Домой Ягоды Газовые турбины и газотурбинные установки. Гту в составе судовой энергетической установки

Газовые турбины и газотурбинные установки. Гту в составе судовой энергетической установки

Газотурбинные установки (ГТУ) представляют собой единый, относительно компактный в котором спаренно работают силовая турбина и генератор. Система получила широкое распространение в так называемой малой энергетике. Отлично подходит для электро- и теплоснабжения крупных предприятий, отдаленных населенных пунктов и прочих потребителей. Как правило, ГТУ работают на жидком топливе либо газе.

На острие прогресса

В наращивании энергетических мощностей электростанций главенствующая роль переходит к газотурбинным установкам и их дальнейшей эволюции - парогазовым установкам (ПГУ). Так, на электростанциях США с начала 1990-х более 60 % вводимых и модернизируемых мощностей уже составляют ГТУ и ПГУ, а в некоторых странах в отдельные годы их доля достигала 90 %.

В большом количестве строятся также простые ГТУ. Газотурбинная установка - мобильная, экономичная в эксплуатации и легкая в ремонте - оказалась оптимальным решением для покрытия пиковых нагрузок. На рубеже веков (1999-2000 годы) суммарная мощность газотурбинных установок достигла 120 000 МВт. Для сравнения: в 80-е годы суммарная мощность систем этого типа составляла 8000-10 000 МВт. Значительная часть ГТУ (более 60 %) предназначались для работы в составе крупных бинарных парогазовых установок со средней мощностью порядка 350 МВт.

Историческая справка

Теоретические основы применения парогазовых технологий были достаточно подробно изучены у нас в стране еще в начале 60-х годов. Уже в ту пору стало ясно: генеральный путь развития теплоэнергетики связан именно с парогазовыми технологиями. Однако для их успешной реализации были необходимы надежные и высокоэффективные газотурбинные установки.

Именно существенный прогресс газотурбостроения определил современный качественный скачок теплоэнергетики. Ряд зарубежных фирм успешно решили задачи создания эффективных стационарных ГТУ в ту пору, когда отечественные головные ведущие организации в условиях командной экономики занимались продвижением наименее перспективных паротурбинных технологий (ПТУ).

Если в 60-х годах газотурбинных установок находился на уровне 24-32 %, то в конце 80-х лучшие стационарные энергетические газотурбинные установки уже имели КПД (при автономном использовании) 36-37 %. Это позволяло на их основе создавать ПГУ, КПД которых достигал 50 %. К началу нового века данный показатель был равен 40 %, а в комплексе с парогазовыми - и вовсе 60 %.

Сравнение паротурбинных и парогазовых установок

В парогазовых установках, базирующихся на ГТУ, ближайшей и реальной перспективой стало получение КПД 65 % и более. В то же время для паротурбинных установок (развиваемых в СССР), только в случае успешного решения ряда сложных научных проблем, связанных с генерацией и использованием пара сверхкритических параметров, можно надеяться на КПД не более 46-49 %. Таким образом, по экономичности паротурбинные системы безнадежно проигрывают парогазовым.

Существенно уступают паротурбинные электростанции также по стоимости и срокам строительства. В 2005 году на мировом энергетическом рынке цена 1 кВт на ПГУ мощностью 200 МВт и более составляла 500-600 $/кВт. Для ПГУ меньших мощностей стоимость была в пределах 600-900 $/кВт. Мощные газотурбинные установки соответствуют значениям 200-250 $/кВт. С уменьшением единичной мощности их цена растет, но не превышает обычно 500 $/кВт. Эти значения в разы меньше стоимости киловатта электроэнергии паротурбинных систем. Например, цена установленного киловатта у конденсационных паротурбинных электростанций колеблется в пределах 2000-3000 $/кВт.

Установка включает три базовых узла: камеру сгорания и воздушный компрессор. Причем все агрегаты размещаются в сборном едином корпусе. Роторы компрессора и турбины соединяются друг с другом жестко, опираясь на подшипники.

Вокруг компрессора размещаются камеры сгорания (например, 14 шт.), каждая в своем отдельном корпусе. Для поступления в компрессор воздуха служит входной патрубок, из газовой турбины воздух уходит через выхлопной патрубок. Базируется корпус ГТУ на мощных опорах, размещенных симметрично на единой раме.

Принцип работы

В большинстве установок ГТУ используется принцип непрерывного горения, или открытого цикла:

  • Вначале рабочее тело (воздух) закачивается при атмосферном давлении соответствующим компрессором.
  • Далее воздух сжимается до большего давления и направляется в камеру сгорания.
  • В нее подается топливо, которое сгорает при постоянном давлении, обеспечивая постоянный подвод тепла. Благодаря сгоранию топлива температура рабочего тела увеличивается.
  • Далее рабочее тело (теперь это уже газ, представляющей собой смесь воздуха и продуктов сгорания) поступает в газовую турбину, где, расширяясь до атмосферного давления, совершает полезную работу (крутит турбину, вырабатывающую электроэнергию).
  • После турбины газы сбрасываются в атмосферу, через которую рабочий цикл и замыкается.
  • Разность работы турбины и компрессора воспринимается электрогенератором, расположенным на общем валу с турбиной и компрессором.

Установки прерывистого горения

В отличие от предыдущей конструктивной схемы, в установках прерывистого горения применяются два клапана вместо одного.

  • Компрессор нагнетает воздух в камеру сгорания через первый клапан при закрытом втором клапане.
  • Когда давление в камере сгорания поднимается, первый клапан закрывают. В результате объем камеры оказывается замкнутым.
  • При закрытых клапанах в камере сжигают топливо, естественно, его сгорание происходит при постоянном объеме. В результате давление рабочего тела дополнительно увеличивается.
  • Далее открывают второй клапан, и рабочее тело поступает в газовую турбину. При этом давление перед турбиной будет постепенно снижаться. Когда оно приблизится к атмосферному, второй клапан следует закрыть, а первый открыть и повторить последовательность действий.

Переходя к практической реализации того или иного термодинамического цикла, конструкторам приходится сталкиваться с множеством непреодолимых технических препятствий. Наиболее характерный пример: при влажности пара более 8-12 % потери в проточной части резко возрастают, растут динамические нагрузки, возникает эрозия. Это в конечном счете приводит к разрушению проточной части турбины.

В результате указанных ограничений в энергетике (для получения работы) широкое применение пока находят только два базовых термодинамических Ренкина и цикл Брайтона. Большинство энергетических установок строится на сочетании элементов указанных циклов.

Цикл Ренкина применяют для рабочих тел, которые в процессе реализации цикла совершают фазовый переход, по такому циклу работают паросиловые установки. Для рабочих тел, которые не могут быть сконденсированы в реальных условиях и которые мы называем газами, применяют цикл Брайтона. По этому циклу работают газотурбинные установки и двигатели ДВС.

Используемое топливо

Подавляющее большинство ГТУ рассчитаны на работу на природном газе. Иногда жидкое топливо используется в системах малой мощности (реже - средней, очень редко - большой мощности). Новым трендом становится переход компактных газотурбинных систем на применение твердых горючих материалов (уголь, реже торф и древесина). Указанные тенденции связаны с тем, что газ является ценным технологическим сырьем для химической промышленности, где его использование часто более рентабельно, чем в энергетике. Производство газотурбинных установок, способных эффективно работать на твердом топливе, активно набирает обороты.

Отличие ДВС от ГТУ

Принципиальное отличие и газотурбинных комплексов сводится к следующему. В ДВС процессы сжатия воздуха, сгорания топлива и расширения продуктов сгорания происходят в пределах одного конструктивного элемента, именуемого цилиндром двигателя. В ГТУ указанные процессы разнесены по отдельным конструктивным узлам:

  • сжатие осуществляется в компрессоре;
  • сгорание топлива, соответственно, в специальной камере;
  • расширение осуществляется в газовой турбине.

В результате конструктивно газотурбинные установки и ДВС мало похожи, хотя работают по схожим термодинамическим циклам.

Вывод

С развитием малой энергетики, повышением ее КПД системы ГТУ и ПТУ занимают все большую долю в общей энергосистеме мира. Соответственно, все более востребована машинист газотурбинных установок. Вслед за западными партнерами ряд российских производителей освоили выпуск экономически эффективных установок газотурбинного типа. Первой парогазовой электростанцией нового поколения в РФ стала Северо-Западная ТЭЦ в Санкт-Петербурге.

Современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом. Турбина, в которой газ расширяется до атмосферного давления, преобразует потенциальную энергию сжатого и нагретого до высокой температуры газа в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой электромагнит, питание которого осуществляется от возбудителя.

В отличие от паротурбинных установок (ПТУ), где рабочим телом является пар, ГТУ работают на продуктах сгорания топлива. Кроме того, в отличие от ГТУ в состав ПТУ не входит котел, точнее котел рассматривается как отдельный источник тепла. Паротурбинная установка без котла как физического объекта работать не может. В ГТУ же наоборот камера сгорания является ее неотъемлемой частью. В этом смысле ГТУ самодостаточна. По способу подвода теплоты при постоянном давлении p = const и при постоянном объеме v = const . Все современные ГТУ работают с подводом теплоты при p = const . Существуют открытые (разомкнутые) и закрытые (замкнутые) схемы ГТУ

Простейшая схема открытой ГТУ в условных обозначениях, а также ее термодинамический цикл представлены на рисунке 1. Воздух из атмосферы поступает на вход воздушного компрессора (точка 1 ), который представляет собой роторную турбомашину с проточной частью, состоящей из вращающихся и неподвижных решеток. Отношение давления за компрессором к давлению перед нимназывается степенью сжатия воздушного компрессора и обычно обозначается как. Ротор компрессора приводится газовой турбиной. Поток сжатого воздуха подается в одну, две или более камер сгорания (точка2 ). При этом в большинстве случаев поток воздуха, идущий из компрессора, разделяется на два потока. Первый поток направляется к горелочным устройствам, куда также подводится топливо (газ или жидкое топливо), за счет сжигания которого при постоянном давлении p = const образуются продукты сгорания высокой температуры. К ним подмешивается относительно холодный воздух второго потока с тем, чтобы получить газы (их называют рабочими газами) с допустимой для деталей газовой турбины температурой.

Рисунок 1 – Простейшая схема открытой ГТУ и ее термодинамический цикл

Рабочие газы с давлением из–за гидравлического сопротивления камеры сгорания) подаются в проточную часть газовой турбины (точка3 ), где расширяются практически до атмосферного давления (точка4 ). Далее они поступают в выходной диффузор, откуда – или сразу в дымовую трубу, что вызовет значительные потери теплоты, или предварительно в какой–либо теплообменник, использующий теплоту уходящих газов ГТУ.

В замкнутой схеме (рис.2) вместо камеры сгорания применяют поверхностные подогреватели рабочего тела, а отработавший в турбине газ (например, гелий) охлаждается в специальных охладителях до наиболее низкой температуры, после чего поступает в компрессор. Термодинамический цикл данной схемы аналогичен циклу открытой ГТУ.

Вследствие расширения газов в газовой турбине, последняя вырабатывает мощность. Значительная ее часть тратится на привод компрессора, а оставшаяся часть – на привод электрогенератора. Эту часть называют полезной мощностью ГТУ и указывают при ее маркировке.

В реальных ГТУ все протекающие процессы сопровождаются потерями работы в компрессоре и турбине, а также потерями давления по тракту ГТУ. С учетом этих потерь реальный цикл отличается от идеального. В состав реальной ГТУ входят камера сгорания (подогреватель рабочего тела в закрытой схеме), газовая турбина, компрессор, пусковой двигатель, теплообменники различного назначения (регенеративные подогреватели, промежуточные подогреватели в турбинах) и различное вспомогательное оборудование, а также электрогенератор, если назначением ГТУ является производство электрической энергии. Турбина, компрессор и генератор размещаются на одном валу. Пусковой двигатель присоединяется расцепной муфтой. В простейших ГТУ приблизительно 70 % мощности, развиваемой турбиной, расходуется на привод компрессора, а 30 % на привод генератора. Степень повышения давления в компрессоре =6…7, КПД установки 24…27 %, температура перед турбиной 750…800 °С. Диапазон начальных температур перед газовой турбиной в ГТУ составляет 750…1150 °С, поэтому исходя из условий прочности, элементы установки, работающие при высоких температурах, выполняют из высоколегированных сталей, а для повышенной надежности предусматривают их воздушное охлаждение.

Рисунок 2 – Простейшая схема замкнутой ГТУ

Отработавшие газы турбины имеют высокую температуру, поэтому их удаление в окружающую среду в открытой схеме ГТУ приводит к значительным потерям энергии. В целях повышения КПД установки применяют регенеративный подогрев сжатого воздуха уходящими газами турбины. Это увеличивает степень использования теплоты сожженного в камере сгорания топлива и энергетическую эффективность установки.

В идеальной ГТУ с регенерацией, схема и цикл которой показаны на рисунке 3, выхлопные газы турбины можно охладить до температуры, равной температуре воздуха за компрессором, т.е. до , а сжатый компрессором воздух можно нагреть до температуры, соответствующей температуре на выхлопе турбины, т.е. до. В реальной установке воздух в регенеративном теплообменнике нагреется до температуры, которая ниже, а выхлопные газы охладятся в этом же теплообменнике до температуры, которая вышена величину, обычно равную в открытых схемах 60…80 °С. Реальные ГТУ, работающие по разомкнутой схеме при начальной температуре 750…850 °С, имеют степень регенерации, а эффективный КПД 26,5…30 %.

Рисунок 3 – Схема и цикл ГТУ с регенерацией

ГТУ, обеспечивающие комбинированную выработку электрической и тепловой энергии, называются теплофикационными. Выработка тепловой энергии осуществляется за счет использования теплоты газов, уходящих из турбины с высокой температурой, для нагрева воды и получения пара. Нагрев воды, идущей на отопление и бытовые нужды, отработавшими газами турбины является наиболее простым способом повышения тепловой экономичности ГТУ.

В ГТУ применяется газообразное и легкое жидкое топливо. При использовании жидкого топлива тяжелых сортов, содержащего вредные примеси, нужна специальная система топливоподготовки для предотвращения коррозии деталей турбины под воздействием содержащихся в тяжелом топливе соединений серы и ванадия. Проблема использования твердого топлива в ГТУ находится в стадии интенсивной опытно-промышленной разработки.

Технология пуска турбины в большой степени зависит от температурного состояния оборудования перед ним. Различают пуски из холодного, неостывшего и горячего состояний. Если температура турбины не превышает 150 °С, то считают, что пуск произведен из холодного состояния. Для мощных энергоблоков для остывания до такой температуры требуется до 90 часов. Пускам из горячего состояния соответствует температура турбины 420-450 °С и выше (достигается за 6-10 часов). Неостывшее состояние является промежуточным. Всякое удлинение пуска приводит к дополнительным затратам топлива. Поэтому пуск должен производиться быстро, однако не в ущерб надежности. Пуск турбины запрещается:

при неисправности основных приборов, показывающих протекание теплового процесса в турбине и ее механическое состояние (тахометры, термометры, манометры и т.п.);

при неисправной системе смазки, обеспечивающей смазку подшипников;

при неисправности систем защиты и регулирования;

при неисправном валоповоротном устройстве.

Для запуска в работу ГТУ необходимо пусковым устройством (ПУ) привести во вращение ротор турбокомпрессора, воздух от компрессора одновременно с топливом подать в камеру сгорания для ее зажигания и для выполнения дальнейших операций по пуску ГТУ. В качестве пускового устройства могут быть использованы различные средства: электродвигатель, паровая или газовая (воздушная) турбина, двигатель внутреннего сгорания. Для крупных энергетических турбин, как правило, в качестве ПУ используется собственный электрический генератор ГТУ, разворачивающий ротор ГТУ до частоты вращения равной 0,2 – 0,3 номинальной. В период пуска регулирующие направляющие аппараты компрессора должны быть прикрыты для снижения расхода воздуха. В начале пуска открыты антипомпажные клапаны. Топливо подается в камеру сгорания, и образующаяся в смесительном устройстве камеры сгорания топливовоздушная смесь зажигается при помощи запального устройства (плазменного зажигателя). Расход топлива увеличивается путем открытия топливного клапана. Это вызывает рост температуры газов перед турбиной, мощность турбины и частота вращения ротора. При определенной температуре газа перед турбиной и некоторой частоте вращения устанавливается равенство мощности газовой турбины и мощности, потребляемой воздушным компрессором. В этом состоянии после небольшого дополнительного увеличения расхода топлива пусковое устройство отключается, и ГТУ переходит в режим самоходности. При дальнейшем увеличении расхода топлива турбоагрегат разворачивается газовой турбиной до достижения номинальной частоты вращения, затем производится синхронизация электрического генератора с сетью и включение его в сеть. Таким образом агрегат выводится в режим холостого хода. В процессе пуска антипомпажные клапаны закрываются, а регулируемые направляющие аппараты устанавливаются в положения, предписываемые программой запуска.

В процессе нагружения ГТУ до номинальной мощности увеличивается расход топлива открытием регулирующего клапана, изменяются углы установки регулируемых направляющих аппаратов компрессора по соответствующей программе, расход воздуха увеличивается до номинального значения. Эксплуатация ГТУ в общем случае состоит из пуска, работы с электрической и тепловой нагрузкой и остановки. Наиболее простой является работа при постоянной нагрузке. Основной задачей персонала, обслуживающего турбоустановку, при нормальной работе является обеспечение заданной электрической и тепловой мощности при полной гарантии надежной работы и максимально возможной экономии.

Режимы работы ГТУ можно поделить на стационарные и переменные.

Стационарный режим отвечает работе турбины при некоторой фиксированной нагрузке. Он может протекать как при номинальной, так и при частичной нагрузке. До недавнего времени этот режим был основным для ГТУ. Турбина останавливалась несколько раз в год из-за неполадок или плановых ремонтов.

Переменные режимы ГТУ определяются следующими по отношению к ГТУ причинами. Первая причина – необходимость изменить мощность, вырабатываемую ГТУ, если изменилась мощность, потребляемая, например, электрическим генератором, из-за изменения подключенной к генератору электрической нагрузки потребителей. Если ГТУ приводит электрический генератор, включенный параллельно с другими производителями мощности, т.е. работающий на общую сеть (энергосистему), то необходимо изменить мощность данной ГТУ в случае изменения общей потребляемой мощности в системе. Вторая причина – изменение атмосферных условий: давления и особенно температуры атмосферного воздуха, забираемого компрессором. Наиболее сложным нестационарным режимом является пуск ГТУ, включающий многочисленные операции перед толчком ротора. К нестационарным режимам относят резкие изменения нагрузки (сброс или наброс), а также остановку турбины (разгружение, отключение от сети, выбег ротора на остывание).

Таким образом, для ГТУ основной задачей управления является обеспечение необходимой мощности, а для энергетических ГТУ – постоянство частоты вращения приводимого электрического генератора. Переменные режимы работы ГТУ следует осуществлять таким образом, чтобы экономичность при каждом режиме была максимально высокой. Регулирование режима ГТУ производится воздействием на регулирующие топливные клапаны, подающие топливо непосредственно в камеру сгорания, что обусловливает низкую инерционность процесса подвода теплоты к рабочему телу в камере сгорания. ГТУ чувствительны к изменению атмосферных условий. Для них имеется опасность возникновения помпажа компрессора. Для пуска ГТУ необходимо, чтобы на всех возможных режимах работы помпаж был исключен. Для пуска ГТУ необходима предварительная раскрутка ротора при помощи пускового устройства.

В современных крупных ГТУ используются автоматизированные системы управления, выполняющие следующие функции:

– автоматическое дистанционное управление пуском, нагружением и остановкой ГТУ;

– регулирование таких параметров, как частота вращения турбоагрегата с заданной степенью неравномерности, температуры газа перед турбиной и за ней, активная нагрузка электрического генератора, режим работы компрессора на необходимом удалении от границы помпажа;

– защита ГТУ, а именно отключение и остановку при аварийных ситуациях, из которых наиболее серьезными являются такие, как недопустимое повышение температур газа перед газовой турбиной и за ней, недопустимое повышение температур газа перед газовой турбиной и за ней, недопустимое повышение температур газа перед газовой турбиной и за ней, недопустимое повышение частоты ротора, недопустимое падение давления масла для смазки подшипников, недопустимый осевой сдвиг ротора, погасание факела в камере сгорания, приближение к границе помпажа компрессора, недопустимое повышение виброскорости шеек ротора и корпусов подшипников.

Событие, заключающееся в нарушении работоспособности ГТУ, называется отказом. Для поддержания высокой надежности и безотказности оборудование проходит техническое обслуживание, текущий, средний или капитальный ремонты. При текущем и среднем ремонтах заменяются или восстанавливаются поврежденные детали и узлы, а при капитальном проводится полное восстановление работоспособности. При нормальной эксплуатации ГТУ необходимы тщательный уход и регулярные проверки систем защиты и регулирования, осуществляемые вахтенным персоналом и инженером, отвечающим за работу этой системы. Надежность ее эксплуатации зависит от тщательности осмотра доступных узлов систем регулирования и защиты, сравнения текущих показателей приборов с предшествующими, выполнения всех проверок и операций, предусмотренных инструкциями, составленными с учетом требований заводов-изготовителей турбин правил техники эксплуатации (ПТЭ) и методических указаний по проверке и испытаниям. Особое внимание при осмотре должно уделяться потенциальным источникам утечек масла. Необходимо следить за положением гаек, стопорных деталей и другого крепежа на штоках, золотниках, поскольку эти детали работают в условиях вибраций, вызывающих их отвинчивание и нарушение работы. Необходимо следить за механическим состоянием всех доступных узлов: кулачковых механизмов, их валов, подшипников, пружин и т.д. Особое внимание следует обращать на колебания регулирующих органов, которые могут вызвать обрыв приводных штоков вследствие усталости. Необходимо следить за изменениями давлений и пульсациями в основных маслопроводах систем регулирования и защиты: линии подачи масла на смазку, в импульсных линиях, линиях защиты и полостях сервомоторов. Изменение этих давлений свидетельствует о ненормальностях системах регулирования, маслоснабжения: о неплотности клапанов, уплотнений поршней и штоков сервомоторов, засорении регулировочных шайб. Пульсации золотников вызываются ненормальной работой импеллера, загрязнением маслопроводов, попаданием твердых частиц между золотниками и буксами, повышенным содержанием воздуха в масле и другими причинами.

Первейшее внимание обслуживающего персонала должно быть уделено исключению возможности разгона турбины при отключениях электрического генератора от сети, что обеспечивается достаточной плотностью стопорных и регулирующих клапанов и обратных клапанов на трубопроводах. Проверка производится при остановке турбины не реже одного раза в год, а также в обязательном порядке при пуске после монтажа. Для нормальной работы турбины должен правильно функционировать масляный бак, обеспечивая длительную сохранность масла, отделение от него воздуха, шлама и твердых частиц. Уровень масла в баке должен проверяться 1 раз в смену. Одновременно необходимо следить за исправностью сигнализации о минимально допустимом уровне и разностью уровней в грязном и чистом отсеках масляного бака. Должны подвергаться регулярной проверке резервные и аварийные масляные насосы и устройства их автоматического включения с частотой 2 раза в месяц. Качество работы маслоохладителей проверяется по разности давлений на входе и выходе масла и охлаждающей воды и по нагреву охлаждающей воды и охлаждению масла. Химическая лаборатория электростанции должна регулярно проводить анализ эксплуатируемого масла, чтобы вовремя проводить его регенерацию и замену.

При наблюдении за работающей турбиной необходимо обращать внимание прежде всего на относительное удлинение ротора и его осевой сдвиг. При монтаже и ремонтах турбины ротор в корпусе устанавливают так, чтобы в рабочих условиях, когда эти детали прогреются, между ними были достаточно малые, но исключающие задевания зазоры, иначе может возникнуть тяжелая авария.

Разгружение турбины ведут путем постепенного закрытия регулирующих клапанов (с помощью механизма управления). Особенно внимательно нужно следить за относительным сокращением ротора, и если, не смотря на все принимаемые меры, сокращение приближается к опасному пределу, необходимо прекратить разгружение, а возможно, даже увеличить нагрузку. Снижение нагрузки обычно ведут до 15-20 % номинальной, после чего прекращают подачу газа в турбину. С этого момента она вращается генератором с частотой электрической сети. В короткое время, указанное в инструкции (обычно несколько минут), необходимо убедиться, что стопорные, регулирующие клапаны на линиях отборов закрылись, а ваттметр показывает отрицательную мощность (потребление мощности из сети).После этого можно отключить генератор из сети. После остановки ротора турбины необходимо во избежание его теплового прогиба немедленно включить валоповоротное устройство. Не допускается отключение подачи масла. В течение первых 8 часов ротор вращается непрерывно, а в дальнейшем его периодически поворачивают на 180°. Аварийная остановка турбоагрегата производится путем немедленного прекращения подачи рабочего тела.

За остановленной турбиной необходим тщательный уход. Наибольшую опасность при простое для турбины и некоторых других элементов турбоустановки представляет стояночная коррозия, основной причиной которой является одновременное присутствие влаги и воздуха. Чтобы этого не происходило, необходимо открыть вентили, обеспечивающие сообщение деталей с атмосферой. При остановке турбины в длительный резерв принимаются дополнительные меры. Она отключается от всех трубопроводов заглушками. Вал турбины дополнительно уплотняется шнуром, через подшипники не реже раза в неделю прокачивается масло для создания защитного слоя масла на шейках подшипников, а ротор поворачивается валоповоротным устройством на несколько оборотов. Наиболее эффективным способом борьбы со стояночной коррозией является консервация турбины.

Сборка ГТУ производится на турбинном заводе после изготовления в его цехах отдельных деталей и узлов. В отличие от паровой турбины, после сборки на заводе ГТУ испытаний не проходит. В результате с турбинного завода на монтажную площадку ТЭС уходит несколько отдельно транспортируемых единиц: турбогруппа (компрессор и турбина), две камеры сгорания, маслобак с установленным на нем оборудованием, входной патрубок компрессора, выходной диффузор. Все части закрыты заглушками. В отличие от паровой турбины, ГТУ размещают на ТЭС не на рамном фундаменте, а непосредственно на бетонном основании, установленном на нулевой отметке машзала. Входную шахту компрессора посредством воздушного короба соединяют с КВОУ, где происходит тщательная фильтрация воздуха, исключающая износ проточной части компрессора, забивание охлаждающих каналов в рабочих лопатках и другие неприятности. КВОУ размещают на крыше здания, экономя площадь здания. К выходному концу вала компрессора присоединяется ротор электрогенератора, а к выходному диффузору ГТУ – переходный диффузор, напрвляющий газы в котел-утилизатор.

ГТУ является универсальным двигателем, имеющим различное назначение. Наибольшее распространение они получили в авиации и дальнем газоснабжении. В стационарной энергетике на тепловых электрических станциях применяются ГТУ различного назначения. ГТУ пикового назначения работают в периоды максимума потребления электрической энергии. Резервные ГТУ обеспечивают собственные нужды ТЭС в период, когда основное оборудование не эксплуатируется. К отраслям промышленности, где применение газовых турбин создает большие преимущества, относится доменное производство, где ГТУ являясь приводом воздуходувки, подающей воздух в доменную печь, использует в качестве рабочего тела доменный газ, являющийся побочным продуктом доменной печи. На железнодорожном транспорте газотурбинные локомотивы (газотурбовозы) получили некоторое применение на линиях большой протяженности. Ряд ГТУ эксплуатируется в торговом и военно-морском флоте в основном на легких и сторожевых быстроходных судах, где особое значение имеет компактность и малая масса двигателя.. Находится в стадии исследования экспериментальных образцов газотурбинный автомобиль. Лучшие экспериментальные двигатели по экономичности достигли уровня современных бензиновых автомобильных двигателей при меньшей массе.

ГАЗОТУРБИННЫЕ УСТАНОВКИ (ГТУ)

Рабочий процесс ГТУ. В современ­ных ГТУ используется цикл со сгоранием при р = const (рис. 6.5).

В состав ГТУ обычно входят камера сгорания, газовая турбина, воздушный компрессор, теплообменные аппараты различного назначения (воздухоохлади­тели, маслоохладители системы смазки, регенеративные теплообменники) и вспо­могательные устройства (маслонасосы, элементы водоснабжения и др.).

Рабочим телом ГТУ служат продукты сгорания топлива, в качестве которого используется природный газ, хорошо очищенные искусственные газы (домен­ный, коксовый, генераторный) и специ­альное газотурбинное жидкое топливо (прошедшее обработку дизельное мотор­ное и соляровое масло).

Подготовка рабочей смеси произво­дится в камере сгорания. Огневой объем камеры (рис. 20.9) разделяется на зону горения, где происходит сгорание топли­ва при температуре порядка 2000 °С, и зону смешения, где к продуктам сгора­ния подмешивают воздух для снижения их температуры до 750-1090 °С в стаци­онарных турбинах и до 1400 °С - в авиационных турбинах.

Принцип работы газовой и паровой турбин одинаков, но конструкция про­точной части газовых турбин значительно проще. Они работают на относительно небольшом располагаемом теплоперепаде и поэтому имеют небольшое число ступеней.

В связи с высокой температурой про­дуктов сгорания детали проточной части турбин (сопла, рабочие лопатки, диски, валы) изготавливают из легированных высококачественных сталей. Для надеж­ной работы у большинства турбин пре­дусмотрено интенсивное охлаждение на­иболее нагруженных деталей корпуса и ротора.

В реальных условиях все процессы в ГТУ являются неравновесными, что связано с потерями работы в турбине и компрессоре, а также с аэродинамиче­скими сопротивлениями в тракте ГТУ. На рис. 20.10 действительный процесс сжатия в компрессоре изображен ли­нией 1-2, а процесс расширения в тур­бине - линией 3-4. Точками 2а и 4а от­мечено состояние рабочего тела соот­ветственно в конце равновесного адиа­батного сжатия и расширения, точ­кой О - параметры окружающей среды. Ввиду потерь давления во всасывающем тракте компрессора (линия 01) процесс сжатия начинается в точке1.

Таким образом, на сжатие воздуха в реальном цикле затрачивается боль­шая работа, а при расширении газа в турбине получается меньшая работа по сравнению с идеальным циклом. КПД цикла получается ниже. Чем больше сте­пень повышения давления π (т. е. выше р 2), тем больше сумма этих потерь по сравнению с полезной работой. При оп­ределенном значении π (оно тем выше, чем больше Т з и внутренний относитель­ный КПД турбины и компрессора, т. е. меньше потери в них) работа турби­ны может стать равной работе, затрачен­ной на привод компрессора, а полезная работа - нулю.

Поэтому наибольшая эффективность реального цикла, в отличие от идеально­го, достигается при определенной (опти­мальной) степени повышения давления, причем каждому значению Тз соответ­ствует свое π опт (рис. 20.11). КПД про­стейших ГТУ не превышает 14-18 %, и с целью его повышения ГТУ выпол­няют с несколькими ступенями подвода теплоты и промежуточным охлаждением сжимаемого воздуха, а также с регене­ративным подогревом сжатого воздуха отработавшими газами после турбины, приближая тем самым реальный цикл к циклу Карно.

ГТУ с утилизацией теплоты уходя­щих газов. Теплоту уходящих из ГТУ га­зов можно использовать для получения пара и горячей воды в обычных тепло­обменниках. Так, установки ГТ-25-700 ЛМЗ снабжены подогревателями, нагревающими воду в системе отопле­ния до 150-160 °С.

Вместе с тем сравнительно высокий уровень коэффициента избытка воздуха в ГТУ позволяет сжигать достаточно большое количество дополнительного топлива в среде продуктов сгорания. В результате из дополнительной камеры сгорания после ГТУ выходят газы с до­статочно высокой температурой, пригод­ные для получения пара энергетических параметров в специально устанавливае­мом для этой цели парогенераторе. На Кармановской ГРЭС по такой схеме строится котел к блоку электрической мощностью 500 МВт.

Применение ГТУ. В последние го­ды ГТУ широко используются в раз­личных областях: на транспорте, в энергетике, для привода стационар­ных установок и др.

Энергетические ГТУ. Га­зовая турбина меньше и легче паровой, поэтому при пуске она прогревается до рабочих температур значительно быстрее. Камера сгорания выводится на режим практически мгновенно, в отличие от парового котла, который требует мед­ленного длительного (многие часы и да­же десятки часов) прогрева во избежа­ние аварии из-за неравномерных тепло­вых удлинений, особенно массивного барабана диаметром до 1,5 м, длиной до 15 м, с толщиной стенки выше 100 мм.

Поэтому ГТУ применяют прежде все­го для покрытия пиковых нагрузок и в качестве аварийного резерва для собственных нужд крупных энергоси­стем, когда надо очень быстро включить агрегат в работу. Меньший КПД ГТУ по сравнению с ПСУ в этом случае роли не играет, так как установки работают в те­чение небольших отрезков времени. Для таких ГТУ характерны частые пуски (до 1000 в год) при относительно малом чис­ле часов использования (от 100 до 1500ч/год). Диапазон единичных мощ­ностей таких ГТУ составляет от 1 до 100 МВт.

ГТУ применяются также для привода электрогенератора и получения электро­энергии в передвижных установках (например, на морских судах). Такие ГТУ обычно работают в диапазоне нагрузок 30-110% номинальной, с частыми пусками и остановками. Единичные мощ­ности таких ГТУ составляют от десятков киловатт до 10МВт. Быстрое развитие атомных энергетических установок с ре­акторами, охлаждаемыми, например, ге­лием, открывает перспективу применения в них одноконтурных ГТУ, работающих по замкнутому циклу (рабочее тело не покидает установку).

Специфическую группу энергетиче­ских ГТУ составляют установки, работа­ющие в технологических схемах химиче­ских, нефтеперерабатывающих, метал­лургических и других комбинатов (энерготехнологические). Они работают в базовом режиме нагруз­ки и предназначены чаще всего для при­вода компрессора, обеспечивающего тех­нологический процесс сжатым воздухом или газом за счет энергии расширения газов, образующихся в результате само­го технологического процесса.

Приводные ГТУ широко ис­пользуются для привода центробежных нагнетателей природного газа на ком­прессорных станциях магистральных трубопроводов, а также насосов для транспортировки нефти и нефтепродук­тов и воздуходувок в парогазовых уста­новках. Полезная мощность таких ГТУ составляет от 2 до 30 МВт.



Транспортные ГТУ широко применяются в качестве главных и фор­сажных двигателей самолетов (турборе­активных и турбовинтовых) и судов мор­ского флота. Это связано с возможно­стью получения рекордных показателей по удельной мощности и габаритным размерам по сравнению с другими типа­ми двигателей, несмотря на несколько завышенные расходы топлива. Газовые турбины весьма перспективны как двига­тели локомотивов, где их незначительные габариты и отсутствие потребности в во­де являются особенно ценными. Транс­портные ГТУ работают в широком диа­пазоне нагрузок и пригодны для кратков­ременных форсировок.

Единичная мощность ГТУ пока не превышает 100МВт, а КПД установки 27-37 %. С повышение начальной температуры газов до 1200 °С мощность ГТУ будет доведена до 200 МВт и КПД установки до 38-40 %.

Газотурбинная установка представляет собой универсальное модульное устройство, которое объединяет в себе: электрогенератор, редуктор, газовую турбину и блок управления. Также, присутствует и дополнительное оборудование, такое как: компрессор, устройство запуска, аппарат теплового обмена.

Газотурбинная установка способна функционировать не только лишь в режиме вырабатывания электроэнергии, но и производить совместное производство электрической энергии с тепловой.

Опираясь на то, что пожелает клиент, производство газотурбинных установок способно исполняться с универсальной системой, когда выхлопные газы применяют для получения пара либо же горячей воды.

Схема газотурбинной установки

Данное оборудование имеет два главных блока: турбину силового типа и генератор. Они размещаются в одном блоке.

Схема газотурбинной установки очень проста: газ, образующийся после перегорания топлива, начинает способствовать вращению лопастей самой турбины.

Таким образом, образуется крутящий момент. Это приводит к образованию электрической энергии. Выходящие газы осуществляют превращение воды в пар в котле – утилизаторе. Газ в данном случае работает с двойной пользой.

Циклы газотурбинных установок

Данное оборудование может быть выполнено с разными циклами работы.

Замкнутый цикл газотурбинной установки подразумевает под собой следующее: газ через компрессор подается в калорифер (теплообменник), куда поступает тепло от внешних источников. Затем он подается в газовую турбину, где осуществляется его расширение. Давление газа при этом получается меньше.

После этого газы попадают в холодильную камеру. Тепло оттуда выводится во внешнюю среду. Потом газ направляется в компрессор. Затем цикл возобновляется заново. Сегодня в энергетике аналогичное оборудование почти не применяется.

Производство газотурбинных установок такого типа осуществляется в больших размерах. Также, имеются потери и низкое значение КПД, напрямую зависящее от температурных показателей самого газа до турбины.

Разомкнутый цикл газотурбинной установки используют намного чаще. В этом оборудовании компрессором осуществляет подача воздуха из окружающей среды, который при высоком давлении попадает в специально предназначенную камеру сгорания. Тут происходит сжигание топлива.

Температура органического топлива достигает отметки в 2000 градусов. Это может привести к повреждению металла самой камеры. Чтобы предотвратить это, в нее подается много воздуха, чем это нужно (примерно в 5 раз). Это существенно снижает температуру самого газа и защищает металл.

Схема газотурбинной установки с разомкнутым циклом

Схема газотурбинной установки с разомкнутым циклом выглядит следующим образом: топливо подается в газовую горелку (форсунки), располагаемой внутри жаропрочной трубы. Туда нагнетается и воздух, после чего осуществляется процесс сгорания топлива.

Таких труб несколько и располагаются они концентрически. Поступает воздух в имеющиеся между ними зазоры, создавая защитный барьер и препятствуя выгоранию.

Благодаря трубам и потоку воздуха камера находится в надежной защите от перегревания. При этом на выходе температура газов ниже, чем у самого топлива.

Металл может выдерживать 1000 – 1300°С. Именно такие показатели температуры газов камеры и присутствуют в современных газотурбинных аппаратах.

Отличия газотурбинных установок закрытого и открытого типа

Главное отличие газотурбинных установок закрытого типа от открытого основывается на том, что в первом случае нет камеры сгорания, а применяется нагреватель. Тут происходит нагрев воздуха, при этом, он не участвует в самом процессе образования тепла.

Такое оборудование выполняют исключительно с горением, при неизменной величине давления. Применяется тут органическое либо ядерное топливо.

В ядерных агрегатах используют не воздух, а гелий, углекислый газ либо же азот. К преимуществам такого оборудования можно отнести возможность применять тепло атомного распада, которое выделяется в атомных реакторах.

Благодаря большой концентрации «рабочего тела» стало возможно добиться высоких показаний коэффициента теплоотдачи внутри самого регенератора. Это способствует и повышению уровня регенерации при небольших размерах. Однако такое оборудование широкого применения пока не получило.

Энергетические газотурбинные установки

Энергетические газотурбинные установки еще называют «газотурбинными мини электростанциями». Применяют их в качестве постоянных, аварийных либо резервных источников снабжения городов и труднодоступных районов.

Энергетические газотурбинные установки используют во многих отраслях промышленности:

  • нефтеперерабатывающей;
  • газодобывающей;
  • металлообрабатывающей;
  • лесной и деревообрабатывающей;
  • металлургической;
  • сельского хозяйства;
  • утилизации отходов и т.д.

Виды топлива, использующие в газотурбинных установках?

Данное оборудование способно функционировать на разных видах топлива.

В газотурбинных установках используются следующие виды горючего:

  • природный газ;
  • керосин;
  • биогаз;
  • дизельное топливо;
  • нефтяной газ попутного типа;
  • коксовый, древесный, шахтный газ и другие виды.

Многие такие турбины способны работать и на низкокалорийном виде топлива, в котором содержится небольшое количество метана (порядка 3- процентов).

Другие особенности газотурбинных установок

Отличительные особенности газотурбинных установок:

  • Незначительный вред, причиняемый окружающей среде. Это малый расход масла. Способность работать на отходах самого производства. Выброс в атмосферу вредных веществ составляет 25 ppm.
  • Небольшие габариты и вес. Это позволяет располагать данное оборудование на небольших площадках, что экономит деньги.
  • Незначительный уровень шума, а также вибрации. Данный показатель находится в пределах 80 – 85 дБА.
  • Способность газотурбинного оборудования работать на различном топливе позволяет применять его практически в любом производстве. При этом предприятие сможет само выбирать экономически выгодный вид топлива, опираясь на специфику своей деятельности.
  • Продолжительная работа с минимальной нагрузкой. Это касается и режима холостого хода.
  • На протяжении одной минуты данное оборудование способно выдерживать превышение номинальной величины тока на 150 процентов. А в течение 2 часов – 110 %.
  • При трехфазном симметричном «КЗ» система генератора способна выдержать на протяжении 10 секунд порядка 300 процентов номинального непрерывного тока.
  • Отсутствие водяного охлаждения.
  • Высокая надежность работы.
  • Продолжительный ресурс работы (около 200 000 часов).
  • Использование оборудования в любых климатических условиях.
  • Умеренная цена строительства и небольшие затраты во время самой работы, ремонта и технического обслуживания.

Электрическая мощность газотурбинного оборудования находится в пределах от десятков кВт до нескольких МВт. Максимально большой КПД достигается, если газотурбинная установка функционирует в режиме одновременного производства тепловой и электрической энергии (когенерации).

Благодаря получению недорогой такой энергии, появляется возможность быстрой окупаемости такого рода оборудования. Энергоустановка и котел – утилизатор выходящих газов способствуют более эффективному использованию топлива.

С газотурбинными машинами существенно упростилась задача получения большой мощности. А при выполнении всех тепловых особенностей турбин газового типа, значение большого электрического коэффициента полезного действия отходит на второй план. Если брать во внимание большое значение температуры выпускных газов газотурбинного оборудования, то можно осуществить комбинацию применения газовой и паровой турбины.

Данное инженерное решение способствует предприятиям значительно наращивать производительность от применения топлива и увеличить электрический КПД до отметки в 57 – 59 процентов. Такой метод очень хороший, но он приводит к финансовым затратам и усложнению конструкции оборудования. Поэтому его часто используют только крупные производства.

Отношение производимой электрической энергии по отношению к тепловой в газотурбинной установке составляет 1 к 2. Таким образом, к примеру, если газотурбинная установка имеет мощность в 10 Мегаватт, то она способна выработать 20 МВт тепловой энергии. Чтобы осуществить перевод Мегаватт в гигакалории, необходимо использовать специальный коэффициент, который равен 1,163.

В зависимости от того, что именно необходимо заказчику, газотурбинное оборудование может дополнительно оснащаться водонагревательными и паровыми котлами. Это позволяет получать пар с различным давлением, который будет применяться для решения различных производственных задач. Также, это позволяет получить горячую воду, которая будет иметь стандартную температуру.

Во время совмещенной эксплуатации двух типов энергии, можно получить увеличение коэффициента использования топлива (КИТ) газотурбинной тепловой электростанции до 90 процентов.

При использовании газотурбинных установок в виде оборудования силового типа для мощных ТЭС, а также мини-ТЭЦ, вы получите оправданное экономическое решение. Обусловлено это тем, что сегодня практически все электростанции работают на газе. Они имеют очень низкую для потребителя удельную стоимость, что касается строительства и небольших затрат во время последующего использования.

Лишняя, причем даже бесплатная, тепловая энергия позволяет без каких либо затрат на электроэнергию настроить вентиляцию (кондиционирование) производственных помещений. И это можно делать в любое время года. Охлажденный таким способом теплоноситель, можно использовать для разных промышленных нужд. Такой вид технологии носит название «тригенерация».

Газотурбинные установки на выставке

Центральный комплекс ЦВК «Экспоцентр» – это очень комфортабельная площадка, которая располагается в Москве, вблизи станций метрополитена «Выставочная» и «Деловой центр».

Благодаря высокому профессионализму сотрудников данного комплекса и их компаний, обеспечивается идеальная логистика создания выставок и быстрое оформление таможенных документов, погрузочных, разгрузочных и монтажных работ. Также, осуществляется поддержка постоянной работы установок во время ее презентации.

Выставочная павильонная площадка ЦВК «Экспоцентр» имеет все необходимое оборудование для проведения таких масштабных мероприятий. Благодаря открытой площадке вы сможете без проблем презентовать свое инновационное или энергоемкое оборудование, которое работает в реальном времени.

Ежегодная международная выставка «Электро» представляет собой крупномасштабное мероприятие в России и СНГ. На нем будет продемонстрировано электрическое оборудование для энергетики, электротехники, промышленной световой техники, а также автоматизации предприятий.

На выставке «Электро», вы сможете увидеть современные тенденции отрасли, от генерации электрической энергии до завершающего ее использования. Благодаря инновационным технологиям и высококачественному оборудованию ваше предприятие может получить «глоток свежего воздуха» и заново возродиться.

Такая модернизация производства не сможет быть не замечена потребителями ваших услуг и товаров. Такое оборудование способно существенно снизить себестоимость и затраты на электрическую энергию.

Ежегодно данное мероприятие посещают производители из более двадцати стран мира. Посетить его можете и вы. Для этого вам стоит заполнить соответствующую заявку у нас на сайте либо позвонить нам. У нас на выставке вы сможете презентовать свои новые образцы продукции, полезные модели и изобретения, новые оригинальные товары и многое другое, что относится к энергетике и электрическому оборудованию.

Условия участия в выставке в ЦВК «Экспоцентр» очень прозрачные. Любой правообладатель, если обнаружит различные нарушения его прав на объекты интеллектуальной собственности, может гарантированно рассчитывать на правовую помощь. Это позволяет повысить ответственность и осмотрительность каждого участника выставки во время презентации своего продукта.

ГАЗОТУРБИННЫЕ УСТАНОВКИ

ВВЕДЕНИЕ

На первых этапах развития ГТУ для сжигания топлива применяли два типа камер сгорания. В камеру сгорания первого типа топливо и окислитель (воздух) подавались непрерывно, их горение также поддерживалось непрерывно, а давление не изме­нялось. В камеру сгорания, второго типа топливо и окислитель (воздух) подавались порциями. Смесь поджигалась и сгорала в замкнутом объеме, а затем продукты сгорания поступали в тур­бину. В такой камере сгорания температура и давление не посто­янны: они резко увеличиваются в момент сгорания топлива.

Со временем выявились несомненные преимущества камер сго­рания первого типа. Поэтому в современных ГТУ топливо в большинстве случаев сжигают при постоянном давлении в камере сгорания.

Первые ГТУ имели низкий КПД, так как газовые турбины и компрессоры были несовершенны. По мере совершенствования этих агрегатов увеличивался КПД газотурбинных установок, и они становились конкурентоспособными по отношению к другим видам тепловых двигателей.

В настоящее время газотурбинные установки являются основ­ным видом двигателей, используемых в авиации, что обусловлено простотой их конструкции, способностью быстро набирать нагруз­ку, большой мощностью при малой массе, возможностью полной автоматизации управления. Самолет с газотурбинным двигателем впервые совершил полет в 1941 г.

В энергетике ГТУ работают в основном в то время, когда резко увеличивается потребление электроэнергии, т. е. во время пиков нагрузки. Хотя КПД ГТУ ниже кпд паротурбинных установок (при мощности 20-100 МВт КПД ГТУ достигает 20-30%), исполь­зование их в пиковом режиме оказывается выгодным, так как пуск занимает гораздо меньше времени.

В некоторых пиковых ГТУ в качестве источников газа для турбины, вращающей электрический генератор, применяют авиа­ционные турбореактивные двигатели, отслужившие свой срок в авиации. Наряду с двигателями внут­реннего сгорания ГТУ применяют в качестве основных двигателей на передвижных электростанциях.



В технологических процессах нефтеперегонных и химических производств горючие отходы используются в качестве топлива для газовых турбин.

Газотурбинные установки находят также широкое применение на железнодорожном, морском, речном и автомобильном транс­порте. Так, на быстроходных судах на подводных крыльях и воз­душной подушке ГТУ являются двигателями. На большегрузных автомобилях они могут использоваться в качестве как основного, так и вспомогательного двигателя, предназначенного для подачи воздуха в основной двигатель внутреннего сгорания и работаю­щего на его выхлопных газах.

Кроме того, ГТУ служат приводом нагнетателей природного газа на магистральных газопроводах, резервных электрогенераторов пожарных насосов.

! Основное направление, по которому развивается газотурбиностроение, это повышение экономичности ГТУ за счет увеличения температуры и давления газа перед газовой турбиной. С этой целью разрабатываются сложные системы охлаждения наиболее напряженных деталей турбин или применяются новые, высокопрочные материалы - жаропрочные на основе никеля, керамика и др.

Газотурбинные установки обычно надежны и просты в эксплуа­тации при условии строгого соблюдения установленных правил и режимов работы, отступление от которых может вызвать разру­шение турбин, поломку компрессоров, взрывы в камерах сгорания и др.

ОСНОВНЫЕ ЭЛЕМЕНТЫ ГАЗОТУРБИННЫХ УСТАНОВОК

ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ УСТАНОВКАХ

Газотурбинный двигатель (ГТД) - один из видов теплового двигателя, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Газотурбинная установка состоит из трех основных элементов: газовой турбины, камер сгорания и воздушного компрессора.

Превращение теплоты в работу осуществляется в нескольких агрегатах ГТД (рис.1)

Рис. 1. Схема газотурбинного двигателя:

ТН – топливный насос; КС – камера сгорания; К – компрессор; Т – турбина; ЭГ – электрогенератор.

В камеру сгорания топливным насосом подаются топли­во и сжатый воздух после компрессора. Топливо перемешивается с воздухом, который служит окислителем, поджигается и сгорает. Чистые продукты сгорания также смешиваются с воздухом, что­бы температура газа, получившегося после смешения, не превы­шала заданного значения. Из камер сгорания газ поступает в га­зовую турбину, которая предназначена для преобразования его потенциальной энергии в механическую работу. Совершая работу, газ остывает и давление его уменьшается до атмосферного. Из газовой турбины газ выбрасывается в окружающую среду.

Из атмосферы в компрессор поступает чистый воздух. В ком­прессоре его давление увеличивается и температура растет. На привод компрессора приходится отбирать значительную часть мощности турбины.

Газотурбинные установки, работающие по такой схеме, назы­вают установками открытого цикла . Большинство современных ГТУ работает по этой схеме.

Рис. 2. Цикл газотурбинного двигателя.

Заменив сгорание топлива изобарным подводом теплоты (линия 2-3 на рис. 2), а охлаждение выброшенных в атмосферу продуктов сгорания – изобарным отводом теплоты (линия 1-4), получается цикл ГТД:

1-2 – сжатие рабочего тела от атмосферного давления до давления в двигателе;

2-3 – горение в камере;

3-4 – процесс адиабатного расширения рабочего тела;

4-1 – отработанные газы выбрасываются в атмосферу

Кроме того, применяются замкнутые ГТУ (рис. 3). В замкну­тых ГТУ также имеются компрессор 3 и турбина 2. Вместо камеры сгорания используется источник теплоты 1, в котором теплота передается рабочему телу без перемешивания с топливом. В ка­честве рабочего тела может применяться воздух, углекислый газ, пары ртути или другие газы.

Рабочее тело, давление которого повышено в компрессоре, в источнике теплоты 1нагревается и поступает в турбину 2, в которой отдает свою энергию. После турбины газ поступает в промежуточный теплообменник 5 (регенератор), в котором он подогревает воз­дух, а затем охлаждается в ох­ладителе 4, поступает в компрессор 3, и цикл повторяется, В качестве источника теплоты могут использоваться специальные котлы для нагрева рабочего-тела энергией сжигаемого топлива или атомные реакторы.

Рис. 3. Схема газотурбинного двигателя, работающего по замкнутому циклу: 1 - поверхностный нагреватель; 2 - турбина; 3 - компрессор; 4 - охладитель; 5 - регенератор; 6 - аккумулятор воздуха; 7 - вспомогательный компрессор.

Новое на сайте

>

Самое популярное