более 22,5 МПа). Наиболее характерные особенности котла и основные параметры введены в его обозначение. Согласно ГОСТ 3619-82 Е тип котла и вид сжигаемого топлива обозначают следующим образом: Е - естественной циркуляции; Пр - с принудительной циркуляцией; П - прямоточный; Пп - прямоточный с промежуточным перегревом; Еп - барабанный с естественной циркуляцией и промежуточным перегревом; Т - с твердым шлакоудалением; Ж - с жидким шлакоудалением; Г - газообразное топливо; М - мазут; Б - бурый уголь; К - каменный уголь. Например, котел прямоточный с промежуточным перегревом производительностью 2650 т/ч с давлением 25 МПа температурой пара 545 °С и промежуточного перегрева пара 542 °С на буром угле с твердым шлакоудалением обозначают: Пп-2650-25-545/5420 БТ.

1.4 Цель и задачи

Целью дипломного проекта является повышение эффективности работы котельной установки за счет автоматизации процесса розжига.

Для достижения поставленной цели необходимо решить следующие задачи:

Определить к какому классу относится котельная установка на Медвежьем газовом месторождении;

Провести сравнительный анализ программируемых контроллеров;

Разработать функциональную схему автоматизации установки;

Разработать схему соединений электрических проводок;

Создать комбинированную общую схему контроллера «ТЭКОН-17»;

Создать экранные формы прикладного программного обеспечения выбранного логического контроллера;

Осуществить план расстановки оборудования;

Построить комбинированную общую схему одного из датчиков расхода digitalYEWFLOW, на основе которого выполнен узел учета пара от котла;

Провести технико-экономическое обоснование.

логический контроллер котел автоматизация

2. Технологический процесс котельной на УКПГ- 8

2.1 Исследование объекта управления

2.1.1 Барабанный паровой котел, как объект управления

Принципиальная схема технологического процесса, протекающего в барабанном паровом котле, показана на рисунке 2.1, схема циркуляционного контура - на рисунке 2.2 .

Рисунок 2.1 - Принципиальная технологическая схема барабанного котла: 1 - топка, 2 - циркуляционный контур, 3 - опускные трубы, 4 - барабан, 5, 6 - пароперегреватели, 7 - пароохладитель, 8 - водяной экономайзер, 9 - воздухоподогреватель, ГПЗ - главная паровая задвижка; РПК - регулирующий питательный клапан

Топливо поступает через горелочные устройства в топку 1, где сжигается обычно факельным способом. Для поддержания процесса горения в топку подается воздух в количестве Q В, с помощью вентилятора ДВ. Воздух предварительно нагревается в воздухоподогревателе 9. Дымовые газы Q Г отсасывается из топки дымососом ДС. Дымовые газы проходят через поверхности нагрева пароперегревателей 5, 6, водяного экономайзера 8, воздухоподогревателя 9 и удаляются через дымовую трубу в атмосферу. Процесс парообразования протекает в подъемных трубах циркуляционного контура 2, экранирующих камерную топку и снабжаемых водой из опускных труб 3. Насыщенный пар D б из барабана 4 поступает в пароподогреватель, где нагревается до установленной температуры за счет радиации факела и конвективного обогрева топочными газами. При этом температура перегрева пара регулируется в пароохладителе 7 с помощью впрыска воды D впр.

Рисунок 2.2 - Принципиальная схема циркуляционного контура: 1 - водяной экономайзер, 2 - испарительная часть, 3 - барабан, 4 - ступени пароперегревателя, 5 - пароохладитель

Основными регулируемыми величинами котла является расход перегретого пара Д пп, его давление Р пп и температура T пп. Кроме того, следует поддерживать в пределах допустимых отклонений значения следующих величин:

Уровня воды в барабане Н б (регулируется изменением подачи питательной воды D пв);

Разрежение в верхней части топки S т (регулируется изменением производительности дымососов);

Оптимального избытка воздуха за пароперегревателем О 2 (регулируется изменением производительности дутьевых вентиляторов);

Перечисленные величины изменяются в результате регулирующих воздействий и под действием внешних и внутренних возмущений. Котел как объект управления (ОУ) представляет собой сложную динамическую систему с несколькими взаимосвязанными входными и выходными величинами (рисунок 2.3). Однако явно выраженная направленность отдельных участков по основным каналам регулирующих воздействий, таким как расход воды на впрыск D впр - перегрев t пп, расход топлива В т - давление p пп и другие, позволяет осуществлять стабилизацию регулируемых величин с помощью независимых одноконтурных систем, связанных лишь через объект управления.

Рисунок 2.3 - Схема взаимосвязей между выходными и входными величинами в барабанном котле

Система управления барабанным паровым котлом (БПК) включает автономные системы автоматического регулирования (САР):

САР процессов горения и парообразования;

САР температур перегрева пара;

САР процессов питания и водного режима.

2.1.2 Регулирование процессов горения и парообразования

Регулирование процесса горения и парообразования осуществляется следующим образом.

Процессы горения и парообразования тесно связаны. Количество сжигаемого топлива в установившемся режиме должно соответствовать количеству вырабатываемого пара D б. Косвенным показателем тепловыделения Q" т служит тепловая нагрузка Dq. Количество пара в свою очередь должно соответствовать расходу пара на турбину D пп. Косвенным показателем этого соответствия служит давление пара перед турбиной. Регулирование процессов горения и парообразования в целом сводится к поддержанию вблизи заданных значений следующих величин:

Давления перегретого пара p пп и тепловой нагрузки Dq;

Избытка воздуха в топке (содержания О 2 , %) за пароперегревателем, влияющего на экономичность процесса горения;

Разрежения в верхней части топки S т.

2.1.2.1 Регулирование давления перегретого пара и тепловой нагрузки

Котел, как объект регулирования давления и тепловой нагрузки, может быть представлен в виде простых участков, топочный камеры; парообразующей части, состоящей из поверхностей нагрева, расположенных в топочной камере; барабана и пароперегревателя (рисунок 2.1).

Изменение тепловыделений Q" т приводит к изменению паропроизводительности D б и давления пара в барабане P б.

Тепловая нагрузка характеризуется количеством теплоты, воспринятое поверхностью нагрева в единицу времени и затраченное на нагрев котловой воды в экранных трубах и парогенератора. В динамическом отношении интерес представляет не значение тепловой нагрузки в определенный момент времени, а ее изменение или приращение DDq после нанесения внутреннего или внешнего возмущающего воздействия. Приращения DDq называется также сигнал по теплоте.

Имеется несколько способов измерения DDq. Самые распространенные из них - по излучению факела (непрерывный) и по перепаду давления на циркуляционном контуре барабанного котла и другие. Принципиальная схема формирования DDq приведена на рисунке 2.4.

Рисунок 2.4 - Схема формирования сигнала по теплоте: 1 - датчик давления пара, 2 - дифференциатор, 3 - датчик расхода пара, 4 - измерительный блок регулирующего прибора

Существующие способы и схемы автоматического регулирования тепловой нагрузки и давления пара в магистрали основаны на принципах регулирования по отклонению (базовой режим) и возмущению (регулирующей режим).

Базовым называют режим поддержания паровой нагрузки котла на заданном уровне вне зависимости от изменения общей электрической или тепловой нагрузки ТЭС.

В регулирующем режиме котел воспринимает колебания тепловой и электрической нагрузок турбин. Регулирования давления пара в регулирующем режиме является воздействие на расход топлива, подаваемого в топку, в зависимости от отклонения давления пара в магистрали.

Рисунок 2.5 - Принципиальная схема регулирования давления пара: 1 - топка, 2 - регулятор частоты вращения, 3 - механизм управления регулирующим клапаном, 4 - регулятор давления, 5 - электропривод

Принципиальная схема замкнутой САР давления приведена на рисунке 2.5. В регулирующем режиме давления пара поддерживает регулятор давления 4, воздействующий на регулятор подачи топлива в топку 1, а частота вращения ротора турбины - регулятор частоты вращения 2 (вариант а). В базовом режиме воздействие регулятора давления 4 должно быть переключено на механизм управления регулирующими клапанами турбины 3 через электропривод синхронизатора турбины 5 (вариант б).

Поддержание постоянства давления пара в общей магистрали группы котлов обеспечивается при отклонении давления в общей магистрали подачей заданного количества топлива в топку каждого котла.

2.1.2.2 Регулирование экономичности процесса горения

Экономичность работы котла оценивается по его КПД, равному отношению полезной теплоты, затраченной на генерирование и перегрева пара, к располагаемой теплоте, которая могла быть получена при сжигании всего топлива. Поддержание оптимального избытка воздуха не только повышение КПД, но и уменьшает коррозии поверхности нагрева, образование вредных соединений и другие нежелательные изменения.

Одним из наиболее представительных косвенных способов оценки экономичности процесса горения является анализ состава топочных газов, покидающих топку.

Основным способом регулирования оптимального значения избытки воздуха за пароперегревателем служит изменение количества воздуха, подаваемого в топку с помощью дутьевых вентиляторов (Dв). Существует несколько вариантов схем автоматического управления подачи воздуха в зависимости от способов косвенной оценки экономичности процесса горения по соотношению различных сигналов.

Регулирование экономичности по соотношению топливо-воздух происходит следующим образом.

При постоянном качестве топлива его расход и количество воздуха, необходимое для обеспечения требуемой полноты сгорания, связаны прямой пропорциональной зависимостью, устанавливаемой в результате режимных испытаний. При газообразном топливе требуемое соотношение между количеством газа и воздуха осуществляется наиболее просто. Однако непрерывное измерение расхода пылевидного твердого топливо является трудной проблема. Поэтому применение схема топливо-воздух оправдано жидкого или газообразного топлива постоянного состава (рисунок 2.6, а).

Регулирование экономичности по соотношению пар-воздух описано ниже.

На единицу расхода различного по составу топлива (газа) необходимо различное количество воздуха. На единицу теплоты, выделяющейся при сгорании любого вида топлива, требуется одно и то же количество воздуха. Поэтому, если оценивать тепловыделение в топке по расходу пара и изменять расход пара, то тем самым можно поддерживать оптимальный избыток воздуха (рисунок 2.6, б).

Регулирование экономичности по соотношению теплота-воздух осуществляется следующим образом.

Если тепловыделение в топке Q" т оценивать по расходу перегретого пара и скорости изменения давления пара в барабане, то инерционность этого суммарного сигнала при топочных возмущениях будет существенно меньше инерционности одного сигнала по расходу пара D пп. Соответствующее заданному тепловыделению количество воздуха измеряется по перепаду давлений на воздухоподогревателе или по давлению воздуха в напорном патрубке вентилятора. Разность этих сигналов используется в качестве входного сигнала регулятора экономичности (рисунок 2.6, в). Регулирование экономичности по соотношению задание-воздух (нагрузка-воздух) с коррекцией О 2 осуществляется следующим образом.

Однако реализация этого способа затруднена из-за отсутствия надежности и быстродействующих газоанализаторов кислорода. В схемах задание-воздух c дополнительной коррекцией по О 2 в целом совмещаются принципом регулирования по возмущению и отклонению (рисунок 2.6, г). Регулятор подачи воздуха 1 изменяет его расход по сигналу от главного или корректирующего регулятора давления 5, являющего автоматическим датчиком регуляторов по нагрузке котла.

Рисунок 2.6 - Регулирование подачи воздуха по соотношению: 1 - регулятор подачи воздуха, 2 - регулирующий орган, 3 -дифференциатор, 4 - корректирующий регулятор воздуха, 5 - корректирующий регулятор давления перегретого пара (регулятор задания по нагрузке); а - топливо-воздух, б - пар-воздух, в - теплота-воздух, г - нагрузка-воздух с коррекцией по O 2

Сигнал, пропорциональный расходу воздуха ДP вп, действует, как и в других схемах: во-первых, устраняет возмущение по расходу воздуха, не связанные с регулированием экономичности; во-вторых, способствует стабилизации самого процесса регулирования подачи воздуха, т.к. служит одновременно сигналом жесткий отрицательной обратной связи. Дополнительный сигнал по содержания О 2 повышает точность поддержания оптимального избытка воздуха.

Подобные документы

    Способы и схемы автоматического регулирования тепловой нагрузки и давления пара в котле. Выбор вида сжигаемого топлива; определение режима работы котла. Разработка функциональной схемы подсоединения паропровода перегретого пара к потребителю (турбине).

    практическая работа , добавлен 07.02.2014

    Построение процесса расширения пара в h-s диаграмме. Расчет установки сетевых подогревателей. Процесс расширения пара в приводной турбине питательного насоса. Определение расходов пара на турбину. Расчет тепловой экономичности ТЭС и выбор трубопроводов.

    курсовая работа , добавлен 10.06.2010

    Анализ существующих систем автоматизации процесса регулирования давления пара в барабане котла. Описание технологического процесса котлоагрегата БКЗ-7539. Параметрический синтез системы автоматического регулирования. Приборы для регулирования параметров.

    дипломная работа , добавлен 03.12.2012

    Сущность технологического процесса, осуществляемого в котельной установке. Описание работы схемы автоматизации. Устройство и работа составных частей. Исполнительный механизм МЭО-40. Расчет и выбор регуляторов. Выбор приборов и исполнительных устройств.

    курсовая работа , добавлен 02.04.2014

    Расчет тепловой схемы конденсационной электростанции высокого давления с промежуточным перегревом пара. Основные показатели тепловой экономичности при её общей мощности 35 МВт и мощности турбин типа К-300–240. Построение процесса расширения пара.

    курсовая работа , добавлен 24.02.2013

    Общая характеристика парогазовых установок (ПГУ). Выбор схемы ПГУ и ее описание. Термодинамический расчет цикла газотурбинной установки. Расчет цикла ПГУ. Расход натурального топлива и пара. Тепловой баланс котла-утилизатора. Процесс перегрева пара.

    курсовая работа , добавлен 24.03.2013

    Выбор и обоснование принципиальной тепловой схемы блока. Составление баланса основных потоков пара и воды. Основные характеристики турбины. Построение процесса расширения пара в турбине на hs- диаграмме. Расчет поверхностей нагрева котла-утилизатора.

    курсовая работа , добавлен 25.12.2012

    Расчет горения топлива. Тепловой баланс котла. Расчет теплообмена в топке. Расчет теплообмена в воздухоподогревателе. Определение температур уходящих газов. Расход пара, воздуха и дымовых газов. Оценка показателей экономичности и надежности котла.

    курсовая работа , добавлен 10.01.2013

    Техническая характеристика котлоагрегата ТП-38. Синтез системы управления. Разработка функциональной схемы автоматизации. Производстенная безопасность объекта. Расчет экономической эффективности модернизации системы управления котлоагрегатом ТП-38.

    дипломная работа , добавлен 30.09.2012

    Построение процесса расширения пара в турбине в H-S диаграмме. Определение параметров и расходов пара и воды на электростанции. Составление основных тепловых балансов для узлов и аппаратов тепловой схемы. Предварительная оценка расхода пара на турбину.

Экономическая эффективность- это результативность использования ресурсов. Она определяется путем сопоставления результатов и затрат расходованных на достижение этих результатов.

Для определения эффективности производства на уровне предприятий принимается система показателей, включающая обобщение и дифференцированные показатели.

К дифференцированным показателям относят показатели, применяемые для анализа эффективного использования отдельных видов ресурсов.

Обобщающие показатели характеризуют экономическую эффективность использования совокупности ресурсов.

Фондоотдача характеризует уровень использования основных производственных фондов участка. Основные производственные фонды включают балансовую стоимость всех видов групп производственных фондов. Расчет фондоотдачи производится по формуле:

Где - средний тариф за 1ГДж теплоты, руб.

Средний тариф за 1ГДж отпущенной теплоты на 28% превышает себестоимость 1ГДЖ отпущенной теплоты и определяется по формуле:

Фондоемкость показывает количество основных фондов, вложенных в получение 1руб. продукции.

Фондовооруженность определяется по формуле, тыс.руб./чел

Производительность труда оценивается по коэффициенту обслуживания и определяется по формуле, МВт/чел

Где Ч-численность эксплуатационного персонала, чел.

Среднемесячная заработная плата работников определяется по формуле:

Среднемесячная заработная плата рабочих определяется по формуле:

Где -численность рабочих (основных и вспомогательных). чел.

Прибыль полученная от годового отпуска теплоты котельной определяется по формуле:

Не вся прибыль полученная предприятием остается в его распоряжении. Предприятию необходимо произвести уплату налога на недвижимость и налога на прибыль, если есть штрафные санкции. Оставшаяся часть прибыли поступает в распоряжение предприятия.

Где - сумма налога на прибыль, руб.

Где - ставка налога на прибыль, по действующему законодательству, %.

Рентабельность- относительная величина, выраженная в процентах и характеризующая эффективность применения в производстве ресурсов овеществленного труда или текущих издержек производства.

Определяют следующие показатели рентабельности: уровень рентабельности отпущенной теплоты, уровень рентабельности собственного капитала, уровень рентабельности капиталовложений.

Уровень рентабельности отпущенной теплоты определяется по формуле,

Уровень рентабельности собственного капитала определяется по формуле,

Все полученные результаты по разделам 1 и 2 сводим в таблицу 6.

Таблица 6- Основные технико-экономические показатели котельной

Наименование

Обоснование

Показатели

Установленная мощность котельной, МВт

Годовая выработка теплоты, ГДж/год

Годовой отпуск теплоты, ГДж/год

Число часов использования установленной мощности, ч/год

Удельный расход топлива на 1 отпущенный ГДж теплоты:

  • - условного, тут/ГДж
  • - натурального, тнт/ГДж
  • 0,038
  • 0,058

Годовой расход топлива в котельной:

  • - условного, тут/год
  • - натурального, тнт/год
  • 11209,8
  • 17106,6

Удельный расход электрической мощности на собственные нужды, кВт/МВт

Установленная мощность токоприемников, кВт

Удельный расход воды, т/ГДж

Годовой расход воды, т/год

Амортизационные отчисления, тыс. руб.

Численность персонала, чел

Фонд оплаты труда работникам, тыс. руб.

Среднемесячная заработная плата, тыс. руб./мес.:

  • - работников
  • - рабочих

Годовые эксплуатационные расходы, тыс. руб./год

Себестоимость 1ГДж отпускаемой теплоты, руб./ГДж

Фондоотдача

Фондоемкость

Фондовооруженность, тыс. руб./чел.

Прибыль, тыс. руб.

Чистая прибыль, тыс. руб.

Рентабельность отпущенной теплоты, %

Рентабельность собственного капитала, %

Новое на сайте

>

Самое популярное