Домой Многолетние цветы Материнской размножение происходит бесполым. Бесполое размножение. Размножение одноклеточных водорослей

Материнской размножение происходит бесполым. Бесполое размножение. Размножение одноклеточных водорослей

Размножение - свойство организмов оставлять потомство.

Формы бесполого размножения, определение, сущность, биологическое значение.

Две формы размножения: половое и бесполое.

Половое размножение - смена поколений и развитие организмов на основе слияния специализированных - половых- клеток и образования зиготы.

При бесполом размножении новая особь появляется из неспециализированных клеток: соматических, неполовых; тела.

Бесполое размножение, или агамогенез - форма размножения, при которой организм воспроизводит себя самостоятельно, без всякого участия другой особи.

Размножение делением

Деление свойственно прежде всего одноклеточным организмам. Как правило, оно осуществляется путём простого деления клетки надвое. У некоторых простейших например, фораминифер происходит деление на большее число клеток. Во всех случаях образующиеся клетки полностью идентичны исходной. Крайняя простота этого способа размножения, связанная с относительной простотой организации одноклеточных организмов, позволяет размножаться очень быстро. Так, в благоприятных условиях количество бактерий может удваиваться каждые 30-60 минут. Размножающийся бесполым путём организм способен бесконечно воспроизводить себя, пока не произойдёт спонтанное изменение генетического материала - мутация. Если эта мутация благоприятна, она сохранится в потомстве мутировавшей клетки, которое будет представлять собой новый клеточный клон.В однополом размножении участвует один родительский организм, который способен образовать множество идентичных ему организмов.

Размножение спорами

Нередко бесполому размножению бактерий предшествует образование спор. Бактериальные споры - это покоящиеся клетки со сниженным метаболизмом, окружённые многослойной оболочкой, устойчивые к высыханию и другим неблагоприятным условиям, вызывающим гибель обычных клеток. Спорообразование служит как для переживания таких условий, так и для расселения бактерий: попав в подходящую среду, спора прорастает, превращаясь в вегетативную делящуюся клетку.
Бесполое размножение с помощью одноклеточных спор свойственно и различным грибам и водорослям. Споры во многих случаях образуются путём митоза митоспоры, причём иногда особенно у грибов в огромных количествах; при прорастании они воспроизводят материнский организм. Некоторые грибы, например злостный вредитель растений фитофтора, образуют подвижные, снабжённые жгутиками споры, называемые зооспорами или бродяжками. Проплавав в капельках влаги некоторое время, такая бродяжка «успокаивается», теряет жгутики, покрывается плотной оболочкой и затем, в благоприятных условиях, прорастает.

Вегетативное размножение

Другой вариант бесполого размножения осуществляется путём отделения от организма его части, состоящей из большего или меньшего числа клеток. Из них развивается взрослый организм. Примером может служить почкование у губок и кишечнополостных или размножение растений побегами черенками, луковицами или клубнями. Такая форма бесполого размножения обычно называется вегетативным размножением. В своей основе оно аналогично процессу регенерации. Вегетативное размножение играет важную роль в практике растениеводства. Так, может случиться, что высеянное растение например, яблоня обладает некой удачной комбинацией признаков. У семян данного растения эта удачная комбинация почти наверняка будет нарушена, так как семена образуются в результате полового размножения, а оно связано с рекомбинацией генов. Поэтому при разведении яблонь обычно используют вегетативное размножение - отводками, черенками или прививками почек на другие деревья.

Почкование

Некоторым видам одноклеточных свойственна такая форма бесполого размножения, как почкование. В этом случае происходит митотическое деление ядра. Одно из образовавшихся ядер перемещается в формирующееся локальное выпячивание материнской клетки, а затем этот фрагмент отпочковывается. Дочерняя клетка существенно меньше материнской, и ей требуется некоторое время для роста и достраивания недостающих структур, после чего она приобретает вид, свойственный зрелому организму. Почкование - вид вегетативного размножения. Почкованием размножаются многие низшие грибы, например дрожжи и даже многоклеточные животные, например пресноводная гидра. При почковании дрожжей на клетке образуется утолщение, постепенно превращающиеся в полноценную дочернюю клетку дрожжей. На теле гидры несколько клеток начинают делиться, и постепенно на материнской особи вырастает маленькая гидра, у которой образуются рот со щупальцами и кишечная полость, связанная с кишечной полостью «матери».

Фрагментация деление тела

Некоторые организмы могут размножаться делением тела на несколько частей, причём из каждой части вырастает полноценный организм, во всём сходный с родительской особью плоские и кольчатые черви, иглокожие.

Половое размножение - процесс у большинства эукариот, связанный с развитием новых организмов из половых клеток.

Образование половых клеток, как правило, связано с прохождением мейоза на какой-либо стадии жизненного цикла организма. В большинстве случаев, половое размножение сопровождается слиянием половых клеток, или гамет, при этом восстанавливается удвоенный, относительно гамет, набор хромосом. В зависимости от систематического положения эукариотических организмов, половое размножение имеет свои особенности, но как правило, оно позволяет объединять генетический материал от двух родительских организмов и позволяет получить потомков с комбинацией свойств, отсутствующей у родительских форм.

Эффективности комбинирования генетического материала у потомков, полученных в результате полового размножения способствуют:
случайная встреча двух гамет

случайное расположение и расхождение к полюсам деления гомологичных хромосом при мейозе

кроссинговер между хроматидами.

Такая форма полового размножения как партеногенез, не предусматривает слияния гамет. Но так как организм развивается из половой клетки ооцита, партеногенез все равно считается половым размножением.
Во многих группах эукариот произошло вторичное исчезновение полового размножения, или же оно происходит очень редко. В частности, в отдел дейтеромицетов грибы объединяет обширную группу филогенетических аскомицетов и базидиомицетов, утративших половой процесс. До 1888 года предполагалось, что среди наземных высших растений половое размножение полностью утрачено у сахарного тростника. Утеря полового размножения в какой-либо группе многоклеточных животных не описана. Однако известны многие виды низшие ракообразные - дафнии, некоторые типы червей, способные в благоприятных условиях размножаться партеногенетически в течение десятков и сотен поколений. Например, некоторые виды коловраток на протяжении миллионов лет размножаются только партеногенетически, даже образуя при этом новые виды!.
У ряда полиплиодных организмов с нечётным числом наборов хромосом половое размножение играет малую роль в поддержании генетической изменчивости в популяции в связи с образованием несбалансированых наборов хромосом в гаметах и у потомков.
Возможность комбинировать генетический материал при половом размножении имеет большое значение для селекции модельных и хозяйственно важных организмов.

Размножение – способность организмов воспроизводить себе подобных.

В природе существует два типа размножения: бесполое и половое.

I. Бесполое размножение – размножение организмов, происходящее без образования гамет с участием лишь одного родительского организма.

Идентичное потомство, происходящее от одной родительской особи, называют клоном .

Члены одного клона могут быть генетически различными только в случае возникновения случайной мутации.

В основе бесполого размножения лежит митотическое деление .

Виды бесполого размножения:

Виды бесполого размножения

Характерные особенности

Примеры организмов

1. Простое

(бинарное)

Из одной клетки путем митоза образуются две дочерние, каждая из которых становится новым организмом, идентичным материнскому.

Бактерии, многие простейшие (амеба), все одноклеточные водоросли (хлорелла)

2. Множественное деление

(шизогония)

Происходит многократное деление клеточного ядра, вслед за которым делится сама клетка на множество дочерних. Стадия, на которой происходит множественное деление, называется шизонтом, а сам процесс – шизогонией.

Споровики (группа простейших, к которой относится возбудитель малярии – малярийный плазмодий); некоторые водоросли

3. Споруляция (спорообразование)

Спора – одноклеточная репродуктивная единица микроскопических размеров, состоящая из ядра и небольшого количества цитоплазмы.

Споры могут образовываться путем митоза или мейоза.

Существуют и половые споры (зооспоры хламидомонады), они выполняют функции гамет.

Водоросли, мхи, папоротники, хвощи, плауны; грибы

4. Почкование

Новая особь образуется в виде выроста (почки) на теле родительской особи, а затем отделяется от нее, превращаясь в самостоятельный организм.

Кишечнополостные, одноклеточные грибы (дрожжи)

5. Фрагментация

Разделение особи на две или несколько частей, каждая из которых растет и дает начало новому организму. Этот способ основан на способности организмов к регенерации (восстановление недостающих частей тела).

Плоский червь планария (при неблагоприятных условиях); немертины (морские черви); нитчатые водоросли (спирогира)

6. Вегетативное размножение

Размножение отдельными органами, частями органов или тела. Нередко растения образуют структуры, специально предназначенные для этого:

s луковицы (короткий стебель, мясистые листья);

s клубнелуковицы (вздутый подземный стебель, нет мясистых листьев);

s корневище (подземный стебель, растущий горизонтально);

s столон (ползучий горизонтальный стебель, стелющийся по поверхности почвы;

s усы (плети) – разновидности столонов, которые быстро растут в длину;

s клубень (подземный запасающий побег);

s корневые клубни (шишки) – вздувшиеся придаточные корни;

s мясистые стержневые корни;

s листьями.

тюльпан, нарцисс, лук;

шафран, гладиолус;

ирис, пырей ползучий, астра, мята;

ежевика, крыжовник, черная и красная смородина;

земляника, лютик ползучий;

картофель;

георгины;

7. Клонирование

Выращивание особи, генетически идентичной данному организму, путем пересадки ядра из соматической клетки в яйцеклетку, из которой предварительно удалили ядро.

Высшие растения и некоторые животные.

Бесполое размножение, эволюционно возникшее раньше полового , – весьма эффективный процесс.

Значение бесполого размножения:

Достоинства бесполого размножения:

Недостатки бесполого размножения:

1. Необходима лишь одна родительская особь . В половом размножении участвуют две особи, а это сопряжено с затратой времени и энергии на поиски партнера или, у неподвижных организмов (растений) специальных механизмов, например опыления, при котором гибнет множество гамет.

2. Генетически идентичные потомки . При хорошей адаптации вида к условиям существования это – преимущество, т. к. сохраняются удачные комбинации генов.

3. Расселение и распространение вида . Микроскопические и легкие споры разносятся ветром на большие расстояния, быстрый рост корневищ и т. д.

4. Быстрота размножения . При благоприятных условиях численность вида быстро увеличивается

1. Отсутствие генетической изменчивости среди потомков.

2. Если размножение связано с образованием спор, то многим из них не удается найти подходящее место для прорастания, так что энергия и материалы, затраченные на их создание, пропадают впустую.

3. Если вид расселяется в одной области, то может возникнуть перенаселение и истощение питательных веществ.

II. Половое размножение – процесс получения потомства в результате слияния генетического материала гаплоидных ядер двух гамет.

Гаметы – половые гаплоидные клетки.

Сперматозоиды – мужские гаметы.

Яйцеклетки – женские гаметы.

Оплодотворение – процесс слияния гамет.

Зигота – результат слияния гамет (оплодотворенная яйцеклетка), первая диплоидная клетка будущего организма.

Виды, у которых существуют отдельные мужские и женские особи, называют раздельнополыми (большинство животных и человек).

Виды, у которых одна и та же особь способна производить и мужские, и женские гаметы, называют двуполыми (обоеполыми) или гермафродитными (простейшие, кишечнополостные, плоские черви, малощетинковые черви (дождевой), ракообразные, такие моллюски, как улитка, некоторые рыбы и ящерицы, большинство цветковых растений).

Партеногенез (девственное размножение) – одна из модификаций полового размножения, при которой женская гамета развивается в новую особь без оплодотворения мужской гаметой. Таким образом, партеногенез – половое, но однополое размножение. Партеногенез встречается как в царстве животных, так и в царстве растений.

Различают :

s факультативный партеногенез, при котором яйца могут развиваться как после оплодотворения, так и без него (пчелы, муравьи, коловратки – из оплодотворенных яиц развиваются самки, а из неоплодотворенных – самцы);

s облигатный партеногенез (обязательный), при котором яйца способны только к партеногенетическому размножению (кавказская скальная ящерица).

У многих видов партеногенез носит циклический характер, так у тлей, дафний, коловраток в летнее время существуют лишь самки, а осенью партеногенез сменяется размножением с оплодотворением.

В основе полового размножения лежит процесс образования половых клеток – гаметогенез .

Гаметогенез – процесс образования и развития половых клеток.

Сперматогенез – процесс образования мужских половых клеток – сперматозоидов.

Овогенез (оогенез) – процесс образования женских половых клеток – яйцеклеток.

В процессе образования половых клеток выделяют ряд стадий:

гаметогенеза

Тип и фаза деления

Сперматогенез

(в семенниках)

Овогенез

(в яичниках)

Размножение

Первичные половые клетки делятся путем митоза; образуются диплоидные клетки с однохроматидными хромосомами (2 n 2 c ) гаметоциты I порядка (сперматоциты и ооциты)

Интерфаза

Гаметоциты I порядка увеличиваются в размерах. Происходит синтез ДНК и достраивание второй хроматиды; формируются диплоидные клетки с двухроматидными хромосомами (2 n 4 c )

Созревание

сперматоциты I порядка делятся с образованием сперматоцитов II порядка ( n 2 c ) .

В результате второго деления образуется четыре гаплоидные сперматиды – клетки с однохроматидными хромосомами ( nc ) .

В ходе первого (редукционного) деления ооциты I порядка делятся с образованием ооцитов II порядка ( n 2 c ) и направительного тельца ( n 2 c ).

В ходе второго деления из ооцита II порядка образуется яйцеклетка ( nc ) и направительное тельце ( nc ) ; из первого направительного тельца – два новых.

В результате мейоза образуется яйцеклетка и три направительных (редукционных) тельца. Все клетки гаплоидные с однохроматидными хромосомами. Редукционные тельца вскоре погибают

Формирование

Приобретение клетками определенной формы и размеров,

соответствующих их специфической функции

Формирование сперматозоидов: аппарат Гольджи располагается на переднем крае головки, преобразуясь в акросому (выделяет ферменты, которые растворяют мембрану яйца); митохондрии компактно упаковываются вокруг появившегося жгутика, образуя шейку.

Увеличение количества желтка. У многих животных – формирование дополнительных оболочек (защита яйцеклетки и развивающегося зародыша от неблагоприятных воздействий)

Оплодотворение – процесс слияния сперматозоида с яйцеклеткой и образование оплодотворенного яйца – зиготы .

Зигота – начальная одноклеточная стадия развития нового организма.

III. Онтогенез – индивидуальное развитие организма – период жизни особи с момента образования зиготы до гибели организма. В процессе онтогенеза реализуется наследственная информация, полученная от родителей.

Онтогенез включает два периода:

Эмбриональный период – от образования зиготы до рождения или же выхода из яйцевых оболочек. Постэмбриональный период – от рождения до смерти организма.

Эмбриональный период включает три основных этапа:

Дробление – образование однослойного многоклеточного зародыша в результате митотического деления зиготы.

На стадии двух зародышевых листков заканчивается развитие у губок и кишечнополостных. У остальных животных закладывается третий зародышевый листок – мезодерма – из энтодермы и расположена между эктодермой и энтодермой.

Во время гаструляции начинается дифференциация клеток по органогенез :

из эктодермы :

s нервная система;

s компоненты органов зрения, слуха, обоняния;

s кожный эпителий и его производные (молочные, потовые и сальные железы, волосы, перья, ногти, эмаль зубов);

s передний и задний отделы пищеварительной системы (эпителий ротовой полости и прямой кишки);

s наружные жабры;

s щитовидная железа;

из энтодермы:

s эпителий пищеварительной, дыхательной и мочеполовой систем;

s пищеварительные железы (печень, поджелудочная железа);

из мезодермы:

s хрящевой и костный скелет;

s мышечная ткань (поперечнополосатая скелетная и гладкая мускулатура внутренних органов);

s кровеносная система и кровь;

s выделительная система;

s половые железы;

s вся соединительная ткань;

s надпочечники.

У разных видов животных одни и те же зародышевые листки дают начало одним и тем же органам и тканям. Значит, они гомологичны . Гомология – доказательство единства происхождения животного мира.

Постэмбриональный период бывает двух типов:

Прямое постэмбриональное развитие – идет без превращений, когда родившийся организм имеет сходство со взрослой особью и отличается только размерами, недоразвитием ряда органов и пропорций тела (птицы, млекопитающие, пресмыкающиеся, некоторые насекомые, ракообразные и др.) Непрямое постэмбриональное развитие – протекает с метаморфозом, т. е. с превращением во взрослую особь. Личинка приспособлена к активному питанию, передвижению, росту и развитию, но не может размножаться (исключение: аксолотль – личинка земноводного амбистомы – при недостатке гормона щитовидной железы не превращается во взрослую особь, но способна размножаться на этой стадии). Биологический смысл метаморфоза заключается в том, что личинки и взрослые особи питаются разной пищей, адаптированы к разным условиям, что устраняет конкуренцию между ними, способствует выживанию молоди.

Постэмбриональный период заканчивается старением и смертью.

4. Формы размножения организмов

Преемственность поколений организмов в природе осуществляется за счет воспроизведения. Размножение - это способность организма воспроизводить себе подобных. В природе существует два типа размножения: бесполое и половое.

Виды бесполого размножения

Бесполое размножение - образование нового организма из одной клетки или группы клеток исходного материнского организма. В этом случае в размножении участвует только одна родительская особь, которая передает свою наследственную информацию дочерним особям. При бесполом размножении образуются идентичные потомки. Единственным источником изменчивости являются случайные наследственные изменения, которые могут возникнуть в процессе индивидуального развития.

В основе бесполого размножения лежит митоз. Встречается несколько видов бесполого размножения.

Интересно бесполое размножение у бактерий (рис. 7).

Рис. 7. Бесполое размножение бактерии: А - общая схема размножения; Б - схема деления клетки

Кольцевая молекула ДНК закрепляется на клеточной мембране и реплицируется. В клетке начинает образовываться поперечная перегородка со стороны прикрепления молекул ДНК. Затем поперечная перегородка раздваивается, перемещая закрепленные ДНК в разные части клетки. Рибосомы равномерно распределяются между двумя дочерними клетками, образуется перетяжка, которая разделяет клетку на две дочерние.

Почкование - это форма бесполого размножения, при которой от родительской особи отделяется небольшой вырост (почка) и образуется дочерний организм. Новый организм развивается из группы клеток исходного организма. Такой вид бесполого размножения характерен для кишечнополостных (гидры) и некоторых других животных и растений. Почкованием размножаются и одноклеточные грибы - дрожжи. В отличие от простого деления, при почковании материнская клетка делится на неравные части, отпочковывая постоянно меньшую дочернюю клетку (рис. 8, Б).

Рис. 8. Виды бесполого размножения: А - простое деление надвое эвглены зеленой (продольное); Б - почкование дрожжей и гидры; В - споруляция мхов; Г - вегетативное размножение листьями бегонии

Размножение спорами (споруляция ) характерно для споровых растений (водорослей, мхов, папоротников). Размножение происходит с помощью специальных клеток - спор, образующихся в материнском организме (рис. 8, В). Спора представляет собой небольшую клетку, состоящую из ядра и небольшого количества цитоплазмы. Они образуются в большом количестве в исходном материнском организме. Каждая спора, прорастая, дает начало новому организму. Так как они микроскопически малы, то легко переносятся ветром, водой или другими организмами, что способствует расселению этих растений. Спорами размножаются и грибы, например пенициллум, шляпочные грибы.

Вегетативное размножение - это размножение отдельными органами, частями органов или тела. Вегетативное размножение чаще всего встречается у растений, которые могут размножаться корнями, побегами и частями побегов (стеблями, листьями), видоизмененными побегами. Способы вегетативного размножения растений весьма разнообразны. Это размножение луковицами (тюльпан), подземными столонами - клубнями (картофель), корневищами (пырей), корневыми шишками (георгин), отводками (смородина), корневыми отпрысками (малина), листьями (бегония, фиалка), надземными столонами - усами (земляника) и т. д. (рис. 8, Г).

Фрагментация - это разделение особи на две и более части, каждая из которых может дать начало новому организму. Этот способ основан на регенерации - способности организмов восстанавливать недостающие части тела. Характерен он для низших беспозвоночных животных (кишечнополостных, плоских червей, морских звезд и др.). Тело животного, разделенное на отдельные части, достраивает недостающие фрагменты. Например, при неблагоприятных условиях плоский червь планария распадается на отдельные части, каждая из которых при наступлении благоприятных условий может дать новый организм.

Встречается фрагментация и у растений, например, многоклеточные водоросли могут размножаться частями слоевища.

Клонирование. Искусственный метод размножения, который появился сравнительно недавно, в начале 60-х гг. XX в. Он основан на получении нового организма из одной клетки исходного. Так как ядро клетки содержит весь набор хромосом, а значит, и генов, то при определенных условиях его можно заставить делиться, что приведет к образованию нового организма. В основе образования клона лежит митоз. Для клонирования растений отделяют клетки образовательной ткани и выращивают их на специальных питательных средах. Клетка растения, последовательно делясь, дает начало целому организму. Этот метод в настоящее время широко используется для получения ценных сортов растений.

Имеется опыт клонирования животных. Впервые он был поставлен английским биологом Д. Гёрдоном и дал положительные результаты в опытах с южноамериканской жабой. В качестве донора ядер были использованы клетки кишечника головастика. Ядра яйцеклеток-реципиентов разрушили ультрафиолетовыми лучами и пересадили в эти клетки ядра эпителия кишечника. В результате опыта удалось получить несколько клонированных особей жабы, полностью идентичных друг другу. В 1995 г. английским ученым удалось получить клон овец, которые были похожи на исходную материнскую особь. Однако ягнята умерли в раннем возрасте, не дожив до девяти месяцев.

В 1997 г. клонированием была получена овечка Долли. Для этого были взяты ядра клеток молочной железы овцы одной породы (донор ядер) и пересажены в яйцеклетки с предварительно разрушенными ядрами овцы другой породы (реципиент). Клонированная овечка не отличалась от донора ядер, но сильно отличалась от реципиента.

Применение метода клонирования позволит не только сохранить ценных в хозяйственном отношении животных, но и безгранично размножать их. В настоящее время ведутся работы по клонированию человека, что вызывает бурные споры не только среди ученых, но и различных групп населения. Однако при помощи этого метода предполагается воспроизводить лишь отдельные органы и ткани для последующей пересадки в организм донора, а не создание отдельных индивидуумов. Этот метод позволит решить проблему несовместимости тканей различных организмов.

Особенности полового размножения

Половое размножение - это образование нового организма при участии двух родительских особей. Новый организм несет наследственную информацию от двух родителей, а образующиеся потомки отличаются генетически друг от друга и своих родителей. Этот процесс свойствен всем группам организмов, в простейшем варианте он имеет место даже у прокариот.

При половом размножении в организме формируются специальные половые клетки - гаметы мужского и женского типа, которые способны сливаться. Мужские гаметы - сперматозоиды , или спермии (если они неподвижны). Женская гамета - яйцеклетка. Гаметы отличаются от всех других клеток организма, которые называются соматическими (от лат. сома - тело). Они всегда имеют гаплоидный набор хромосом (n).

В результате слияния двух гамет диплоидный набор хромосом вновь восстанавливается. При этом половина всех хромосом является отцовской, а другая половина - материнской. Например, у человека 46 хромосом, из которых 23 получены от матери и 23 - от отца.

Половое размножение имеет целый ряд преимуществ. В результате этого процесса происходит изменение наследственной информации, а у новых особей сочетаются признаки двух родителей. Это приводит к появлению новых комбинаций признаков и генов. Половое размножение делает организм более конкурентоспособным и адаптированным к изменяющимся условиям окружающей среды, так как повышает шансы к выживанию. В процессе эволюции половое размножение оказалось более предпочтительным и прогрессивным.

Вопросы для самоконтроля

1. Какие типы размножения встречаются у организмов? Чем они отличаются друг от друга?

2. Какой тип деления клетки лежит в основе бесполого размножения?

3. Сравните размножение спорами и вегетативное размножение у растений. В чем их сходство и отличие?

4. Какое преимущество организму дает размножение спорами?

5. Охарактеризуйте особенности каждого вида бесполого размножения.

6. В чем заключаются особенности полового размножения? Какие преимущества дает такой тип размножения?

7. Какие клетки называются гаметами? В чем их особенность?

Из книги Разведение собак автора Хармар Хиллери

Из книги Гидропоника для любителей автора Зальцер Эрнст Х

Из книги Физиология размножения и репродуктивная патология собак автора Дюльгер Георгий Петрович

Простой способ размножения черенками Для окоренения черенков рассадные ящики подготавливают точно так же, как и для высева семян. Весьма желательно, чтобы в этом случае ящики были немного более глубокими. Тогда в последующем можно было бы создать небольшой запас

Из книги Собаки и их разведение [Разведение собак] автора Хармар Хиллери

Глава 2. БИОТЕХНИКА РАЗМНОЖЕНИЯ 2.1. ЕСТЕСТВЕННОЕ ОСЕМЕНЕНИЕ Вольное спаривание - естественный способ размножения собак. У самок могут быть моно- и полигамные половые акты. При моногамном спаривании собаки совершают по одному-два коитуса ежедневно с одним самцом на

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Органы размножения кобеля То, о чем я собираюсь здесь рассказать, не содержит ничего нового для серьезного собаковода, тем не менее, краткое описание анатомии племенного кобеля может быть для кого-то полезным.Предстательная железаНепосредственно под мочевым пузырем

Из книги Служебная собака [Руководство по подготовке специалистов служебного собаководства] автора Крушинский Леонид Викторович

Органы размножения суки Женские половые клетки - яйцеклетки - производятся в яичниках. Влагалище, матка и маточные трубы - это те пути, по которым проходят сперматозоиды до оплодотворения яйцеклетки.ЯичникиЭтот парный орган находится в брюшной полости суки

Из книги Размножение собак автора Коваленко Елена Евгеньевна

Способы размножения Размножение - важнейший биологический процесс, обеспечивающий поддержание и увеличение численности вида, возможность его расселения и, в конечном итоге, успех борьбы за существование. В животном мире существует целый ряд способов размножения,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

7. Система органов размножения Размножение относится к важнейшим отправлениям организма и обеспечивает продолжение рода. Для выполнения функций, связанных с размножением, у собак служит половой аппарат.Половой аппарат кобеля. Половой аппарат кобеля состоит из

Из книги Природа человека (сборник) автора Мечников Илья Ильич

ГЛАВА 2 ФИЗИОЛОГИЯ РАЗМНОЖЕНИЯ СОБАК Рождение живого и достаточно сформированного детеныша, в котором уже угадываются черты будущего взрослого животного, создает впечатление, что новый организм возникает как бы из ничего. Собственно рождение означает появление на свет

Долгожительство зависит от размера, размножения и еды В последнее время известный берлинский профессор Рубнер сделал попытку определить количество энергии, потребляемой во время роста и в продолжение жизни, думая найти в этом основание для решения вопроса о

Из книги автора

4.1. Виды размножения В процессе эволюции живых организмов происходила и эволюция способов размножения, разнообразие которых наблюдаются у ныне живущих видов. Все варианты размножения можно разделить на два принципиально отличающихся типа – бесполое и

Важное свойство всех организмов - размножение, обеспечивающее поддержание жизни.

Размножение, осуществляемое без участия половых клеток, называется бесполым размножением.

Бесполое размножение

Бесполое размножение характеризуется тем, что дочерние клетки по содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичны родительским. Бесполое размножение осуществляется с помощью отдельных (бесполых) клеток (различные способы деления, спорообразование), из которых образуются дочерние клетки или развиваются многоклеточные организмы.

Вегетативное размножение обеспечивается отделением от материнского многоклеточного организма многоклеточных участков (корня, листа, побега, черенка, отводка, а также видоизмененного подземного побега - клубня, луковицы, корневища у растений и участков тела, «почек» — У животных).

Биологическое значение бесполого и вегетативного размножения в том, что за короткий период можно значительно увеличить численность вида.

Половое размножение

Половое размножение характеризуется обменом генетической информации между женскими и мужскими особями через особые гаплоидные половые клетки — гаметы.

Гаметогенез - процесс образования гамет.

Половое размножение существует почти у всех растений и животных. Созревшие высокоспециализированные половые клетки — гаметы: женские - яйцеклетки, мужские - сперматозоиды - при слиянии образуют зиготу, из которой развивается новый дочерний организм. По достижении половой зрелости новый организм в свою очередь производит гаметы, дающие начало следующим потомкам. Так осуществляется преемственность поколений.

Гаметы формируются, из диплоидных клеток путем специального типа клеточного деления - мейоза.

Процесс мейоза состоит из двух последовательных делений - мейоза и мейоза.

Ход мейоза
Фазы Процессы
Первое деление мейоза
Спаривание гомологичных хромосом (одна из них - материнская, другая - отцовская). Образование аппарата деления. Набор хромосом n

Расположение гомологичных хромосом по экватору, n хромосом

Разделение пар хромосом (состоящих из двух хроматид) и перемещение их к полюсам

Образование дочерних клеток Набор хромосом n

Второе деление мейоза

Возникшие в телофазе I дочерние клетки проходят митотическое деление

Центромеры делятся, хроматиды хромосом обеих дочерних клеток расходятся к полюсам. Набор хромосом n

Образование четырех гаплоидных ядер или клеток (образование спор у мхов и папоротников)

Главная особенность мейоза заключается в уменьшении числа хромосом в 2 раза.

Сравнивая митоз и мейоз» можно отметить следующее их сходство и отличие:

Сравнительная характеристика митоза и мейоза
Сходство и отличие Митоз Мейоз
Сходство
  1. Имеют одинаковые фазы деления
  2. Перед митозом и мейозом происходит самоудвоение хромосом, спирализация и удвоение молекул ДНК
Отличие

Одно деление

Два сменяющих друг друга деления
В метафазе по экватору выстраиваются удвоенные хромосомы

По экватору выстраиваются пары гомологичных хромосом

Нет конъюгации хромосом Гомологичные хромосомы конъюгируют
Между делениями происходит удвоение молекул ДНК (хромосом) Между 1-м и 2-м делением нет интерфазы и удвоения молекулы ДНК (хромосом)
Образуются две дочерние клетки Образуются 4 клетки с гаплоидным набором хромосом

В процессе формирования половых клеток у животных уменьшение числа хромосом происходит на последнем этапе овогенеза и сперматогенеза (образования женских и мужских половых клеток).

Сливаясь, гаметы образуют зиготу (оплодотворенную яйцеклетку), которая несет задатки обоих родителей, благодаря чему резко увеличивается наследственная изменчивость потомков. В этом заключается преимущество полового размножения над бесполым.

Разновидности размножения

Разновидностью полового размножения являются партеногенез (от лат. «партенос» - девственница + гр. «генезис» - рождение), при котором развитие нового организма происходит из неоплодотворенной яйцеклетки (у пчел). Конъюгация - две особи сближаются и обмениваются наследственным материалом (инфузория).

Копуляция - слияние в одну двух равных по размерам клеток (колониальные жгутиковые и др.)

У высших растений мейоз осуществляется не при формировании гамет, а на более раннем этапе развития - при образовании спор (у покрытосеменных - при образовании пыльцы и зародышевого мешка).

Для покрытосеменных растений характер процесс двойного оплодотворения, открытый С. Г. Навашиным в 1898 г.

Особенность оплодотворения у цветковых растений в отличие от животных состоит в том, что в нем участвует не один, а два спермин, в связи с чем оно получило название двойного оплодотворения. Сущность его заключается в том, что один сперматозоид сливается с яйцеклеткой, а второй - с центральной диплоидной клеткой, из которой дальше развивается эндосперм.

В природе широко распространено размножение с чередованием полового и бесполого поколений у растений и некоторых животных (кишечнополостные). Этот тип размножения подробно описан в первой части пособия.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

Кемеровский государственный университет

Биологический факультет

Кафедра клеточной биологии

ФОРМЫ БЕСПОЛОГО РАЗМНОЖЕНИЯ

Кемерово, 2003

Введение.

Размножение – это увеличение количества особей вида посредством воспроизведения. Способность к размножению, или самовоспроизведению, является одним из обязательных и важнейших свойств живых организмов. Размножение поддерживает длительное существование вида, обеспечивает преемственность между родителями и их потомством в ряду многих поколений. Оно приводит к увеличению численности особей вида и способствует его расселению. У растений, подавляющее большинство которых ведет прикрепленный образ жизни, расселение в процессе размножения - единственный способ занять большую территорию обитания. У большинства многоклеточных организмов часть клеток специализировалась на выполнении функции размножения, возникли репродуктивные органы. В них образуются клетки, способные дать начало новому организму. Если новый организм возникает из половых клеток, то говорят о половом размножении. Если же образование нового организма связано с соматическими клетками, то такой способ размножения называют бесполым.

Бесполое размножение характеризуется тем, что в нем участвует одна особь. Бесполого размножения нет у первичнополостных червей, моллюсков и редко отмечается в типах членистоногих и редко отмечается в типах членистоногих и хордовых. В некоторых случаях для воспроизводства потомства образуются специализированные клетки - споры, каждая из которых прорастает и дает начало новому организму. Спорообразование встречается у простейших (малярийный плазмодий), грибов, водорослей и лишайников.

Формы бесполого размножения.

Бесполое размножение широко распространено в природе. Наиболее распространено оно у одноклеточных, но часто встречается и у многоклеточных. Характерны следующие особенности: в размножении принимает участие только одна особь; осуществляется без участия половых клеток; в основе размножения лежит митоз; потомки идентичны и являются точными генетическими копиями материнской особи. Преимущество бесполого размножения - быстрое увеличение численности. Наиболее распространенными видами бесполого размножения являются следующие:

1.Бинарное деление – митотическое деление, при котором образуются две равноценные дочерние клетки (например, у амебы);

2.Множественное деление, или шизогония. Материнская клетка распадается на большое количество более или менее одинаковых дочерних клеток (малярийный плазмодий);

3.Споруляция. Размножение посредством спор - специализированных клеток грибов и растений. Если споры имеют жгутик и подвижны, то их называют зооспорами (хламидомонада). Интересно, что если споры образуются с помощью митоза, то они имеют одинаковый генетический материал, если же они образуются с помощью мейоза, то они имеют генетический материал только одного организма, но генетически такие споры неравноценны;

4.Почкование. На материнской особи происходит образование выроста - почки, из которого развивается новая особь (дрожжи, гидра);

5.Фрагментация - разделение особи на две или несколько частей, каждая из которых развивается в новую особь. У растений (спирогира), и у животных (кольчатые черви). В основе фрагментации лежит свойство регенерации;

6.Вегетативное размножение. Характерно для многих групп растений. При вегетативном размножении новая особь развивается либо из части материнской, либо из особых структур (луковица, клубень и т.д.), специально предназначенных для вегетативного размножения;

7.Клонирование. Искусственный способ бесполого размножения. В естественных условиях встречается редко. Клон - генетически идентичное потомство, полученное от одной особи в результате того или иного способа беспологоразмножения.

Митоз.

Деление клеток лежит в основе развития и роста организмов, их размножения, а также обеспечивает самообновление тканей на протяжении жизни организма и восстановление их целостности после повреждения.
Наиболее широко распространенная форма воспроизведения клеток у живых организмов - непрямое деление, или митоз (рис. 1.). Для митоза характерны сложные преобразования ядра клетки, сопровождающиеся формированием специфических структур - хромосом. Хромосомы постоянно присутствуют в клетке, но в период между двумя делениями - интерфазе - находятся в деспирализованном состоянии и потому не видны в световой микроскоп. В интерфазе осуществляется подготовка к митозу, заключающаяся главным образом в удвоении (редупликации) ДНК. Совокупность процессов, происходящих в период подготовки клетки к делению, а также на протяжении самого митоза, называется митотическим циклом. После завершения деления клетка может вступить в период подготовки к синтезу ДНК, обозначаемый символом G1. В это время в клетке усиленно синтезируются РНК и белки, повышается активность ферментов, участвующих в синтезе ДНК. Затем клетка приступает к синтезу ДНК. Две спирали старой молекулы ДНК расходятся, и каждая становится матрицей для синтеза новых цепей ДНК. В результате каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Новая молекула абсолютно идентична старой. В этом заключается глубокий биологический смысл: таким путем в бесчисленных клеточных поколениях сохраняется преемственность генетической информации.
Продолжительность синтеза ДНК в разных клетках неодинакова и колеблется от нескольких минут у бактерий до 6-12 ч в клетках млекопитающих. После завершения синтеза ДНК - фазы S митотического цикла - клетка не сразу начинает делиться. Период от окончания синтеза ДНК и до начала митоза называется фазой G2. В этот период клетка завершает подготовку к митозу: накапливается АТФ, синтезируются белки ахроматинового веретена, удваиваются центриоли.

Процесс собственно митотического деления клетки состоит из четырех фаз: профазы, метафазы, анафазы и телофазы.

В профазе увеличивается объем ядра и клетки в целом, клетка округляется, снижается или прекращается ее функциональная активность (например, амебоидное движение у простейших и у лейкоцитов высших животных). Часто исчезают специфические структуры клетки (реснички и др.). Центриоли попарно расходятся к полюсам, хромосомы спирализуются и вследствие этого утолщаются, становятся видимыми. Считывание генетической информации с молекулДНК становится невозможным: синтез РНК прекращается, ядрышко исчезает. Между полюсами клетки протягиваются нити веретена деления - формируется аппарат, обеспечивающий расхождение хромосом к полюсам клетки. На протяжении всей профазы продолжается спирализация хромосом, которые становятся толстыми и короткими. В конце профазы ядерная оболочка распадается, и хромосомы оказываются беспорядочно рассеянными в цитоплазме.
В метафазе спирализация хромосом достигает максимума, и укороченные хромосомы устремляются к экватору клетки, располагаясь на равном расстоянии от полюсов. Образуется экваториальная, или метафазная, пластинка. На этой стадии митоза отчетливо видна структура хромосом, их легко сосчитать и изучить их индивидуальные особенности.

В каждой хромосоме имеется область первичной перетяжки - центромера, к которой во время митоза присоединяются нить веретена деления и плечи. На стадии метафазы хромосома состоит из двух хроматид, соединенных между собой только в области центромеры.
Во всех соматических клетках любого организма содержится строго определенное число хромосом. У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково: у домашней мухи - 12, у дрозофилы - 8, у кукурузы - 20, у земляники садовой - 56, у рака речного - 116, у человека - 46, у шимпанзе, таракана и перца - 48. Как видно, число хромосом не зависит от высоты организации и не всегда указывает на филогенетическое родство. Число хромосом, таким образом, не служит видоспецифическим признаком.Носовокупность признаков хромосомного набора (кариотип) - форма, размеры и число хромосом - свойственна только одному какому-то виду растений или животных.
Число хромосом в соматических клетках всегда парное. Это объясняется тем, что в этих клетках находятся две одинаковые по форме и размерам хромосомы: одна происходит от отцовского, другая - от материнского организма. Хромосомы, одинаковые по форме и размерам и несущие одинаковые гены, называются гомологичными. Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного, или диплоидногонабора, и обозначается 2n. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают как 2с. В половые клетки из каждой пары гомологичных хромосом попадает только одна, поэтому хромосомный набор гамет называется одинарным или гаплоидным.

Изучение деталей строения хромосом метафазной пластинки имеет очень большое значение для диагностики заболеваний человека, обусловленных нарушениями строения хромосом.
В анафазе вязкость цитоплазмы уменьшается, центромеры разъединяются, и с этого момента хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, тянут хромосомы к полюсам клетки, а плечи хромосом при этом пассивно следуют за центромерой. Таким образом, в анафазе хроматиды удвоенных еще в интерфазе хромосом точно расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом (4n4с).
В заключительной стадии - телофазе - хромосомы раскручиваются, деспирализуются. Из мембранных структур цитоплазмы образуется ядерная оболочка. У животных клетка делится на две меньших размеров путем образования перетяжки. У растений цитоплазматическая мембрана возникает в середине клетки и распространяется к периферии, разделяя клетку пополам. После образования поперечной цитоплазматической мембраны у растительных клеток появляется целлюлозная стенка. Так из одной клетки формируются две дочерние, в которых наследственная информация точно копирует информацию, содержавшуюся в материнской клетке. Начиная с первого митотического деления оплодотворенной яйцеклетки (зиготы) все дочерние клетки, образовавшиеся в результате митоза, содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клеток, заключающийся в точном распределении генетического материала между дочерними клетками. В результате митоза обе дочерние клетки получают диплоидный набор хромосом.

Митоз тормозитсявысокой температурой, высокими дозами ионизирующей радиации, действием растительных ядов. Один из таких ядов - колхицин - применяют в цитогенетике: с его помощью можно остановить митоз на стадии метафазной пластинки, что позволяет подсчитать число хромосом и дать каждой из них индивидуальную характеристику, т. е. провести кариотипирование.

В приведенной ниже таблице показаны особенности митоза у растений и у животных:

Шизогония.

Споруляция.

Спора - это одноклеточная репродуктивная единица обычно микроскопических размеров, состоящая из небольшого количества цитоплазмы и ядра. Образование спор наблюдается у бактерий, простейших, у представителей всех групп зеленых растений и всех групп грибов. Споры могут быть различными по своему типу и функции и часто образуются в специальных структурах. Нередко споры образуются в больших количествах и имеют ничтожный вес, что облегчает их распространение ветром, а также животными, главным образом насекомыми. Вследствие малых размеров спора обычно содержит лишь минимальные запасы питательных веществ; из-за того, что многие споры не попадают в подходящее место для прорастания, потери спор очень велики. Главное достоинство таких спор-возможность быстрого размножения и расселения видов, в особенности грибов. Споры бактерий служат, строго говоря, не для размножения, а для того, чтобы выжить при неблагоприятных условиях, поскольку каждая бактерия образует только одну спору. Бактериальные споры относятся к числу наиболее устойчивых: так, например, они нередко выдерживают обработку сильными дезинфицирующими веществами и кипячение в воде.

Почкование.

Почкованием называют одну из форм бесполого размножения, при которой новая особь образуется в виде выроста (почки) на теле родительской особи, а затем отделяется от нее, превращаясь в самостоятельный организм, совершенно идентичный родительскому. Почкование встречается в разных группах организмов, особенно у кишечнополостных, например, у гидры, и у одноклеточных грибов, таких как дрожжи. При почковании одноклеточных на материнской клетке формируются вырост. В дальнейшем ядро делится митозом и одно из образовавшихся ядер перемещается в почку. Почка растет и, достигнув размеров, близких к материнской клетке, отшнуровывается.

У многоклеточных организмов почка формируется как многоклеточная структура в особой зоне – зоне почкования. Причем у кишечнополостных формирующийся организм может отделяться от материнского или оставаться связанным с ним всю жизнь (в результате образуется колония).

Необычная форма почкования описана у суккулентного растения бриофиллум - ксерофита, часто выращиваемого в качестве декоративного комнатного растения: по краям его листьев развиваются миниатюрные растеньица, снабженные маленькими корешками (см. рис.); эти "почки" в конце концов, отпадают и начинают существовать как самостоятельные растения.

Размножение фрагментами (фрагментация).

Фрагментацией называют разделение особи на две или несколько частей, каждая из которых растет и образует новую особь. Фрагментация происходит, например, у нитчатых водорослей, таких как спирогира.

Нить спирогиры может разорваться на две части в любом месте. Фрагментация наблюдается также у некоторых низших животных, которые в отличие от более высокоорганизованных форм сохраняют значительную способность к регенерации из относительно слабо дифференцированных клеток. Например, тело немертин (группа примитивных червей, главным образом морских) особенно легко разрывается на много частей, каждая из которых может дать в результате регенерации новую особь. В этом случае регенерация - процесс нормальный и регулируемый; однако, у некоторых животных (например, у морских звезд) восстановление из отдельных частей происходит только после случайной фрагментации.

Животные, способные к регенерации, служат объектами для экспериментального изучения этого процесса; часто при этом используют свободноживущего червя планарию. Такие эксперименты помогают понять процесс дифференцировки.

Вегетативное размножение.

Вегетативное размножение представляет собой одну из форм бесполого размножения, при которой от растения отделяется относительно большая, обычно дифференцированная, часть и развивается в самостоятельное растение. По существу вегетативное размножение сходно с почкованием. Нередко растения образуют структуры, специально предназначенные для этой цели: луковицы, клубнелуковицы, корневища, столоны и клубни. Некоторые из этих структур служат также для запасания питательных веществ, что позволяет растению пережить периоды неблагоприятных условий, таких как холода или засуха. Запасающие органы позволяют растению переживать зиму и давать в следующем году цветки и плоды (двулетние растения) или выживать в течение ряда лет (многолетние растения). К таким органам, называемым зимующими, относятся луковицы, клубнелуковицы, корневища и клубни. Зимующими органами могут быть также стебли, корни или целые побеги (почки), однако во всех случаях содержащиеся в них питательные вещества создаются главным образом в процессе фотосинтеза, происходящего в листьях текущего года. Образовавшиеся питательные вещества переносятся в запасающий орган, а затем обычно превращаются в какой-либо нерастворимый резервный материал, например крахмал. При наступлении неблагоприятных условий надземные части растения отмирают, а подземный зимующий орган переходит в состояние покоя. В начале следующего вегетационного периода запасы питательных веществ мобилизуются с помощью ферментов: почки пробуждаются, и в них начинаются процессы активного роста и развития за счет запасенных питательных веществ. Если прорастает более одной почки, то можно считать, что осуществилось размножение. В ряде случаев образуются специальные органы, служащие для вегетативного размножения. Таковы видоизмененные части стебля - клубни картофеля, луковицы лука, чеснока, луковички в лиственных пазухах мятлика, откидыши молодила и др. Земляника размножается "усами" (см. рис.). В узлах побегов формируются придаточные корни, а из пазушных почек - побеги с листьями. В дальнейшем междоузлия отмирают, а новое растение утрачивает связь с материнским. В практике сельского хозяйства вегетативное размножение растений используется довольно широко.

Клонирование.

Как уже говорилось, получение идентичных потомков при помощи бесполого размножения называют клонированием. В естественных условиях клоны появляются редко. Общеизвестный пример естественного клонирования, существующего в природе и имеющего место у человека – однояйцевые близнецы, развившиеся из одной яйцеклетки (Это обязательно дети одного пола). До шестидесятых годов двадцатого века клоны получали искусственным путем исключительно при вегетативном размножении растительных организмов, чаще всего для сохранения сортовых признаков и при получении культур микроорганизмов, используемых в медицине. В начале шестидесятых годов были разработаны методы, позволяющие успешно клонировать некоторые высшие растения и животных путем выращивания из отдельных клеток. Эти методы возникли в результате попыток доказать, что ядра зрелых клеток, закончивших свое развитие, содержат всю информацию, необходимую для кодирования всех признаков организма, и что специализация клеток обусловлена включением и выключением определенных генов, а не утратой некоторых из них. Первый успех был достигнут профессором Стюардом из Корнельского университета, который показал, что, выращивая отдельные клетки корня моркови (ее съедобной части) в среде, содержащей нужные питательные вещества и гормоны, можно индуцировать процессы клеточного деления, приводящие к образованию новых растений моркови.

Вскоре после этого Гёрдон, работавший в Оксфордском университете, впервые сумел добиться клонирования позвоночного животного. Позвоночные в естественных условиях клонов не образуют; однако, пересаживая ядро, взятое из клетки кишечника лягушки, в яйцеклетку, собственное ядро которой предварительно было разрушено путем облучения ультрафиолетом, Гёрдону удалось вырастить головастика, а затем и лягушку, идентичную той особи, от которой было взято ядро.

С семидесятых годов ученые предпринимали попытки клонирования млекопитающих. Крохотная овечка Долли – символ очередного этапа успешного развития биотехнологии.

Такого рода эксперименты не только доказывают, что дифференцированные (специализированные) клетки содержат всю информацию, необходимую для развития целого организма, но и позволяют рассчитывать, что подобные методы можно будет использовать для клонирования позвоночных, стоящих на более высоких ступенях развития, в том числе и человека. Техника клонирования сулит, в первую очередь, большие перспективы для животноводства, так как дает возможность получать от любого животного, обладающего ценными качествами, многочисленные генетически идентичные копии с теми же признаками. Клонирование нужных животных, например племенных быков, скаковых лошадей и т.п., может оказаться столь же выгодным, как и клонирование растений, которое, как было сказано, уже производится. Также одна из возможных областей применения данной технологии клонирование редких и исчезающих видов диких животных. Фактически появились реальные технические возможности для клонирования человека. Вот всего лишь несколько проблем, которые решаются таким образом:

1) Устранение генетических дефектов еще во внутриутробном периоде путем замены мутантного гена полноценным;

2) Лечение некоторых форм бесплодия, так как при использовании описанной методики выносить ребенка может не только биологическая, но и суррогатная мать;

3) Получение эмбрионов для запасных частей, используемых во время операций по пересадке органов (мгновенно устраняется проблема тканевой несовместимости – ведь эмбрион будет выращен из клетки самого больного).

Однако применение методов клонирования к человеку сопряжено с серьезными проблемами нравственного порядка. На первый взгляд может показаться, что таким образом можно было бы воспроизводить талантливых ученых или деятелей искусства. Однако надо помнить, что степень влияния, оказываемого на развитие средой, еще не вполне ясна, а между тем любая клонируемая клетка должна снова пройти через все стадии развития, т.е. в случае человека-стадии зародыша, плода, младенца и т.д. Поэтому достижения генной инженерии последних лет вызывают чрезвычайно сильную реакцию общественности и в особенности тех кругов, которые формируют общественное мнение (теологи, философы, журналисты). Генетики и врачи нередко подвергаются яростным нападкам, хотя они первыми забили тревогу, когда обнаружилась опасность экспериментов (в 1973 году у П. Берга из Стэнфорда созрела идея переноса ракового гена в кишечную палочку, что действительно могло создать непредсказуемую опасность). Ряд видных ученых продолжает беспокоиться по поводу возможных осложнений, связанных с межвидовым переносом ДНК. Также совершенно не разработано юридическое обеспечение большинства вопросов.

Заключение.

Размножение – одна из важнейших функций живых организмов. При бесполом размножении потомки происходят от одного организма, без слияния гамет. Мейоз в процессе бесполого размножения не участвует (если не говорить о растительных организмах с чередованием поколений), и потомки идентичны родительской особи. Идентичное потомство, происходящее от одной родительской особи, называется клоном. Образовавшиеся бесполым путем организмы могут быть генетически различными только в случае возникновения мутаций.

Литература:

1. Ясакова Н. Т., Валова Т. А. Биотехнология. – М.: Новосибирская государственная медицинская академия. – 2000. – с. 13-15.

2. http://shpora-da.narod.ru/biology-russian-025-036.htm#027

3. http :// lyceum 1. ssu . runnet . ru /~ dist / biology / textbook _1/05-06_03. html

4.http://www.examen.ru/Examine.nsf/Display?OpenAgent&Pagename=defacto.html&catdoc_id=4F74CB9E5FCD2338C3256A02003DEB74&rootid=BCD8A4FC42508700C3256A39005E8AE6

5. http://schools.keldysh.ru/school1413/bio/mazol/razmn/index.htm

Новое на сайте

>

Самое популярное