Домой Земледелие Перегрузка 8g что. Аэродинамические перегрузки. в тренировочном варианте

Перегрузка 8g что. Аэродинамические перегрузки. в тренировочном варианте

В данной статье репетитор по физике и математике рассказывает о том, как рассчитать перегрузку, которую испытывает тело в момент разгона или торможения. Данный материал очень плохо рассматривается в школе, поэтому школьники очень часто не знают, как осуществлять расчёт перегрузки , а ведь соответствующие задания встречаются на ЕГЭ и ОГЭ по физике. Так что дочитайте эту статью до конца или посмотрите прилагающийся видеоурок. Знания, которые вы получите, пригодятся вам на экзамене.


Начнём с определений. Перегрузкой называется отношение веса тела к величине силы тяжести, действующей на это тело у поверхности земли. Вес тела — это сила, которая действует со стороны тела на опору или подвес. Обратите внимание, вес — это именно сила! Поэтому измеряется вес в ньютонах, а не в килограммах, как некоторые считают.

Таком образом, перегрузка — это безразмерная величина (ньютоны делятся на ньютоны, в результате ничего не остаётся). Однако, иногда эту величину выражают в ускорениях свободного падения. Говорят, к примеру, что перегрузка равна , имея ввиду, что вес тела вдвое больше силы тяжести.

Примеры расчёта перегрузки

Покажем, как осуществлять расчёт перегрузки на конкретных примерах. Начнём с самых простых примеров и перейдём далее к более сложным.

Очевидно, что человек, стоящий на земле, не испытывает никаких перегрузок. Поэтому хочется сказать, что его перегрузка равна нулю. Но не будем делать поспешных выводов. Нарисуем силы, действующие на этого человека:

К человеку приложены две силы: сила тяжести , притягивающая тело к земле, и противодействующая ей со стороны земной поверхности сила реакции , направленная вверх. На самом деле, если быть точным, то эта сила приложена к подошвам ног человека. Но в данном конкретном случае, это не имеет значения, поэтому её можно отложить от любой точки тела. На рисунке она отложена от центра масс человека.

Вес человека приложен к опоре (к поверхности земли), в ответ в соответствии с 3-м законом Ньютона со стороны опоры на человека действует равная по величине и противоположно направленная сила . Значит для нахождения веса тела, нам нужно найти величину силы реакции опоры.

Поскольку человек стоит на месте и не проваливается сквозь землю, то силы, которые на него действуют скомпенсированы. То есть , и, соответственно, . То есть расчёт перегрузки в этом случае даёт следующий результат:

Запомните это! При отсутствии перегрузок перегрузка равна 1, а не 0. Как бы странно это не звучало.

Определим теперь, чему равна перегрузка человека, который находится в свободном падении.

Если человек пребывает в состоянии свободного падения, то на него действует только сила тяжести, которая ничем не уравновешивается. Силы реакции опоры нет, как нет и веса тела. Человек находится в так называемом состоянии невесомости. В этом случае перегрузка равна 0.

Космонавты находятся в горизонтальном положении в ракете во время её старта. Только так они могут выдержать перегрузки, которые они испытывают, не потеряв при этом сознания. Изобразим это на рисунке:

В этом состоянии на них действует две силы: сила реакции опоры и сила тяжести . Как и в прошлом примере, модуль веса космонавтов равен величине силы реакции опоры: . Отличие будет состоять в том, что сила реакции опоры уже не равна силе тяжести, как в прошлый раз, поскольку ракета движется вверх с ускорением . С этим же ускорением синхронно с ракетой ускоряются и космонавты.

Тогда в соответствии со 2-м законом Ньютона в проекции на ось Y (см. рисунок), получаем следующее выражение: , откуда . То есть искомая перегрузка равна:

Надо сказать, что это не самая большая перегрузка, которую приходится испытывать космонавтам во время старта ракеты. Перегрузка может доходить до 7. Длительное воздействие таких перегрузок на тело человека неминуемо приводит к летальному исходу.

В нижней точке «мёртвой петли» на пилота будут действовать две силы: вниз — сила , вверх, к центру «мёртвой петли», — сила (со стороны кресла, в котором сидит пилот):

Туда же будет направлено центростремительное ускорение пилота , где км/ч м/с — скорость самолёта, — радиус «мёртвой петли». Тогда вновь в соответствии со 2-м законом Ньютона в проекции на ось, направленную вертикально вверх, получаем следующее уравнение:

Тогда вес равен . Итак, расчёт перегрузки даёт следующий результат:

Весьма существенная перегрузка. Спасает жизнь пилота только то, что действует она не очень длительно.

Ну и напоследок, рассчитаем перегрузку, которую испытывает водитель автомобиля при разгоне.

Итак, конечная скорость автомобиля равна км/ч м/с. Если автомобиль ускоряется до этой скорости из состояния покоя за c, то его ускорение равно м/с 2 .Автомобиль движется горизонтально, следовательно, вертикальная составляющая силы реакции опоры уравновешена силой тяжести, то есть . В горизонтальном направлении водитель ускоряется вместе с автомобилем. Следовательно, по 2-закону Ньютона в проекции на ось, сонаправленную с ускорением, горизонтальная составляющая силы реакции опоры равна .

Величину общей силы реакции опоры найдём по теореме Пифагора: . Она будет равна модулю веса. То есть искомая перегрузка будет равна:

Сегодня мы научились рассчитывать перегрузку. Запомните этот материал, он может пригодиться при решении заданий из ЕГЭ или ОГЭ по физике, а также на различных вступительных экзаменах и олимпиадах.

Материал подготовил , Сергей Валерьевич

22 марта 1995 года космонавт Валерий Поляков вернулся из космоса после 438 суток полета. Этот рекорд продолжительности не побит до сих пор. Он стал возможен в результате постоянно проводимых на орбите исследований влияния космических факторов на человеческий организм.

1. Перегрузки при старте и посадке

Пожалуй, именно Поляков как никто другой был подготовлен к тому, чтобы пробыть на орбите полтора года. И не потому, что у него якобы феноменальное здоровье. И предполетной подготовкой он занимался не более других. Просто Поляков, будучи профессиональным врачом — кандидатом медицинских наук, работавшим в Институте медико-биологических проблем РАН, как никто другой в отряде космонавтов знал «устройство человека», реакции организма на дестабилизирующие факторы и методы их компенсации. Какие же они?

При старте космического корабля перегрузки лежат в диапазоне от 1g до 7g. Это крайне опасно, если перегрузка действует по вертикальной оси, то есть от головы к ногам. В таком положении у человека даже при перегрузке в 3g, действующей три секунды, возникают серьезные нарушения периферического зрения. При превышении этих значений изменения могут стать необратимыми, а человек гарантированно теряет сознание.

Поэтому кресло в корабле размещается так, что ускорение действует в горизонтальной плоскости. Также космонавт использует специальный компенсационный костюм. Это дает возможность поддерживать нормальное мозговое кровообращение при длительных перегрузках в 10g, а кратковременных — до 25g. Крайне важной также оказывается скорость нарастания ускорения. Если она превышает определенную границу, то губительными для космонавта могут стать даже незначительные перегрузки.

После длительного пребывания на орбите растренированный организм переносит перегрузки, возникающие при посадке, куда тяжелее, чем при старте. Поэтому космонавт за несколько дней до посадки готовится по специальной методике, предполагающей физические упражнения и медикаментозные средства. При посадке имеет огромное значение такая ориентация корабля в плотных слоях атмосферы, чтобы ось перегрузки располагалась горизонтально. Во время первых космических полетов достичь должной стабилизации корабля не удавалось, в связи с чем космонавты при посадке порой теряли сознание.

2. Невесомость

Невесомость является куда более сложным испытанием для организма, чем перегрузки. Потому что действует длительно и беспрерывно, вызывая изменения ряда жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. В результате замедляется кровоток, кровь скапливается в верхней части туловища.

«Подлость» невесомости состоит в том, что приспособительные процессы в физиологических системах, степень их проявления практически не зависит от индивидуальных особенностей организма, а только лишь от продолжительности пребывания в невесомости. То есть, как бы человек ни готовился к ней на земле, каким бы могучим ни был его организм, на процесс адаптации это мало влияет.

Правда, к невесомости человек довольно быстро привыкает: прекращаются головокружения и прочие негативные явления. Плоды невесомости космонавт «вкушает», вернувшись на землю.

Если на орбите не использовать никаких методов противостояния разрушительному действию невесомости, то в первые несколько суток у приземлившегося космонавта наблюдаются следующие изменения:

1. Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей, снижением объема циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция;

2. Нарушение кислородного режима организма при физических нагрузках;

3. Нарушение способности поддерживать вертикальную позу в статике и динамике; ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые; наблюдается растренированность в дозировании мышечных усилий);

4. Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное;

5. Снижение иммунитета.

На орбите используется целый комплекс мер борьбы с разрушающим организм действием невесомости. Повышенное потребление калия и кальция. Отрицательное давление, приложенное к нижней половине тела для оттока крови. Барокомпенсационное белье. Электростимуляция мышц. Дозированный прием медикаментов. Тренировка на беговой дорожке и других тренажерах.

3. Гиподинамия

Беговая дорожка и различные тренажеры мускулатуры используются и для борьбы с гиподинамией. На орбите она неизбежна, поскольку движения в условиях невесомости требуют значительно меньших усилий, чем на земле. И вернувшись на землю даже после ежедневных изнурительных тренировок, у космонавтов наблюдается снижение мышечной массы. Помимо этого физическая нагрузка благотворно действует на сердце, которое, как известно, также является мышцей.

4. Радиация

Действие этого фактора на человеческий организм прекрасно изучено. Всемирная организация здравоохранения выработала нормативы доз радиации, превышение которых вредно для здоровья. На космонавтов эти нормативы не распространяются.

Считается, что человек может проходить флюорографию не более одного раза в год. При этом он получает дозу в 0,8 мЗв (миллизиверт). Космонавт ежедневно получает дозу до 3,5 мЗв. Однако по меркам космической медицины такой радиационный фон считается допустимым. Поскольку в определенной мере он нейтрализуется медикаментозно. Ежедневная доза облучения не является константой. У каждого космонавта имеется индивидуальный дозиметр, который ведет подсчет накапливающихся в организме миллизивертов. За год пребывания в космосе можно получить от 100 до 300 мЗв.

«Конечно, это не подарок, — утверждает заведующий лабораторией методов и средств космической дозиметрии Института медико-биологических проблем РАН Вячеслав Шуршаков, — но такова специфика профессии космонавтов».

При этом ежегодная пороговая доза — 500 мЗв. Что в 25 превышает порог для сотрудников атомных электростанций, который составляет 20 мЗв.

Ну, а суммарная доза, после которой космонавта не допускают к полетам, — 1000 мЗв. В те же времена, когда летал Гагарин, эта цифра равнялась 4000 мЗв. Наиболее близко подошел к порогу Сергей Авдеев, в общей сложности налетавший 747 суток. Полученная им доза составляет 380 мЗв.

Фото ИТАР-ТАСС/Альберт Пушкарев

Силами, к стандартному ускорению свободного падения на поверхности Земли. Будучи отношением двух ускорений, перегрузка является безразмерной величиной , однако часто перегрузка указывается в единицах стандартного ускорения свободного падения g (произносится как «же»), равного 9,80665 м/с² . Перегрузка в 0 g испытывается телом, находящемся в состоянии свободного падения под воздействием только гравитационных сил, то есть в состоянии невесомости . Перегрузка, испытываемая телом, покоящимся на поверхности Земли на уровне моря, равна 1 .

Перегрузка - векторная величина . Для живого организма очень важно направление действия перегрузки. При перегрузке органы человека стремятся оставаться в прежнем состоянии (равномерного прямолинейного движения или покоя). При положительной перегрузке (ускорение направлено от ног к голове, а вектор перегрузки - от головы к ногам) кровь уходит от головы в ноги, желудок опускается вниз. При отрицательной перегрузке увеличивается приток крови к голове. Наиболее благоприятное положение тела человека, при котором он может воспринимать наибольшие перегрузки - лёжа на спине, лицом к направлению ускорения движения, наиболее неблагоприятное для перенесения перегрузок - в продольном направлении ногами к направлению ускорения. При столкновении автомобиля с неподвижной преградой сидящий в автомобиле человек испытает перегрузку спина - грудь. Такая перегрузка переносится без особых трудностей. Обычный человек может выдерживать перегрузки до 15 g около 3-5 секунд без потери сознания. Перегрузки от 20-30 g и более человек может выдерживать без потери сознания не более 1-2 секунд и зависимости от величины перегрузки.

Одно из основных требований к военным летчикам и космонавтам - способность организма переносить перегрузки. Тренированные пилоты в противоперегрузочных костюмах могут переносить перегрузки от −3…−2 g до +12 g . Обычно при положительной перегрузке 7-8 g в глазах «краснеет», пропадает зрение, и человек постепенно теряет сознание из-за отлива крови от головы . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении перегрузка действует в направлении грудь - спина, что позволяет выдержать несколько минут перегрузку в несколько единиц g . Существуют специальные противоперегрузочные костюмы , задача которых - облегчить действие перегрузки. Костюмы представляют собой корсет со шлангами, надувающимися от воздушной системы и удерживающими наружную поверхность тела человека, немного препятствуя оттоку крови.

Перегрузка увеличивает нагрузку на конструкцию машин и может привести к их поломке или разрушению, а также к перемещению не закреплённого или плохо закреплённого груза. Разрешённая эксплуатационной документацией величина перегрузки для пассажирских самолётов [каких? ] составляет 2,5 g .

Примеры перегрузок и их значения:

Пример перегрузки Значение, g
Человек (или любой предмет), в неподвижном состоянии относительно Земли 1
Пассажир в самолёте при взлёте 1,5
Парашютист при приземлении со скоростью 6 м/с 1,8
Парашютист при раскрытии парашюта до 10,0 (По-16, Д1-5У) до 16 (Ут-15 сер. 5)
Космонавты при спуске в космическом корабле «Союз» до 3,0-4,0
Лётчик спортивного самолёта при выполнении фигур высшего пилотажа от −7 до +12
Перегрузка (длительная), соответствующая пределу физиологических возможностей человека 8,0-10,0
Рекорд при несмертельном аварийном спуске

По какой-то особой причине в мире большое внимание уделяется именно скорости разгона автомобиля с 0 до 100 км/час (в США с 0 до 60 миль в час). Эксперты, инженеры, любители спортивных автомобилей а также и простые автолюбители с какой-то одержимостью постоянно следят за технической характеристикой автомобилей, которая как правило раскрывает динамику разгона автомобиля с 0 до 100 км/час. Причем весь этот интерес наблюдается не только к спортивным автомобилям для которых динамика разгона с места является очень важным значением, но и к совсем обычным автомобилям эконом-класса.

В наши дни наибольший интерес к динамике разгона направлен на электрические современные автомобили, которые начали потихоньку вытеснять из авто ниши спортивные суперкары с их невероятной скоростью разгона. Вот например, еще несколько лет назад казалось просто фантастикой, что автомобиль может разгоняться до 100 км/час чуть-более чем за 2 секунды. Но сегодня некоторые современные уже вплотную приблизились к этому показателю.

Это естественно заставляет задуматься: А какая скорость разгона автомобиля с 0 до 100 км/час опасна для здоровья самого человека? Ведь чем быстрее разгоняется автомобиль, тем больше нагрузки испытывает водитель, что находится (сидит) за рулем.

Согласитесь с нами, что человеческий организм имеет свои определенные пределы и не может выдержать бесконечные нарастающие нагрузки, которые действуют и оказывают на него при быстром разгоне транспортного средства, определенное воздействие. Давайте вместе с нами узнаем, а какой предельный разгон автомобиля может теоретически ну и практически выдержать человек.


Ускорение, как все мы наверно знаем, это простое изменение скорости движения тела за единицу взятого времени. Ускорение любого объекта находящегося на земле зависит, как правило, от силы тяжести. Сила тяжести - это сила, действующая на любое материальное тело, которое находится вблизи к поверхности земли. Сила тяжести на поверхности земли складывается из гравитации и центробежной силы инерции, которая возникает из-за вращения нашей планеты.

Если мы хотим быть совсем уж точными, то перегрузка человека в 1g сидящего за рулем автомобиля образуется при ускорении машины с 0 до 100 км/час за 2,83254504 секунды.


И так, мы знаем, что при перегрузке в 1g человек не испытывает на себе ни каких проблем. Например, серийный автомобиль Tesla Model S (дорогая спецверсия) с 0 до 100 км/час может разгоняться за 2,5 секунды (согласно спецификации). Соответственно, водитель находящийся за рулем этого автомобиля при разгоне будет испытывать перегрузку в 1.13g .

Это уже как мы видим, больше чем перегрузка, которая испытывается человеком в обычной жизни и которая возникает из-за гравитации а также из-за движения планеты в пространстве. Но это совсем немного и перегрузка не представляет для человека никакой опасности. Но, если мы сядем за руль мощного драгстера (спортивного автомобиля), то картина здесь уже получается совершенно иная, так как мы с вами наблюдаем уже иные цифры перегрузки.

Например, самый быстрый может разгоняться с 0 до 100 км/час всего за 0,4 секунды. В итоге получается, что это ускорение вызывает перегрузку внутри машины в 7.08g . Это уже, как вы видите, немало. За рулем такого сумасшедшего транспорта вы будете чувствовать себя не очень-то комфортно, и все из-за того, что ваш вес увеличится по сравнению с прежним почти в семь раз. Но не смотря на такое не очень-то комфортное состояние при такой динамике разгона, эта (данная) перегрузка не способна вас убить.

Так как же тогда автомобиль должен разогнаться, чтобы убить человека (водителя)? На самом деле ответить однозначно на такой вопрос нельзя. Дело тут в следующем. Каждый организм у любого человека сугубо индивидуален и естественно, что последствия воздействия на человека определенных сил будут тоже совершенно разными. Для кого-то перегрузка в 4-6g даже на несколько секунд уже будет (является) критичной. Такая перегрузка может привести к потере сознания и даже к гибели этого человека. Но обычно подобная перегрузка для многих категорий людей не опасна. Известны случаи, когда перегрузка в 100g позволяла человеку выжить. Но правда, это очень большая редкость.

Космонавт, одетый в тяжелый и неудобный скафандр, на минутку остановился у люка, ведущего внутрь космического корабля, оглянулся на стоящую внизу толпу провожающих, поднял руку в прощальном приветствии и исчез в темном отверстии своего отсека. Он удобно уселся в кресле из пористого, мягкого, пластического материала, закрепил ремни, подсоединил контакты скафандра к общей сети сигнальной проводки корабля и нажал одну из кнопок на щите управления, давая сигнал готовности к радиоприему. Через минуту он услышал голос командующего полетом:

Все в порядке, осталось еще несколько минут! - Космонавт включил общую сеть радиовещания и услышал голос радиокомментатора, который сообщал подробности подготовки к старту и красочно описывал предпусковые эмоции и настроения. Космонавт еще раз вспомнил сцены прощания с родными и друзьями, с учеными-руководителями космических исследований.

Объявляю готовность номер один! - внезапно раздался в гермошлемофоне голос командующего. После этого начался столь знакомый всем космонавтам волнующий отсчет, каждая цифра которого несла с собой все увеличивающуюся напряженность ожидания.

Внимание, внимание, внимание! Десять… девять… восемь… семь… шесть… пять… четыре… три… два… один… Пуск!

Кабину космонавта пронзила сначала вибрация, приходящая волнами откуда-то снизу; потом раздался приглушенный гром, который быстро превратился в протяжный непрерывный грохот. Из-под дна ракеты показалась длинная струя огненных молний, и ее огромный корпус, среди дыма и грохота, медленно отделился от земли, постепенно увеличивая скорость движения.

В то время как все провожающие на космодроме, стараясь проследить за полетом корабля, все выше поднимали головы, в кабине начались ответственные для космонавта минуты.

Перегрузка нарастает! - доносил он по радио. - Все в порядке, приборы действуют исправно! - Это были последние слова, которые космонавту удалось произнести без особого труда, потому что вдруг какая-то мощная сила прижала его тело к креслу. Огромная тяжесть навалилась на грудь так, что космонавт не мог сделать ни одного глотка воздуха. Казалось, еще немного, и он будет раздавлен. Ноги и руки отяжелели, стали будто свинцовыми, мускулы лица искривились и подались назад, глаза, словно два шарика, глубоко втиснулись в черепную коробку.

Космонавт пытался еще сказать что-то в микрофон, но - безуспешно. С его губ срывалось только непонятное бормотание. Отказавшись от попыток разговора, космонавт сосредоточился на своих переживаниях, старался оказать сопротивление мощной силе, глотнуть устами воздух.

Внезапно он почувствовал резкое облегчение.

Конец работы двигателя первой ступени ракеты, - пронеслось в его голове.

Но это был только мгновенный перерыв в работе двигателей. Как только отделилась первая ступень ракеты, включились двигатели второй ступени.



Скорость снова стала нарастать, а с ней увеличилась нагрузка, тело космонавта снова вдавилось в подушки кресла. Через несколько минут иссякло горючее в двигателях второй ступени ракеты, наступил короткий перерыв, после чего заработали двигатели третьей ступени. И хотя тело еще с огромным трудом преодолевало нагрузку, в голове космонавта появилась мысль о скором конце испытания. Он знал, что двигатели третьей ступени должны работать очень короткое время, и через несколько минут - конец перегрузкам!

Так и случилось. Через девяносто секунд двигатели прекратили работу, и наступила внезапная тишина.

Переход был настолько резким и быстрым, что ни тело, ни мысль космонавта не успели к нему подготовиться. Сердце колотилось в груди, грудная клетка быстро вздымалась и опускалась, космонавт хватал воздух открытым ртом и часто, неглубоко дышал. Но вдруг все прошло.

* * *

Уфф! - глубоко и с чувством облегчения вздохнул космонавт. Первая часть полета - закончена. Он включил микрофон и, четко выделяя слоги, сказал:

Вышел на орбиту. Все оборудование и приборы работают бесперебойно. Самочувствие хорошее.

Мы попытались описать обыкновенный, рядовой старт космонавта в космос, когда задача ограничивается только лишь орбитальным полетом вокруг Земли. Такой старт все же представляет для человеческого организма тяжелое испытание из-за действия силы ускорения.

Что же это за сила?

Как ее измерить?

Представим себе на минуту, что мы поднялись вверх на воздушном шаре, и, выбрав удобный момент, выбросили гирю. В момент выброса скорость гири будет равна нулю, но уже в конце первой секунды полета она составит 9,8 метров в секунду, в конце второй секунды - в два раза больше, то есть 19,6 м/сек, в конце третьей секунды - в три раза больше, то есть 29,4 м/сек и так далее. Скорость полета гири увеличивается с каждой секундой на 9,8 м/сек.

Именно эта величина и есть единицей ускорения. В науке ее принято обозначать латинской буквой «g». Если какое-либо физическое тело поднимается или падает вертикально, сила ускорения зависит от тяжести или, что то же самое, от силы земного притяжения. Однако существуют и другие виды ускорения, например при вращении, когда появляется центробежная сила, или в самолете, когда пилот, выходя из пикирующего полета, переходит к так называемой «горке».

Все эти виды ускорения считаются положительными.

Во время резкого торможения быстро несущегося поезда или автомобиля возникает сила ускорения с обратным знаком - отрицательное ускорение. В этом случае, сила инерции, вызванная торможением, то есть потерей скорости, или если угодно - отрицательным ускорением, бросает пассажира вперед. Во время автомобильных аварий люди чаще всего гибнут от действия отрицательного ускорения.

Было время, когда вопросы ускорения рассматривались только теоретически. После появления самолетов с большой скоростью полета, вопросы ускорения стали изучаться практически. Лет тридцать тому назад, в кругах авиаторов наделал много шума случай, когда пилот при выходе из пикирующего полета потерял управление и разбился. Оказалось, что под воздействием силы ускорения, возникшей при резкой перемене направления движения во время большой скорости полета, пилот потерял сознание и выпустил из рук рычаги управления.

Какова же причина потери сознания? Ведь это был опытный, сильный, отличавшийся железным здоровьем пилот!

В момент выхода из пикирующего полета появилась центробежная сила, которая вызвала отрицательное ускорение порядка двух до трех. По мере роста центробежной силы увеличивался вес тела пилота и его крови. Когда ускорение дошло до величины 4 g, значительная часть крови, под влиянием этой силы, отхлынула от мозга и переместилась в более низкие части тела, вследствие чего пилот стал терять зрение. Несколько мгновений позднее, когда ускорение уменьшилось, пилот ничего не видел, будто с черной повязкой на глазах.

Однако ускорение продолжало нарастать, потому что пилот вел самолет по кривой, в конце которой самолет оказался бы в положении вертикального полета вверх. Все больше крови притекало из мозга к сердцу пилота. Появились грозные симптомы. Пилоту казалось, что сердце резко падает вниз, что оно переместилось в нижнюю часть живота, а печень оказалась еще ниже, где-то около колен. Пилот уже совсем ничего не видел, и ему приходилось напрягать все силы, чтобы не потерять сознания. До сих пор ему еще не приходилось переживать такого состояния, но пилот не хотел отказаться от борьбы, не хотел подчиниться слабости своего собственного организма. Он полагал, что все неприятные ощущения минуют, как только прекратится действие центробежной силы.

Но на этот раз он просчитался. Он не принял во внимание большой начальной скорости в момент выхода из пикирующего полета и, тем самым, значительной величины центробежной силы, которая появилась в это время.

Неудачный полет продолжался. Мозг пилота, лишенный крови, прекратил работу. Когда сила ускорения дошла до 10 g, тело пилота весило уже не 85 кг, как обычно, а 850 кг. Каждый кубический сантиметр крови весил не 1 грамм, а 10, таким образом кровь стала тяжелее железа и весила почти столько же, сколько весит ртуть.

Делая последнее усилие, пилот решился выдержать еще одну секунду, перед тем как взять рычаг управления «от себя», чтобы облегчить чудовищное давление центробежной силы. Однако в то же мгновение он потерял сознание. Перетянул струну, не выдержал и… проиграл.

Самолет потерял управление, сильная и тяжелая машина стала беспорядочно падать и, в конце концов, врезалась в землю. Таков был трагический конец этого полета.

Случай этот длительное время обсуждался в кругах авиаторов, в особенности же среди физиологов, занимающихся проблемами авиационной медицины. Начались всесторонние научные исследования.

Установлено, что при ускорении порядка 5 g, даже хорошо натренированные и стойкие пилоты теряют зрение, способность дышать, в ушах у них появляются сильные боли. Если такое состояние длится не более 30–40 секунд, организм быстро его преодолевает, если же продолжается дольше - могут произойти серьезные расстройства и даже травмы.

После того, как в авиации началась эра реактивных полетов, и скорости самолетов стали превышать 1000 км/час, ученые стали получать много сведений о стойкости организма на перегрузки при наблюдениях за поведением пилотов во время выполнения фигур высшего пилотажа на больших скоростях. Строились на земле и катапульты, с помощью которых выбрасывались в воздух с большой начальной скоростью манекены, снабженные многочисленными исследовательскими приборами. Отмечались и явления, происходящие в организме парашютиста в момент перехода от свободного падения к полету с открытым парашютом.

Но такие исследования были неполными. Необходимо было создать более многосторонние, удобные и точные приборы и установки для изучения явлений, происходящих в организме человека под воздействием перегрузок.

«КАРУСЕЛЬ»

Скоро такая установка была построена. Это центрифуга, которую летчики и космонавты некоторых стран окрестили названием «карусель». Она стала основной установкой по исследованию стойкости организма к перегрузкам. Как же выглядит эта «карусель»?

В обширном круглом зале, на высоте около метра над уровнем пола, виднеется решетчатая консоль из стальных труб, несколько напоминающая строительный кран. С одного конца консоль посажена на вертикальную ось с электроприводом, мощностью 6000 л. с. Длина консоли карусели составляет 17 метров; на другом конце решетки установлена кабина с местом для сидения человека; в кабине сосредоточена разнообразная и сложная исследовательская аппаратура.

Кабина закрывается герметически, что дает возможность устанавливать внутри нее температуру и давление в весьма широких пределах, то есть можно в ней создать условия, весьма близкие к тем, которые могут господствовать в кабине космонавта во время полета в космосе.

Специальный механизм подвески кабины автоматически устанавливает ее во время испытаний в такое положение, чтобы центробежная сила действовала на человека, находящегося внутри кабины по прямой линии, подобно тому, как эта сила действует во время космического полета. Это облегчает расчеты наблюдающим за опытом врачам.

Из всех многочисленных аппаратов, находящихся в кабине, стоит обратить внимание на объектив камеры телевидения, находящийся непосредственно над головой пассажира кабины. Как только пилот займет в кабине свое место, ученые прикрепляют к его телу множество датчиков, соединенных с электронной контрольной аппаратурой. Благодаря этому, все явления, происходящие в организме пилота во время центрифугирования, точно фиксируются на лентах самопишущих приборов.

Как только консоль «карусели» начнет вращаться, в кабине возникает центробежная сила, которая воздействует на тело пилота подобно силе ускорения в кабине космического корабля или самолета. По мере роста количества оборотов эта сила тоже растет и может достичь величины 40 g, при которой вес тела пилота увеличивается до 3200 кг. Такая перегрузка для человека может окончиться смертью, поэтому ее создают только в исключительных случаях при опытах с животными.

Следует, однако, отметить, что на американской авиационной базе в Джонсвилле (центрифугу, установленную там, как раз мы описываем), в свое время получил известность рекорд, установленный одним из пилотов. Несмотря на то, что ускорение превысило опасный предел 5 g, пилот не давал сигнала к прекращению опыта, и на переданное по телефону предложение остановить центрифугу, ответил отказом. Более того, он потребовал увеличения оборотов. Пилот выдержал ускорение 8 g, потом 10 и 12 g. И только тогда, когда сила ускорения дошла до 14 g и держалась на этом уровне две минуты, пилот наконец дал понять, что больше уже выдержать не может.

Способность человеческого организма переносить перегрузки не одинакова у разных лиц и в значительной степени зависит от индивидуальных качеств, степени натренированности, состояния здоровья, возраста человека и прочее. В основном, нормальный человек при перегрузках 5 g, чувствует себя плохо, но натренированные, пользующиеся исключительным здоровьем пилоты могут выдержать перегрузку порядка 10 g в течение 3–5 минут.

Какие же перегрузки приходилось переносить до сих пор космонавтам?

По советским данным, первый в мире человек, совершивший полет в космическое пространство, Юрий Гагарин, во время старта выдержал перегрузку порядка 4 g. Американские исследователи сообщают, что космонавт Гленн выдержал возрастающую перегрузку до 6,7 g с момента старта до момента отделения первой ступени ракеты, то есть на протяжении 2 минут и 10 секунд. После отделения первой ступени ускорение возрастало с 1,4 до 7,7 g в течение 2 минут и 52 секунд.

Так как в этих условиях ускорение, а с ним и перегрузки нарастают постепенно и не длятся долго, сильный натренированный организм космонавтов переносит их без всякого вреда.

РЕАКТИВНЫЕ САНИ

Есть еще один тип установки для исследования реакции человеческого организма на перегрузки. Это реактивные сани, представляющие собой кабину, движущуюся по рельсовому пути значительной протяженности (до 30 километров). Скорость кабины на салазках доходит до 3500 км/час. На этом стенде удобнее исследовать реакции организма на перегрузки, так как на них можно создавать не только положительные, но и отрицательные ускорения. После того, как мощный реактивный двигатель сообщит салазкам через несколько секунд после старта скорость порядка 900 м/сек (то есть скорость ружейной пули), ускорение может достигнуть величины 100 g. При резком торможении, также при помощи реактивных двигателей, отрицательное ускорение может дойти даже до 150 g.

Испытания на реактивных санях пригодны в основном для авиации, а не космонавтики, и, кроме того, установка эта обходится значительно дороже центрифуги.

КАТАПУЛЬТЫ

По тому же принципу, что и реактивные сани, действуют катапульты, имеющие наклонные направляющие, по которым движется кресло с пилотом. Катапульты пригодны в особенности в авиации. На них испытывают реакции организма пилотов, которым быть может в будущем придется при аварии самолета катапультироваться, чтобы спасти свою жизнь. В этом случае, кабина вместе с пилотом выстреливается с потерпевшего аварию реактивного самолета и с помощью парашюта спускаемся на землю. Катапульты способны сообщить ускорение не больше 15 g.

«ЖЕЛЕЗНАЯ СИРЕНА»

В поисках способа предотвратить вредное воздействие перегрузок на организм человека, ученые установили, что большую пользу приносит погружение человека в жидкую среду, плотность которой примерно соответствует средней плотности человеческого тела.

Были построены бассейны, наполненные жидкой суспензией, соответствующей плотности, с устройством для дыхания; в бассейны помещали подопытных животных (мышей и крыс), после чего осуществляли центрифугирование. Оказалось, что стойкость мышей и крыс к перегрузкам возросла в десять раз.

В одном из американских научных институтов были построены бассейны, позволяющее поместить в них человека; (летчики впоследствии прозвали эти бассейны «железными сиренами»). Пилота сажали в ванну, заполненную жидкостью соответствующей плотности, и производили центрифугирование. Результаты превзошли все ожидания - в одном случае перегрузки были доведены до 32 g. Такую перегрузку человек выдержал в течение пяти секунд.

Правда, «железная сирена» с технической точки зрения несовершенна и, в частности, имеются возражения с точки зрения удобств для космонавта. Однако, не следует судить чересчур поспешно. Возможно, в недалеком будущем, ученые найдут способ улучшить условия испытаний на такой установке.

Следует добавить, что стойкость к перегрузкам во многом зависит от положения тела космонавта во время полета. На основе многих испытаний ученые установили, что человек легче переносит перегрузки в полулежачем положении, так как такое положение удобнее для циркуляции крови.

КАК ДОБИТЬСЯ УВЕЛИЧЕНИЯ СТОЙКОСТИ

Мы уже упоминали, что в проведенных космических полетах перегрузки были сравнительно небольшими и продолжались всего несколько минут. Но ведь это только начало космической эры, когда полеты людей в космос происходят по орбитам, сравнительно близким к Земле.

Теперь же мы стоим на пороге полетов на Луну, а при жизни ближайшего поколения - на Марс и Венеру. Возможно придется тогда испытывать значительно большие ускорения, и космонавты будут подвергаться значительно большим перегрузкам.

Существует еще проблема стойкости космонавтов к небольшим, но длительным, постоянным перегрузкам, длящимся в течение всего межпланетного путешествия. Предварительные данные говорят за то, что постоянное ускорение порядка долей, «g» переносится человеком без всякого труда. Уже разработаны проекты таких ракет, двигатели которых будут работать с постоянным ускорением. Не смотря на то что во время самого опыта людям приходилось переносить различные неприятные явления, опыты им не принесли никакого вреда.

Возможно, что в будущем удастся повысить стойкость человеческого организма к перегрузкам другим путем. Интересные опыты были поставлены учеными Кембриджского университета в США. Они подвергли постоянному ускорению порядка 2 g беременных мышей до тех пор, пока не появились мышата, которых держали на центрифуге в течение всей их дальнейшей жизни до самой смерти. Мыши, родившиеся в таких условиях, прекрасно себя чувствовали под воздействием постоянной перегрузки 2 g, и их поведение ничем не отличалось от поведения их собратий, живущих в нормальных условиях.

Мы далеки от мысли поставить аналогичные опыты с людьми, но все же считаем, что явление такой приспособляемости организма к перегрузкам может решить ряд задач, стоящих перед биологами.

Не исключено также, что ученые найдут способ нейтрализации сил ускорения, и человек, оснащенный соответствующей аппаратурой, легко перенесет все явления, сопутствующие перегрузкам. Еще большие надежды связаны с методом замораживания, когда чувствительность человека резко падает (об этом мы пишем ниже).

Прогресс в области повышения стойкости человеческого организма к перегрузкам весьма велик и продолжает развиваться. Уже удалось добиться большого успеха в повышении стойкости путем придания корпусу человека правильного положения во время полета, использования мягкого, устланного губчатой пластмассой кресла и скафандров специальной конструкции. Возможно ближайшее время принесет еще больший успех в этой области.

КОГДА ВСЕ ВОКРУГ ВИБРИРУЕТ

Из многих опасностей, подстерегающих космонавта во время полета, следует указать еще одну, связанную с аэродинамическими особенностями полета и работой реактивных двигателей. Опасность эту, хотя к счастью и не очень большую, несет с собой вибрация.

Во время старта работают мощные двигатели, и вся конструкция ракеты подвергается сильной вибрации. Вибрация передается телу космонавта и может повести за собой весьма неприятные для него последствия.

Вредное влияние вибрации на организм человека известно уже давно. Действительно, рабочие, пользующиеся более или менее длительное время пневматическим молотом или буром, заболевают так называемой вибрационной болезнью, которая проявляется не только сильными болями мышц и суставов верхних конечностей, но и болями в области живота, сердца, головы. Появляется одышка и затрудняется дыхание. Чувствительность организма в значительной степени зависит от того, какой из внутренних органов подвержен больше всего действию вибрации. По-разному реагируют на вибрацию внутренние органы пищеварения, легкие, верхние и нижние конечности, глаза, мозг, горло, бронхи и т. д.

Установлено, что вибрация космического корабля вредно действует на все ткани и органы человеческого организма - причем хуже всего переносится вибрация большой частоты, то есть такая, которую трудно заметить без точных приборов. Во время опытов с животными и людьми установлено, что у них под влиянием вибрации сначала увеличивается сердцебиение, возрастает давление крови, потом появляются изменения в составе крови: уменьшается количество красных кровяных телец, увеличивается количество белых. Нарушается общий обмен веществ, снижается уровень витаминов в тканях, появляются изменения в костях. Интересно, что температура тела во многом зависит от частоты вибрации. При увеличении частоты колебаний растет температура тела, при снижении частоты - температура снижается.

Поэтому ничего удивительного нет в том, что вибрация космического корабля может стать причиной значительных нарушений в жизнедеятельности организма и может отрицательно сказаться на умственной работе космонавта.

Конечно, последствия вибрации могут стать грозными при длительном ее воздействии на человеческий организм. Если бы космонавтам пришлось переносить вибрацию в течение нескольких дней, это привело бы к полному и необратимому расстройству жизнедеятельности, со всеми вытекающими отсюда последствиями.

К счастью, проблема эта не столь велика, как это кажется на первый взгляд. Дело в том, что длительность вибрации во время старта ракеты составляет всего лишь несколько минут, и хотя экипаж космического корабля испытывает при этом некоторые неудобства, но длятся они столь краткое время, что не приносят никакого вреда. Несколько дольше длится вибрация во время прохождения корабля через атмосферу при посадке. Но и это не так уж опасно. Кроме того, специальная конструкция гибкой и эластической подвески кресел, изолирующая космонавтов от корпуса ракеты, а также мягкая, пластмассовая обивка сидений и спинок кресел значительно снижают вибрацию, передающуюся от корпуса ракеты к телу космонавта.


Новое на сайте

>

Самое популярное