Домой Розы Взаимодействие металлов с неметаллами. Химические свойства металлов

Взаимодействие металлов с неметаллами. Химические свойства металлов

Лекция 11. Химические свойства металлов.

Взаимодействие металлов с простыми окислителями. Отношение металлов к воде, водным растворам кислот, щелочей и солей. Роль оксидной пленки и продуктов окисления. Взаимодействие металлов с азотной и концентрированной серной кислотами.

К металлам относятся все s-, d-, f-элементы, а также р-элементы, располагающиеся в нижней части периодической системы от диагонали, проведенной от бора к астату. В простых веществах этих элементов реализуется металлическая связь. Атомы металлов имеют мало электронов на внешней электронной оболочке, в количестве 1, 2, или 3. Металлы проявляют электроположительные свойства и обладают низкой электроотрицательностью, меньшей двух.

Металлам присуще характерные признаки. Это твердые вещества, тяжелее воды, с металлическим блеском. Металлы обладают высокой теплопроводностью и электропроводностью. Для них характерно испускание электронов под действием различных внешних воздействий: облучения светом, при нагревании, при разрыве (экзоэлектронная эмиссия).

Главным признаком металлов является их способность отдавать электроны атомам и ионам других веществ. Металлы являются восстановителями в подавляющем большинстве случаев. И это их характерное химическое свойство. Рассмотрим отношение металлов к типичным окислителям, к которым относятся из простых веществ – неметаллы, вода, кислоты. В таблице 1 приведены сведения об отношении металлов к простым окислителям.

Таблица 1

Отношение металлов к простым окислителям

С фтором реагируют все металлы. Исключение составляют алюминий, железо, никель, медь, цинк в отсутствии влаги. Эти элементы при реакции с фтором в начальный момент образуют пленки фторидов, защищающие металлы от дальнейшего реагирования.

При тех же условиях и причинах, железо пассивируется в реакции с хлором. По отношению к кислороду уже не все, а только ряд металлов образует плотные защитные пленки оксидов. При переходе от фтора к азоту (таблица 1) окислительная активность уменьшается и поэтому все большее число металлов не окисляется. Например, с азотом реагирует только литий и щелочноземельные металлы.

Отношение металлов к воде и водным растворам окислителей.

В водных растворах восстановительная активность металла характеризуется значением его стандартного окислительно-восстановительного потенциала. Из всего ряда стандартных окислительно-восстановительных потенциалов выделяют ряд напряжений металлов, который указан в таблице 2.

Таблица 2

Ряд напряжение металлов

Окислитель Уравнение электродного процесса Стандартный электродный потенциал φ 0 , В Восстановитель Условная активность восстановителей
Li + Li + + e - = Li -3,045 Li Активный
Rb + Rb + + e - = Rb -2,925 Rb Активный
K + K + + e - = K -2,925 K Активный
Cs + Cs + + e - = Cs -2,923 Cs Активный
Ca 2+ Ca 2+ + 2e - = Ca -2,866 Ca Активный
Na + Na + + e - = Na -2,714 Na Активный
Mg 2+ Mg 2+ +2 e - = Mg -2,363 Mg Активный
Al 3+ Al 3+ + 3e - = Al -1,662 Al Активный
Ti 2+ Ti 2+ + 2e - = Ti -1,628 Ti Ср. активности
Mn 2+ Mn 2+ + 2e - = Mn -1,180 Mn Ср. активности
Cr 2+ Cr 2+ + 2e - = Cr -0,913 Cr Ср. активности
H 2 O 2H 2 O+ 2e - =H 2 +2OH - -0,826 H 2 , рН=14 Ср. активности
Zn 2+ Zn 2+ + 2e - = Zn -0,763 Zn Ср. активности
Cr 3+ Cr 3+ +3e - = Cr -0,744 Cr Ср. активности
Fe 2+ Fe 2+ + e - = Fe -0,440 Fe Ср. активности
H 2 O 2H 2 O + e - = H 2 +2OH - -0,413 H 2 , рН=7 Ср. активности
Cd 2+ Cd 2+ + 2e - = Cd -0,403 Cd Ср. активности
Co 2+ Co 2+ +2 e - = Co -0,227 Co Ср. активности
Ni 2+ Ni 2+ + 2e - = Ni -0,225 Ni Ср. активности
Sn 2+ Sn 2+ + 2e - = Sn -0,136 Sn Ср. активности
Pb 2+ Pb 2+ + 2e - = Pb -0,126 Pb Ср. активности
Fe 3+ Fe 3+ +3e - = Fe -0,036 Fe Ср. активности
H + 2H + + 2e - =H 2 H 2 , рН=0 Ср. активности
Bi 3+ Bi 3+ + 3e - = Bi 0,215 Bi Малой активн.
Cu 2+ Cu 2+ + 2e - = Cu 0,337 Cu Малой активн.
Cu + Cu + + e - = Cu 0,521 Cu Малой активн.
Hg 2 2+ Hg 2 2+ + 2e - = Hg 0,788 Hg 2 Малой активн.
Ag + Ag + + e - = Ag 0,799 Ag Малой активн.
Hg 2+ Hg 2+ +2e - = Hg 0,854 Hg Малой активн.
Pt 2+ Pt 2+ + 2e - = Pt 1,2 Pt Малой активн.
Au 3+ Au 3+ + 3e - = Au 1,498 Au Малой активн.
Au + Au + + e - = Au 1,691 Au Малой активн.

В данном ряду напряжений приведены также значения электродных потенциалов водородного электрода в кислой (рН=0), нейтральной (рН=7), щелочной (рН=14) средах. Положение того или иного металла в ряду напряжений характеризует его способность к окислительно-восстановительным взаимодействиям в водных растворах при стандартных условиях. Ионы металлов являются окислителями, а металлы – восстановителями. Чем дальше расположен металл в ряду напряжений, тем более сильным окислителем в водном растворе являются его ионы. Чем ближе металл к началу ряда, тем более сильным восстановителем он является.

Металлы способны вытеснять друг друга из растворов солей. Направление реакции определяется при этом их взаимным положением в ряду напряжений. Следует иметь в виду, что активные металлы вытесняют водород не только из воды, но и из любого водного раствора. Поэтому взаимное вытеснение металлов из растворов их солей происходит лишь в случае металлов, расположенных в ряду напряжений после магния.



Все металлы разделяют на три условные группы, что отражено в следующей таблице.

Таблица 3

Условное деление металлов

Взаимодействие с водой. Окислителем в воде является ион водорода. Поэтому окисляться водой могут только те металлы, стандартные электродные потенциалы которых ниже потенциала ионов водорода в воде. Он зависит от рН среды и равен

φ = -0,059рН.

В нейтральной среде (рН=7) φ = -0,41 В. Характер взаимодействия металлов с водой представлен в таблице 4.

Металлы из начала ряда, имеющие потенциал, значительно более отрицательный, чем -0,41 В, вытесняют водород из воды. Но уже магний вытесняет водород только из горячей воды. Обычно металлы, расположенные между магнием и свинцом не вытесняют водород из воды. На поверхности этих металлов образуются оксидные пленки, которые обладают защитным действием.

Таблица 4

Взаимодействие металлов с водой в нейтральной среде

Взаимодействие металлов с хлорводородной кислотой.

Окислителем в соляной кислоте является ион водорода. Стандартный электродный потенциал водородного иона равен нулю. Поэтому все активные металлы и металлы средней активности должны реагировать с кислотой. Только для свинца проявляется пассивация.

Таблица 5

Взаимодействие металлов с соляной кислотой

Медь может быть растворена в очень концентрированной соляной кислоте, не смотря на то, что относится к малоактивным металлам.

Взаимодействие металлов с серной кислотой происходит различно и зависит от её концентрации.

Взаимодействие металлов с разбавленной серной кислотой. Взаимодействие с разбавленной серной кислотой осуществляется так же, как и с соляной кислотой.

Таблица 6

Взаимодействие металлов с разбавленной серной кислотой

Разбавленная серная кислота окисляет своим ионом водорода. Она взаимодействует с теми металлами, электродные потенциалы которых ниже, чем у водорода. Свинец не растворяется в серной кислоте при её концентрации ниже 80%, так как образующаяся при взаимодействии свинца с серной кислотой соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Взаимодействие металлов с концентрированной серной кислотой.

В концентрированной серной кислоте в роли окислителя выступает сера в степени окисления +6. Она входит в состав сульфат-иона SO 4 2- . Поэтому концентрированной кислотой окисляются все металлы, стандартный электродный потенциал которых меньше, чем у окислителя. Наибольшее значение электродного потенциала в электродных процессах с участием сульфат-иона в качестве окислителя равно 0,36 В. Вследствие этого с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.

Для металлов средней активности (Al, Fe) имеет место пассивация из-за образования плотных пленок оксидов. Олово окисляется до четырехвалентного состояния с образованием сульфата олова (IV):

Sn + 4 H 2 SO 4 (конц.) = Sn(SO 4) 2 +2SO 2 + 2H 2 O.

Таблица 7

Взаимодействие металлов с концентрированной серной кислотой

Свинец окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца. В горячей концентрированной серной кислоте растворяется ртуть с образованием сульфатов ртути (I) и ртути (II). В кипящей концентрированной серной кислоте растворяется даже серебро.

Следует иметь в виду, что чем активнее металл, тем глубже степень восстановления серной кислоты. С активными металлами кислота восстанавливается в основном до сероводорода, хотя присутствуют и другие продукты. Например

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ +4H 2 O;

4Zn +5H 2 SO 4 = 4ZnSO 4 = 4ZnSO 4 +H 2 S +4H 2 O.

Взаимодействие металлов с разбавленной азотной кислотой.

В азотной кислоте в качестве окислителя выступает азот в степени окисления +5. Максимальное значение электродного потенциала для нитрат-иона разбавленной кислоты как окислителя равно 0,96 В. Вследствие такого большого значения, азотная кислота более сильный окислитель, чем серная. Это видно из того, что азотная кислота окисляет серебро. Восстанавливается кислота тем глубже, чем активнее металл и чем более разбавлена кислота.

Таблица 8

Взаимодействие металлов с разбавленной азотной кислотой

Взаимодействие металлов с концентрированной азотной кислотой.

Концентрированная азотная кислота обычно восстанавливается до диоксида азота. Взаимодействие концентрированной азотной кислоты с металлами представлено в таблице 9.

При использовании кислоты в недостатке и без перемешивания активные металлы восстанавливают её до азота, а металлы среднеё активности до монооксида углерода.

Таблица 9

Взаимодействие концентрированной азотной кислоты с металлами

Взаимодействие металлов с растворами щелочей.

Щелочами металлы окисляться не могут. Это обусловлено тем, что щелочные металлы являются сильными восстановителями. Поэтому их ионы самые слабые окислители и в водных растворах окислительных свойств не проявляют. Однако в присутствии щелочей окисляющее действие воды проявляется в большей степени, чем в их отсутствие. Благодаря этому, в щелочных растворах металлы окисляются водой с образование гидроксидов и водорода. Если оксид и гидроксид относятся к амфотерным соединениям, то они будут растворяться в щелочном растворе. В результате пассивные в чистой воде металлы энергично взаимодействуют с растворами щелочей.

Таблица 10

Взаимодействие металлов с растворами щелочей

Процесс растворения представляется в виде двух стадий: окисления металла водой и растворения гидроксида:

Zn + 2HOH = Zn(OH) 2 ↓ + H 2 ;

Zn(OH) 2 ↓ + 2NaOH = Na 2 .

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично - р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

Ме - ne = Me n +

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом .

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды .

Например :

Ca + H 2 = CaH 2

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

2Na + O 2 = Na 2 O 2 (пероксид)

4K + O 2 = 2K 2 O

2Mg + O 2 = 2MgO

2Cu + O 2 = 2CuO

в) Взаимодействие металлов с галогенами .

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

2Al + 3Br 2 = 2AlBr 3

В основном это ионные соединения: MeHal n

г) Взаимодействие металлов с азотом .

С азотом взаимодействуют щелочные и щелочноземельные металлы.

Пример :

3Ca + N 2 = Ca 3 N 2

Mg + N 2 = Mg 3 N 2 - нитрид.

д) Взаимодействие металлов с углеродом .

Соединения металлов и углерода - карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

4Al + 3C = Al 4 C 3

Металлы - d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC - используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Na + 2H 2 O = H 2 + 2NaOH

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Zn + CuSO 4 = Cu 0 ↓ + ZnSO 4

0,76 B., = + 0,34 B.

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

Пример :

Zn + 2NaOH + 2H 2 O = Na 2 + H 2


1 Zn 0 + 4OH - - 2e = 2- окисление

Zn 0 - восстановитель

1 2H 2 O + 2e = H 2 + 2OH - восстановление

H 2 O - окислитель

Zn + 4OH - + 2H 2 O = 2- + 2OH - + H 2

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

4Nb +5O 2 +12KOH = 4K 3 NbO 4 + 6H 2 O

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа - кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H 2 SO 4(разб.) , H 3 PO 4 , H 2 S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H 2 ). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа - кислоты, обладающие высокой окислительной способностью: H 2 SO 4(конц.) , HNO 3(разб.) , HNO 3(конц.) . В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H 2 S - c активными металлами

H 2 SO 4 +6е S 0 ↓ - с металлами средней активности

SO 2 - c малоактивными металлами

NH 3 (NH 4 NO 3)- c активными металлами

HNO 3 +4,5e N 2 O, N 2 - с металлами средней активности

NO - c малоактивными металлами

HNO 3(конц.) - NO 2 - c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы - степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.


По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Восстановительные свойства - это главные химические свойства, характерные для всех металлов. Они проявляются во взаимодействии с самыми разнообразными окислителями, в том числе с окислителями из окружающей среды. В общем виде взаимодействие металла с окислителями можно выразить схемой:

Ме + Окислитель " Me (+Х),

Где (+Х) - это положительная степень окисления Ме.

Примеры окисления металлов.

Fe + O 2 → Fe(+3) 4Fe + 3O 2 = 2 Fe 2 O 3

Ti + I 2 → Ti(+4) Ti + 2I 2 = TiI 4

Zn + H + → Zn(+2) Zn + 2H + = Zn 2+ + H 2

  • Ряд активности металлов

    Восстановительные свойства металлов отличаются друг от друга. В качестве количественной характеристики восстановительных свойств металлов используют электродные потенциалы Е.

    Чем активнее металл, тем отрицательнее его стандартный электродный потенциал Е о.

    Металлы, расположенные в ряд по мере убывания окислительной активности, образуют ряд активности.

    Ряд активности металлов

    Me Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H 2 Cu Ag Au
    Me z+ Li + K + Ca 2+ Na + Mg 2+ Al 3+ Mn 2+ Zn 2+ Cr 3+ Fe 2+ Ni 2+ Sn 2+ Pb 2+ H + Cu 2+ Ag + Au 3+
    E o ,B -3,0 -2,9 -2,87 -2,71 -2,36 -1,66 -1,18 -0,76 -0,74 -0,44 -0,25 -0,14 -0,13 0 +0,34 +0,80 +1,50
    Металл, с более отрицательным значением Ео, способен восстановить катион металла с более положительным электродным потенциалом.

    Восстановление металла из раствора его соли с другим металлом с более высокой восстановительной активностью называется цементацией . Цементацию используют в металлургических технологиях.

    В частности, Cd получают, восстанавливая его из раствора его соли цинком.

    Zn + Cd 2+ = Cd + Zn 2+

  • 3.3. 1. Взаимодействие металлов с кислородом

    Кислород - это сильный окислитель. Он может окислить подавляющее большинство металлов, кроме Au и Pt . Металлы, находящиеся на воздухе, контактируют с кислородом, поэтому при изучении химии металлов всегда обращают внимание на особенности взаимодействия металла с кислородом.

    Всем известно, что железо во влажном воздухе покрывается ржавчиной - гидратировааным оксидом железа. Но многие металлы в компактном состоянии при не слишком высокой температуре проявляют устойчивость к окислению, так как образуют на своей поверхности тонкие защитные пленки. Эти пленки из продуктов окисления не позволяют окислителю контактировать с металлом. Явление образования на поверхности металла защитных слоев, препятствующих окислению металла, называется - пассивацией металла.

    Повышение температуры способствует окислению металлов кислородом . Активность металлов повышается в мелкораздробленном состоянии. Большинство металлов в виде порошка сгорает в кислороде.

  • s-металлы

    Наибольшую восстановительную активность проявляют s -металлы. Металлы Na, K, Rb Cs способны воспламеняться на воздухе, и их хранят в запаянных сосудах или под слоем керосина. Be и Mg при невысоких температурах на воздухе пассивируются. Но при поджигании лента из Mg сгорает с ослепительным пламенем.

    Металлы II А-подгруппы и Li при взаимодействии с кислородом образуют оксиды .

    2Ca + O 2 = 2CaO

    4 Li + O 2 = 2Li 2 O

    Щелочные металлы, кроме Li , при взаимодействии с кислородом образуют не оксиды, а пероксиды Me 2 O 2 и надпероксиды MeO 2 .

    2Na + O 2 = Na 2 O 2

    K + O 2 = KO 2

  • р-металлы

    Металлы, принадлежащие p -блоку на воздухе пассивируются.

    При горении в кислороде

    • металлы IIIА-подгруппы образуют оксиды типа Ме 2 О 3 ,
    • Sn окисляется до SnO 2 , а Pb - до PbO
    • Bi переходит в Bi 2 O 3 .
  • d-металлы

    Все d -металлы 4 периода окисляются кислородом . Легче всего окисляются Sc, Mn , Fe. Особенно устойчивы к коррозии Ti, V, Cr.

    При сгорании в кислороде из всех d

    При сгорании в кислороде из всех d -элементов 4 периода только скандий, титан и ванадий образуют оксиды, в которых Ме находится в высшей степени окисления, равной № группы. Остальные d-металлы 4 периода при сгорании в кислороде образуют оксиды, в которых Ме находится в промежуточных, но устойчивых степенях окисления.

    Типы оксидов, образуемых d-металлами 4 периода при горении в кислороде:

    • МеО образуют Zn, Cu, Ni, Co. (при Т>1000оС Cu образует Cu 2 O),
    • Ме 2 О 3 , образуют Cr, Fe и Sc,
    • МеО 2 - Mn, и Ti,
    • V образует высший оксид -V 2 O 5 .
    d -металлы 5 и 6 периодов, кроме Y, La, более всех других металлов устойчивы к окислению. Не реагируют с кислородом Au, Pt.

    При сгорании в кислороде d -металлов 5и 6 периодов, как правило, образуют высшие оксиды , исключение составляют металлы Ag, Pd, Rh, Ru.

    Типы оксидов, образуемых d-металлами 5и 6 периодов при горении в кислороде:

    • Ме 2 О 3 - образуют Y, La; Rh;
    • МеО 2 - Zr, Hf; Ir:
    • Me 2 O 5 - Nb, Ta;
    • MeO 3 - Mo, W
    • Me 2 O 7 - Tc, Re
    • МеО 4 - Os
    • MeO - Cd, Hg, Pd;
    • Me 2 O - Ag;
  • Взаимодействие металлов с кислотами

    В растворах кислот катион водорода является окислителем . Катионом Н + могут быть окислены металлы, стоящие в ряду активности до водорода , т.е. имеющие отрицательные электродные потенциалы.

    Многие металлы, окисляясь, в кислых водных растворах многие переходят в катионы Me z + .

    Анионы ряда кислот способны проявлять окислительные свойства, более сильные, чем Н + . К таким окислителям относятся анионы и самых распространенных кислот H 2 SO 4 и HNO 3 .

    Анионы NO 3 - проявляют окислительные свойства при любой их концентрации в растворе, но продукты восстановления зависят от концентрации кислоты и природы окисляемого металла.

    Анионы SO 4 2- проявляют окислительные свойства лишь в концентрированной H 2 SO 4 .

    Продукты восстановления окислителей: H + , NO 3 - , SO 4 2 -

    2Н + + 2е - = Н 2

    SO 4 2- из концентрированной H 2 SO 4 SO 4 2- + 2e - + 4 H + = SO 2 + 2 H 2 O

    (возможно также образование S, H 2 S)

    NO 3 - из концентрированной HNO 3 NO 3 - + e - + 2H + = NO 2 + H 2 O
    NO 3 - из разбавленной HNO 3 NO 3 - + 3e - + 4H + = NO + 2H 2 O

    (возможно также образование N 2 O, N 2 , NH 4 +)

    Примеры реакций взаимодействия металлов с кислотами

    Zn + H 2 SO 4 (разб.) " ZnSO 4 + H 2

    8Al + 15H 2 SO 4 (к.) " 4Al 2 (SO 4) 3 + 3H 2 S + 12H 2 O

    3Ni + 8HNO 3 (разб.) " 3Ni(NO 3) 2 + 2NO + 4H 2 O

    Cu + 4HNO 3 (к.) " Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • Продукты окисления металлов в кислых растворах

    Щелочные металлы образуют катион типа Ме + , s-металлы второй группы образуют катионы Ме 2+ .

    Металлы р-блока при растворении в кислотах образуют катионы, указанные в таблице.

    Металлы Pb и Bi растворяют только в азотной кислоте.

    Me Al Ga In Tl Sn Pb Bi
    Mez+ Al 3+ Ga 3+ In 3+ Tl + Sn 2+ Pb 2+ Bi 3+
    Eo,B -1,68 -0,55 -0,34 -0,34 -0,14 -0,13 +0,317

    Все d-металлы 4 периода, кроме Cu, могут быть окислены ионами Н + в кислых растворах.

    Типы катионов, образуемых d-металлами 4 периода:

    • Ме 2+ (образуют d-металлы начиная от Mn до Cu)
    • Ме 3+ (образуют Sc, Ti , V , Cr и Fe в азотной кислоте).
    • Ti и V образуют также катионы МеО 2+
    d -элементы 5 и 6 периодов более устойчивы к окислению, чем 4 d - металлы.

    В кислых растворах Н + может окислить: Y, La, Сd.

    В HNO 3 могут растворяться: Cd, Hg, Ag. В горячей HNO 3 растворяются Pd, Tc, Re.

    В горячей H 2 SO 4 растворяются: Ti, Zr, V, Nb, Tc, Re, Rh, Ag, Hg.

    Металлы: Ti, Zr, Hf, Nb, Ta, Mo, W обычно растворяют в смеси HNO 3 + HF.

    В царской водке (смеси HNO 3 + HCl) можно растворить Zr, Hf, Mo, Tc, Rh, Ir, Pt, Au и Os с трудом). Причиной растворения металлов в царской водке или в смеси HNO 3 + HF является образование комплексных соединений.

    Пример. Растворение золота в царской водке становится возможным из-за образования комплекса -

    Au + HNO 3 + 4HCl = H + NO + 2H 2 O

  • Взаимодействие металлов с водой

    Окислительные свойства воды обусловлены Н(+1).

    2Н 2 О + 2е - " Н 2 + 2ОН -

    Так как концентрация Н + в воде мала, окислительные свойства ее невысоки. В воде способны растворяться металлы с Е < - 0,413 B. Число металлов, удовлетворяющих этому условию, значительно больше, чем число металлов, реально растворяющихся в воде. Причиной этого является образование на поверхности большинства металлов плотного слоя оксида, нерастворимого в воде. Если оксиды и гидроксиды металла растворимы в воде, то этого препятствия нет, поэтому щелочные и щелочноземельные металлы энергично растворяются в воде. Все s -металлы, кроме Be и Mg легко растворяются в воде.

    2 Na + 2 HOH = H 2 + 2 OH -

    Na энергично взаимодействует с водой с выделением тепла. Выделяющийся Н 2 может воспламениться.

    2H 2 +O 2 =2H 2 O

    Mg растворяется только в кипящей воде, Ве защищен от окисления инертным нерастворимым оксидом

    Металлы р-блока - менее сильные восстановители, чем s .

    Среди р-металлов восстановительная активность выше у металлов IIIА-подгруппы, Sn и Pb - слабые восстановители, Bi имеет Ео > 0 .

    р-металлы при обычных условиях в воде не растворяются . При растворении защитного оксида с поверхности в щелочных растворах водой окисляются Al, Ga и Sn.

    Среди d-металлов водой окисляются при нагревании Sc и Mn, La, Y. Железо реагирует с водяным паром.

  • Взаимодействие металлов с растворами щелочей

    В щелочных растворах окислителем выступает вода .

    2Н 2 О + 2е - = Н 2 + 2ОН - Ео = - 0,826 B (рН =14)

    Окислительные свойства воды с ростом рН понижаются, из-за уменьшения концентрации Н + . Тем не менее, некоторые металлы, не растворяющиеся в воде, растворяются в растворах щелочей, например, Al, Zn и некоторые другие. Главная причина растворения таких металлов в щелочных растворах заключается в том, что оксиды и гидроксиды этих металлов проявляют амфотерность, растворяются в щелочи, устраняя барьер между окислителем и восстановителем.

    Пример. Растворение Al в растворе NaOH.

    2Al + 3H 2 O +2NaOH + 3H 2 O = 2Na + 3H 2

  • Новое на сайте

    >

    Самое популярное