Домой Полезные советы Известны следующие формулы кристаллогидратов хлорида хрома 3. Хром и его соединения

Известны следующие формулы кристаллогидратов хлорида хрома 3. Хром и его соединения

Проблема исследования: при прокаливании кристаллогидрат не обезвоживается, а переходит в другие координационные изомеры. При прокаливании выше 300 градусов образуется оксид хрома.

Я растерла в ступке кристаллогидрат CrCl 3 *6H 2 O до порошка. В лаборатории он присутствовал в виде изомера темно-зеленого цвета Cl*2H 2 O. Порошок я прокаливала на горелке в фарфоровом тигле. Сначала при 110 градусах вещество плавится. При 200 оно начинает кипеть и переходить в другой изомер фиолетового цвета, образующийся сверху пленкой:

2H 2 O = 3 + + 2Cl –

Не допускаем увеличения температуры выше t кипения, чтобы не образовался оксид хрома (III):

Cl*2H 2 O = Cr 2 O 3 + 6HCl + 9H 2 O

Заканчиваем прокаливание после затвердевания расплава. Счищаем из полученного продукта фиолетовую «корочку».

Продукт может содержать основную соль, т.к. происходит обратимый гидролиз:

CrCl 3 + H 2 O = Cr(OH)Cl 2 + HCl

Константа гидролиза: 1,12*10 −4

Далее насыпаем фиолетовую «корочку» в лодочку, которую помещаем в реакционную трубку. Пропускаем через трубку до появления ярко-фиолетовой окраски безводного хлорида хрома (III) сухой хлороводород, полученный в колбе Вюрца по реакции

H 2 SO 4 + NaCl = HCl + NaHSO 4

HCl смещает равновесие гидролиза влево, так как HCl – продукт гидролиза CrCl 3

Выводы:

1. Получить в лаборатории безводный хлорид хрома (III) непросто

2. Безводный CrCl 3 долго растворяется в воде, так как должен образоваться сначала гидратный комплекс. Но мой растворился за 5 секунд, значит, большинство продукта состояло из кристаллогидрата

3. Изучены температуры перехода координационных изомеров CrCl 3 *6H 2 O

4. Появилась гипотеза, что безводный CrCl 3 лучше получать при низких температурах (0 ̊С)



Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Оксид хрома (III) Cr 2 O 3 . Зеленые гексагональные микрокристаллы. t пл =2275°С, t кип =3027°С, плотность равна 5,22 г/см 3 . Проявляет амфотерные свойства. Антиферромагнитны ниже 33°С и парамагнитны выше 55°С. Растворяется в жидком диоксиде серы. Мало растворим в воде, разбавленных кислотах и щелочах. Получают прямым взаимодействием элементов при повышенной температуре, нагреванием CrO на воздухе, прокаливанием хромата или бихромата аммония, гидроксида или нитрата хрома (III), хромата ртути (I), бихромата ртути. Применяют в качестве зеленого пигмента в живописи и для окрашивания фарфора и стекла. Кристаллический порошок используется в качестве абразивного материала. Применяют для получения искусственных рубинов. Служит катализатором процесса окисления аммиака на воздухе, синтеза аммиака из элементов и других.

Таблица 6. .

Его можно получить при непосредственном взаимодействии элементов, прокаливанием нитрата хрома(III) или хромового ангидрида, разложением хромата или дихромата аммония, нагреванием хроматов металлов с углем или серой:

4Cr + 3O 2 → 2Cr 2 O 3

4Cr(NO 3) 3 → 2Cr 2 O 3 + 12NO 2 + 3O 2

(NH 4) 2 Cr 2 O 7 → Cr 2 O 3 + N 2 + 4H 2 O

4CrO 3 → 2Cr 2 O 3 + 3O 2

K 2 Cr 2 O 7 + S → Cr 2 O 3 + K 2 SO 4

K 2 Cr 2 O 7 + 2C → Cr 2 O 3 + K 2 CO 3 + CO .

Оксид хрома(III) проявляет амфотерные свойства, но весьма инертен и его трудно растворить в водных кислотах и щелочах. При сплавлении с гидроксидами или карбонатами щелочных металлов переходит в соответствующие хроматы:

Cr 2 O 3 + 4KOH + KClO 3 →2K 2 CrO 4 + KCl + 2H 2 O.

Твердость кристаллов оксида хрома(III) соизмерима с твердостью корунда, поэтому Cr 2 O 3 является действующим началом многих шлифовальных и притирочных паст в машиностроении, оптической, ювелирной и часовой промышленности. Его также применяют в качестве зеленого пигмента в живописи и для окрашивания некоторых стекол, как катализатор гидрирования и дегидрирования некоторых органических соединений. Оксид хрома(III) довольно токсичен. Попадая на кожу, способен вызывать экзему и другие кожные заболевания. Особенно опасно вдыхание аэрозоля оксида, так как это может вызвать тяжелые заболевания. ПДК 0,01 мг/м3. Профилактика – использование средств индивидуальной защиты.

Гидроксид хрома (III) Cr(OH) 3 . Обладает амфотерными свойствами. Мало растворим в воде. Легко переходит с коллоидное состояние. Растворяется в щелочах и кислотах. Молярная электропроводность при бесконечном разведении при 25 о С равна 795,9 Cм.см 2 /моль. Получают в виде студнеобразного зеленого осадка при обработке солей хрома (III) щелочами, при гидролизе солей хрома (III) с карбонатами щелочных металлов или сульфидом аммония.

Таблица 7. .

Фторид хрома (III) CrF 3 . Парамагнитные зеленые ромбические кристаллы. t пл =1200°С , t кип =1427°С, плотность равна 3,78 г/см 3 . Растворяется в плавиковой кислоте и мало растворим в воде. Молярная электропроводность при бесконечном разведении при 25 о С равна 367,2 см 2 /моль. Получают действием плавиковой кислоты на оксид хрома (III), пропусканием фтороводорода над нагретым до 500-1100 о С хлоридом хрома (III). Водные растворы используют в производстве шелка, при переработке шерсти и фторировании галогенпроизводных этана и пропана.

Хлорид хрома (III) CrCl 3 . Гексагональные парамагнитные кристаллы имеют окраску цветов персикового дерева. Расплываются на воздухе. t пл =1150°С, плотность равна 2,87 г/см 3 . Безводный CrCl 3 мало растворим в воде, спирте, эфире, ацетальдегиде, ацетоне. Восстанавливается при высокой температуре до металлического хрома кальцием, цинком, магнием, водородом, железом. Молярная электропроводность при бесконечном разведении при 25 о С равна 430,05 см 2 /моль. Получают прямым взаимодействием элементов при нагревании, действием хлора на нагретую до 700-800 о С смесь оксида хрома (III) с углем или на нагретый до красного каления сульфид хрома (III). Применяют в качестве катализатора в реакциях органического синтеза.

Таблица 8.

в безводном состоянии кристаллическое вещество, имеющее окраску цветов персикового дерева (близкая к фиолетовой), трудно растворимое в воде, спирте, эфире и пр. даже при кипячении. Однако в присутствии следовых количеств CrCl 2 растворение в воде наступает быстро с большим выделением тепла. Может быть получен при взаимодействии элементов при температуре красного каления, обработкой хлором смеси оксида металла и угля при 700–800°С, или взаимодействием CrCl 3 с парами CCl 4 при 700-800°С:

Cr 2 O 3 + 3C + 3Cl 2 → 2CrCl 3 + 3CO

2Cr 2 O 3 + 3CCl 4 → 4CrCl 3 + 3CO 2 .

Образует несколько изомерных гексагидратов, свойства которых зависят от числа молекул воды, находящихся во внутренней координационной сфере металла. Хлорид гексааквахрома (III) (фиолетовый хлорид Рекура) Cl 3 – кристаллы серовато-синего цвета, хлорид хлорпентааквахрома(III) (хлорид Бьеррума) Cl 2 H 2 O – гигроскопичное светло-зеленое вещество; хлорид дихлортетрааквахрома (III) (зеленый хлорид Рекура) Cl 2H 2 O – темно-зеленые кристаллы. В водных растворах устанавливается термодинамическое равновесие между тремя формами, зависящее от многих факторов. Структуру изомера можно определить по количеству осаждаемого им хлорида серебра из холодного азотнокислого раствора AgNO 3 , так как хлорид-анион, входящий во внутреннюю сферу, с катионом Ag + не взаимодействует. Безводный хлорид хрома применяется для нанесения покрытий хрома на стали химическим осаждением из газовой фазы, является составной частью некоторых катализаторов. Гидраты CrCl 3 – протрава при крашении тканей. Хлорид хрома(III) токсичен.

Бромид хрома (III) CrBr 3 . Зеленые гексагональные кристаллы. t пл =1127°С, плотность равна 4,25 г/см 3 . Сублимируется при 927°С. Восстанавливается до CrBr 2 водородом при нагревании. Разлагается щелочами и растворяется в воде только в присутствии солей хрома (II). Молярная электропроводность при бесконечном разведении при 25 о С равна 435,3 см 2 /моль. Получают действием паров брома в присутствии азота на металлический хром или на смесь оксида хрома (III) с углем при высокой температуре.

Иодид хрома (III) CrI 3 . Фиолетово-черные кристаллы. Устойчив на воздухе при обычной температуре. При 200°С реагирует с кислородом с выделением йода. Растворяется в воде в присутствии солей хрома (II). Молярная электропроводность при бесконечном разведении при 25 о С равна 431,4 см 2 /моль. Получают действием паров йода на нагретый до красного каления хром.

Оксифторид хрома (III) CrOF. Твердое зеленое вещество. Плотность равна 4,20 г/см3 . Устойчив при повышенной температуре и разлагается при охлаждении. Получают действием фтороводорода на оксид хрома (III) при 1100 о С.

Сульфид хрома (III) Cr 2 S 3 . Парамагнитные черные кристаллы. Плотность равна 3,60 г/см 3 . Гидролизуется водой. Плохо реагирует с кислотами, но окисляется азотной кислотой, царской водкой или расплавами нитратов щелочных металлов. Получают действием паров серы на металлический хром при температуре выше 700 о С, сплавлением Cr 2 O 3 с серой или K 2 S, пропусканием сероводорода над сильно нагретыми Cr 2 O 3 или CrCl 3 .

Сульфат хрома (III) Cr 2 (SO 4 ) 3 . Парамагнитные фиолетово-красные кристаллы. Плотность равна 3,012 г/см 3 . Безводный сульфат хрома (III) мало растворим в воде и кислотах. При высокой температуре разлагается. Водные растворы окрашены в фиолетовый цвет на холоду и в зеленый - при нагревании. Известны кристаллогидраты CrSО 4 nН 2 О (n=3, 6, 9, 12, 14, 15, 17, 18). Молярная электропроводность при бесконечном разведении при 25 о С равна 882 см 2 /моль. Получают дегидратацией кристаллогидратов или нагреванием Cr 2 O 3 с метилсульфатом при 160-190 о С. Применяют при дублении кож и в качестве протравы при крашении в ситценабивном производстве.

Ортофосфат хрома (III) CrPO 4 . Черный порошок. t пл =1800°С, плотность равна 2,94 г/см 3 . Мало растворим в воде. Медленно взаимодействует с горячей серной кислотой. Известны кристаллогидраты CrРО 4 nН 2 О (n=2, 3, 4, 6). Молярная электропроводность при бесконечном разведении при 25 о С равна 408 см 2 /моль. Получают дегидратацией кристаллогидратов.

Хромокалиевые квасцы K 2 SO 4 Cr 2 (SO 4 ) 3 24H 2 O , темно-фиолетовые кристаллы, довольно хорошо растворимые в воде. Могут быть получены при выпаривании водного раствора, содержащего стехиометрическую смесь сульфатов калия и хрома, или восстановлением дихромата калия этанолом:

Cr 2 (SO 4) 3 + K 2 SO 4 + 24H 2 O →K 2 SO 4 Cr 2 (SO 4) 3 24H 2 O↓ (при выпаривании)

K 2 Cr 2 O 7 + 3C 2 H 5 OH + 4H 2 SO 4 + 17H 2 O→K 2 SO 4 Cr 2 (SO 4) 3 24H 2 O↓ + 3CH 3 CHO

Хромокалиевые квасцы применяются главным образом в текстильной промышленности, при дублении кожи.

При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают оксид хрома( IV ) CrO 2 , который является ферромагнетиком и обладает металлической проводимостью .

Хлорид хрома(III) - CrCl 3 .

Свойства

Хлорид хрома(III) представляет собой фиолетовые кристаллы. При 600 °C возгоняется в токе хлора и разлагается в его отсутствие на хлор и CrCl 2 . В воде растворим в присутствии восстановителей (Cr 2+ , Fe 2+).

Получение

В технике получают высокотемпературным хлорированием хрома , феррохрома , а также хромовой руды в присутствии угля с раздельной конденсацией образующихся в двух последних случаях хлоридов хрома и железа . Безводный хлорид хрома(III) может быть получен хлорированием из металлического хрома прямо или косвенно, путём хлорирования оксида хрома(III) в присутствии углерода при температуре 800 °C, окись углерода в данном случае будет являться побочным продуктом реакции:

\mathsf{Cr_2O_3+3C+3Cl_2 \longrightarrow \ 2CrCl_3+3CO}

Применение

Применяют при электролитическом и металлотермическом получении хрома.

Меры предосторожности

Хоть и считается что трехвалентный хром гораздо менее ядовит, чем шестивалентный, однако хромовые соли, как правило, считаются токсичными.

Напишите отзыв о статье "Хлорид хрома(III)"

Отрывок, характеризующий Хлорид хрома(III)

Дело Пьера с Долоховым было замято, и, несмотря на тогдашнюю строгость государя в отношении дуэлей, ни оба противника, ни их секунданты не пострадали. Но история дуэли, подтвержденная разрывом Пьера с женой, разгласилась в обществе. Пьер, на которого смотрели снисходительно, покровительственно, когда он был незаконным сыном, которого ласкали и прославляли, когда он был лучшим женихом Российской империи, после своей женитьбы, когда невестам и матерям нечего было ожидать от него, сильно потерял во мнении общества, тем более, что он не умел и не желал заискивать общественного благоволения. Теперь его одного обвиняли в происшедшем, говорили, что он бестолковый ревнивец, подверженный таким же припадкам кровожадного бешенства, как и его отец. И когда, после отъезда Пьера, Элен вернулась в Петербург, она была не только радушно, но с оттенком почтительности, относившейся к ее несчастию, принята всеми своими знакомыми. Когда разговор заходил о ее муже, Элен принимала достойное выражение, которое она – хотя и не понимая его значения – по свойственному ей такту, усвоила себе. Выражение это говорило, что она решилась, не жалуясь, переносить свое несчастие, и что ее муж есть крест, посланный ей от Бога. Князь Василий откровеннее высказывал свое мнение. Он пожимал плечами, когда разговор заходил о Пьере, и, указывая на лоб, говорил:
– Un cerveau fele – je le disais toujours. [Полусумасшедший – я всегда это говорил.]
– Я вперед сказала, – говорила Анна Павловна о Пьере, – я тогда же сейчас сказала, и прежде всех (она настаивала на своем первенстве), что это безумный молодой человек, испорченный развратными идеями века. Я тогда еще сказала это, когда все восхищались им и он только приехал из за границы, и помните, у меня как то вечером представлял из себя какого то Марата. Чем же кончилось? Я тогда еще не желала этой свадьбы и предсказала всё, что случится.
Анна Павловна по прежнему давала у себя в свободные дни такие вечера, как и прежде, и такие, какие она одна имела дар устроивать, вечера, на которых собиралась, во первых, la creme de la veritable bonne societe, la fine fleur de l"essence intellectuelle de la societe de Petersbourg, [сливки настоящего хорошего общества, цвет интеллектуальной эссенции петербургского общества,] как говорила сама Анна Павловна. Кроме этого утонченного выбора общества, вечера Анны Павловны отличались еще тем, что всякий раз на своем вечере Анна Павловна подавала своему обществу какое нибудь новое, интересное лицо, и что нигде, как на этих вечерах, не высказывался так очевидно и твердо градус политического термометра, на котором стояло настроение придворного легитимистского петербургского общества.

Новое на сайте

>

Самое популярное