Домой Комнатные цветы Падение кометы шумейкера леви на юпитер. Столкновение с Юпитером: Комета Шумейкера-Леви. Кометы - ключ к решению проблемы солнечных нейтрино

Падение кометы шумейкера леви на юпитер. Столкновение с Юпитером: Комета Шумейкера-Леви. Кометы - ключ к решению проблемы солнечных нейтрино

D/1993 F2 (Shoemaker-Levy)

Комета Шумейкеров - Леви 9,
представлявшая собой цепочку фрагментов
Открытие
Первооткрыватель Юджин и Каролина Шумейкеры ,
Дэвид Леви
Дата открытия 24 марта 1993 года
Альтернативные обозначения 1993e
Характеристики орбиты
Эпоха 2449480,5
(8 мая )
Эксцентриситет 0,216209
Большая полуось (a ) 6.864795 а. е.
Перигелий (q ) 5,380563 а. е.
Афелий (Q ) 8,349026 а. е.
Период обращения (P ) 17,99
Наклонение орбиты 6,0033°
Последний перигелий 24 марта 1994 года
Следующий перигелий упала на Юпитер
Физические характеристики

Комета Шуме́йкеров - Ле́ви 9 (D/1993 F2) - короткопериодическая комета , ставшая первым (и до июля 2009 года единственным ) небесным телом, чьё падение на Юпитер (июль ) было зафиксировано астрономами. Этот случай стал первым наблюдавшимся столкновением двух небесных тел Солнечной системы .

Открытие

Комета была открыта 24 марта 1993 года в обсерватории Маунт Паломар супругами Юджином и Каролиной Шумейкер и Дэвидом Леви . Она уже в момент открытия представляла собой цепочку фрагментов . Расчёты показали, что до своего открытия, 7 июля 1992 года , комета прошла в 15 000 км от облачного покрова Юпитера, и приливные силы раздробили её на 21 отдельный фрагмент, размерами до 2 км в поперечнике, растянувшиеся цепочкой на 200 тыс. км.

Параметры перед столкновением

В начале 1994 года комета имела следующие параметры орбиты: перигелий 5,381 а. е. ; эксцентриситет 0,216; наклонение орбиты к эклиптике 6° 00′; аргумент перицентра 354° 53′; долгота восходящего узла 220° 32′; средняя аномалия 242,7°; сидерический период 18,0 лет. Абсолютная звёздная величина кометы 6 m [ ] .

До столкновения комета вращалась вокруг Юпитера (в отличие от большинства комет, вращающихся вокруг Солнца) по орбите с крайне высоким эксцентриситетом (0,998 на 1993 год), с апоцентром около 0,33 а.е. (50 млн км). Компьютерное моделирование показало, что комета, возможно, находилась на орбите Юпитера около 20 лет, однако достоверность этого вывода находится под вопросом .

Столкновение с Юпитером

Южное полушарие Юпитера со множественными пятнами - следами столкновений

Поверхность Юпитера после столкновения

При очередном сближении с планетой в июле 1994 года все фрагменты кометы врезались в атмосферу Юпитера со скоростью 64 км/с, вызвав мощные возмущения облачного покрова (наблюдалось 21 столкновение, так как некоторые фрагменты до падения распались). Падение фрагментов происходило с 16 по 22 июля. Падение кометы было предсказано и наблюдалось как с Земли, так и из космоса. Точки падения фрагментов находились в южном полушарии Юпитера, на противоположном по отношению к Земле полушарии, поэтому сами моменты падения визуально наблюдались только аппаратом «Галилео », находившимся на расстоянии 1,6 а. е. от Юпитера. Однако возмущения в атмосфере Юпитера, возникшие после падения, наблюдались с Земли после поворота Юпитера вокруг своей оси.

Первый фрагмент A вошёл в атмосферу Юпитера в 20:16 UTC 16 июля. При этом возникла вспышка с температурой 24 000 К, облако газов поднялось на высоту до 3000 км, в результате оно стало наблюдаемым с Земли.

Вызвало необычайный интерес широкой общественности в связи с разнообразием проблем, связанных с этим явлением.

Традиционные научные проблемы - это, во-первых, новое о самой комете, например о химическом составе ее ядра, особенностях пылевой компоненты, вспышечной активности и т. д.; во-вторых, это уникальная возможность прямого изучения химического состава поверхностных слоев Юпитера. Здесь были получены неожиданные результаты: наблюдатели зарегистрировали сильное излучение линий металлов, которых никак не предполагалось найти в поверхностных слоях Юпитера в таком количестве; также было обнаружено значительное количество серы как в виде самой молекулы S 2 , так и в виде других серосодержащих молекул. Третья научная проблема - это исследование эффектов, связанных непосредственно со взрывами при падении осколков на Юпитер. К ним относятся энерговыделение самих взрывов, распространение , а также исследование фотохимических реакций, протекающих в процессе взрыва и распространения ударной волны. Ученые зарегистрировали многократное превышение концентрации ряда веществ в местах падения осколков кометы по сравнению с тем, что ожидалось найти в поверхностных слоях Юпитера, например серы, окиси углерода СО, а также молекул CS 2 и CS. В каждом месте падения самых крупных кометных осколков ученые обнаружили 100 млн т окиси углерода, 3 млн т сульфида углерода CS 2 и 300 тысяч т моносульфида углерода CS, что во много тысяч раз больше нормального содержания этих веществ в атмосфере Юпитера.

Существует, однако, специфический аспект рассматриваемого явления, который вызывает интерес широкой общественности: защита Земли от объектов, приходящих из космоса. Наиболее вероятно столкновение с Землей таких космических тел, как и кометы, сближающиеся с Землей. Подобные столкновения могут привести как к локальным разрушениям, так и к глобальной катастрофе: разрушение атомных станций, нефтепроводов, складов боеприпасов и других объектов энерговооруженности государств.

Наиболее опасны для Земли астероиды диаметром 10-100 м, количество которых по имеющимся оценкам достигает сотен тысяч в околоземном пространстве. Астероиды диаметром 10 м падают на Землю примерно 1 раз в 4 года. Для астероидов диаметром около 100 м прогнозируется одно столкновение примерно за 9000 лет. Наконец для астероида диаметром в 1 км одно столкновение с Землей может произойти за 50 000 лет. Разумеется, такое столкновение может вызвать гибель всей цивилизации. Хотя вероятность падения астероидов на Землю мала, вероятность риска гибели отдельного человека в результате такого столкновения сравнима с вероятностью гибели в авиакатастрофе или в результате аварии на атомной электростанции. Проблема совместной защиты Земли государствами с различными политическими устройствами от астероидов и комет, сближающихся с Землей, весьма актуальна и требует долговременных совместных усилий многих стран мира в области фундаментальных астрономических, экологических, ракетно-космических и международно-правовых исследований.

Цель данной статьи - показать, что дало наблюдение столкновения кометы Шумейкеров-Леви 9 с Юпитером для астрономической науки, какие возникли в связи с этим новые идеи и новые направления в самых различных и на первый взгляд далеких друг от друга разделах астрономии.

2. Расщепление кометных ядер

Как часто происходит расщепление комет на отдельные осколки? Комета, привлекшая внимание ученых к этому явлению, была открыта 25 марта 1993 года астрономами Эжени и Каролин Шумейкерами и Давидом Леви. Они первыми установили ее необычную структуру: 21 кометный фрагмент образовали строгую линейную цепь (кометный поезд ).

Ранее, в 1982 году американский ученый З. Секанина, проанализировав все кометные явления за период времени с 1846 по 1976 годы, выделил 21 случай, которые он интерпретировал как расщепление комет. Более детальный анализ современных наблюдений, представляющих ПЗС-изображения (то есть изображения, полученные с помощью панорамного фотоэлектрического приемника) 49 реальных комет, выполнен Я. Ченом и Д. Джевиттом. Они обнаружили три случая настоящего развала комет, и сделали следующие выводы:

1) вероятность кометного расщепления можно оценить как одно событие за 100 лет, причем эта вероятность слабо зависит от гелиоцентрического расстояния;

2) расщеплению подвержены как долгопериодические (с периодом обращения P > 200 лет), так и короткопериодические (P

3) вероятность расщепления не зависит от положения кометы до или после перигелия (кратчайшего расстояния до Солнца);

4) хотя сам факт расщепления и кажется обусловленным сближением с Солнцем, тем не менее известны случаи расщепления и на больших гелиоцентрических расстояниях вплоть до 9 а.е., например комета Виртанена (1954 год).

На рис. 1 представлены три известных случая расщепления в виде картины распределения поверхностной яркости (ПЗС-изображение) объекта.

3. Как часто возникает кометный поезд

Когда мы говорим о явлении расщепления или развала, то интуитивно подразумеваем распад на два или, в крайнем случае, на несколько осколков. Но комета Шумейкеров-Леви 9 предстала перед нами в виде непрерывной цепочки, состоящей из 21 осколка (некоторые ученые считают, что их было 25). Насколько часты в природе такие случаи? Сразу же после открытия кометного поезда , связанного с кометой Шумейкеров-Леви 9, американские ученые Х. Мелош из Лунно-планетной лаборатории Аризонского университета и П. Шенк из Лунно-планетного института Хьюстона обратили внимание на существование цепочек кратеров на спутниках Юпитера Ганимед и Каллисто (см. рис. 2 и 3). Все цепочки на поверхности Каллисто и Ганимеда идеально сохраняют свою линейность. Мелош и Шенк исследовали морфологию кратерных цепей и пришли к выводу, что все они могли бы образоваться в случае падения кометных цепочек типа Шумейкеров-Леви 9. Если считать, что цепочки кратеров образовались в предшествующий период времени также в результате падения комет, разрушенных гравитационным возмущением со стороны Юпитера, то можно сделать оценку масс кометных фрагментов для каждой цепочки кратеров. Рисунок 4 показывает, какие массы должны были бы иметь фрагменты предполагаемой кометы для создания цепи кратеров, наблюдаемых на Каллисто и Ганимеде. Интересен рис. 5, показывающий, какая цепочка кратеров возникла бы на Каллисто или Ганимеде, если бы на поверхности этих спутников попал кометный поезд, содержащий точно такие же осколки, как и комета Шумейкеров-Леви 9.

Если такая схема происхождения линейных цепей кратеров на спутниках Юпитера справедлива, то можно оценить вероятность явления, подобного гравитационному развалу кометы Шумейкеров-Леви 9. Мелош, Шенк и их соавторы подсчитали, что события, подобные развалу кометы Шумейкеров-Леви 9, должны происходить один раз в 200-400 лет.

4. Приливные разрушения небесных тел

Как происходит разрушение небесных тел при со стороны массивных небесных объектов, таких, как например, планеты?

Современная теория дает следующее выражение для силы давления внутри однородного макроскопического тела в результате приливного взаимодействия со стороны массивной планеты:

F (t ) = GM п ρ к r к 2 R - 3 , (1)

где M п - масса планеты, ρ к и r к - плотность и радиус кометы соответственно, R - расстояние до центра планеты, G - .

Такая зависимость от размера подвергающегося разрушению тела в случае его движения по замкнутой орбите не может вызвать гравитационный развал на значительное количество осколков. Действительно, если комета распалась на два примерно равных осколка, давление за счет гравитационного воздействия уменьшится в четыре раза и дальнейшего распада ядра кометы не произойдет.

Сценарий разрушения зависит от соотношения между скоростями механического F м и приливного F t разрушений. Если скорость механического разрушения F м значительно больше, чем приливного F t , то комета будет разрушаться непрерывно на большое количество мелких частиц. Именно такой случай легко реализуется для ядра кометы с однородным химическим составом.

Шведский ученый В. Вейбулл в 1939 году развил теорию разрушения неоднородного тела, содержащего некоторое количество активных ядер, подвергающихся наиболее быстрому разрушению. Если n - концентрация таких ядер, то число возникающих в результате разрушения фрагментов N


где m - константа, зависящая от природы вещества, из которого состоит комета. Для большинства хорошо известных веществ 3≤m ≤52. Наиболее типичное значение 6≤m ≤9. Например, для льда из воды m =8,4. Как видно из формулы (3), зависимость как от радиуса кометы r к, так и от кратчайшего расстояния до планеты (в периастре) R довольно резкая. Если такой механизм действует, то это означает, что комета, подобная комете Шумейкеров-Леви 9, но имеющая диаметр всего вдвое больше, чем у этой кометы, развалилась бы под действием приливной силы со стороны Юпитера не на 21 осколок, а на миллионы фрагментов.

Все эти соображения привели ученых к выводу, что, скорее всего, комета Шумейкеров-Леви 9 состояла из 21 гравитационно связанных малых объектов, называемых кометозималями , и ее распад произошел в результате приливного воздействия Юпитера, когда комета находилась в периастре. Это расстояние, которое иногда называют радиусом Роша R R , оказывается различным для комет с разной плотностью:

R R = 1,51(M п / ρ к) 1/3 = 2,45R п (ρ п /ρ к) 1/3 , (4)

где ρ п и R п - плотность и радиус планеты соответственно.

5. Кометы - ключ к решению проблемы солнечных нейтрино

Одна из загадок современной астрономии связана с проблемой потока от Солнца. Значения потоков солнечных нейтрино, зарегистрированных в различных экспериментах, оказываются в 2-4 раза ниже того значения, которое вычисляется в рамках стандартной модели Солнца . Хорошо известно, что нейтрино образуются в результате протекания в центре Солнца, где газ высокой плотности находится при высокой температуре. Но откуда ученые знают физические свойства и химический состав солнечных недр? Стандартная модель Солнца предполагает, что химический состав солнечных недр такой же, как и состав солнечных поверхностных слоев. А последние хорошо изучены астрономами в результате наблюдений солнечного излучения и особенно его спектра.

Недавно английский астроном М. Бейли (Обсерватория Арма, Северная Ирландия) обратил внимание на то, что поверхность Солнца могла подвергаться усиленной бомбардировке астероидами и кометами, особенно на раннем этапе эволюции Солнца. Это, в свою очередь, могло привести к обогащению поверхностных слоев Солнца тяжелыми элементами по сравнению с его недрами. Известно, что даже малые примеси тяжелых элементов существенно влияют на протекание термоядерных реакций и на темп эволюционного развития Солнца. Если бы оказалось, что в центре Солнца тяжелых элементов значительно меньше, чем на его поверхности, то это сильно повлияло бы на темп протекания ядерных реакций, замедлив их, и количество генерируемых нейтрино действительно оказалось бы меньше, чем это требуется в соответствии со стандартной моделью Солнца. Таким образом, факт падения комет и астероидов на поверхность Солнца, подобно падению кометы Шумейкеров-Леви 9 на Юпитер, дает возможное решение проблемы солнечных нейтрино.

6. Кометы в составе протопланетных дисков

Одна из центральных проблем современной астрономии - это поиск планет у далеких звезд типа нашего Солнца. Почти у десятка звезд (включая - ) обнаружены с массой порядка массы Юпитера. У еще большего числа звезд обнаружены протопланетные диски, состоящие из большого количества газа и пыли. Самый большой протопланетный диск принадлежит звезде β Живописца . В последнее время астрономы обнаружили еще одно замечательное свойство этих дисков, а именно наличие узких многокомпонентных линий поглощения таких элементов, как кальций, натрий и литий. Сам факт наличия линий поглощения в спектрах околозвездного вещества не является чем-то новым и необычным. Однако, как правило, такие линии довольно широкие и однокомпонентные и принадлежат широко распространенным элементам, таким, как водород и гелий. Их наличие в спектрах обусловлено поглощением в быстро движущихся в околозвездных оболочках газовых струях, состоящих из водорода и гелия. Узкие многокомпонентные линии металлов нельзя объяснить таким же образом. Наилучшее объяснение появления последних состоит в том, что протопланетный диск содержит значительное число комет, а также их зародышей-кометозималей, испарение которых приводит к появлению присущих кометам облаков элементов, таких, как Ca, Na и Li, поглощение которыми света звезды и вызывает возникновение узких многокомпонентных линий. При этом многокомпонентность обусловливается именно существованием кометных цепочек, подобных комете Шумейкеров-Леви 9. Любопытно, что само положение наблюдаемых линий не совпадает с их положением в лабораторных спектрах, а сдвинуто либо в красную, либо в голубую сторону. Этот сдвиг хорошо объясняется движением кометных фрагментов в протопланетном диске и позволяет определить скорость движения и этих комет. Результаты численных расчетов, подтверждающие эту точку зрения, представлены на рис. 6.

7. Гамма-всплески и падение комет на нейтронные звезды

В настоящее время трудно найти более загадочное астрономическое явление, чем . Это явление было открыто в 1969 году американскими учеными Р. Клебесабелем, И. Стронгом и Р. Олсоном с помощью аппаратуры, установленной на спутниках системы ВЕЛА, регистрирующей излучение в диапазоне энергий 0,3-10

К сенсационной комете, открытой в марте 1993 года американскими астрономами Каролиной и Юджином Шумейкерами и Давидом Леви, было приковано внимание всего мира. В июле 1994 года ее осколки с бешеной скоростью приблизились к Юпитеру и упали на него!..

Уже вскоре после открытия кометы Шумейкеров-Леви 9 выяснилось, что у нее необычный вид: цепочка из отдельных ядер, растянувшихся вдоль кометной орбиты. Было ясно, что возникли они в результате разрушения более крупного ядра родительской кометы. На одном из снимков было замечено 21 вторичное кометное ядро, и распавшуюся комету назвали в шутку "кометным поездом".

Научные сотрудники Института теоретической астрономии исследовали эволюцию орбиты кометы Шумейкеров-Леви 9 и пришли к выводу, что до 1959 года она могла быть кометой-спутником Юпитера. Но гравитационные возмущения от соседних планет и крупных спутников Юпитера существенно изменили ее орбиту, в результате чего в 1992 году она пронеслась в опасной близости от Юпитера - на расстоянии всего лишь 47 тыс. км от верхнего облачного покрова планеты (2/3 ее радиуса!). Вполне естественно, что столь тесное сближение с планетой-гигантом не могло пройти для ледяного кометного ядра безнаказанно. Мощные приливные силы разорвали его на отдельные глыбы. И вот с течением времени "кометный поезд", образованный этими глыбами, растянулся в межпланетном пространстве на сотни тысяч километров...

Дальнейшие исследования движения обломков ядра кометы Шумейкеров-Леви 9 показали, что все они с 16 по 22 июля 1994 года упадут на Юпитер. Освобождаемая при взрывах энергия в тысячи раз превысит весь ядерный потенциал, накопленный человечеством. Даже грандиознейшая Тунгусская катастрофа не идет ни в какое сравнение с тем, что должно было произойти на Юпитере. По энергетическим параметрам это явление можно сравнить с падением на нашу планету астероида диаметром около 10 км, что происходит в среднем один раз в 50 млн лет. Нечто подобное произошло, видимо, около 65 млн лет назад, когда на Земле разразилась глобальная катастрофа, в результате чего вымерли динозавры.

Но Юпитер - гигантская планета. Он превосходит Землю в 1321 раз по объему и в 318 раз по массе. Поэтому, несмотря на крупный масштаб космического события, эта комета была для Юпитера, как говорится, что слону дробина.

Падение обломков кометного ядра на Юпитер началось точно по расписанию: 16 июля 1994 года в 23 часа 11 минут по московскому времени. Именно в это время в атмосферу Юпитера врезался первый "вагон" "кометного поезда". Его поперечник был равен примерно 1 км. Четыре фрагмента (их размеры были от 1 до 2 км) столкнулись с Юпитером на следующий день. За семь дней на планету упало 24 фрагмента разрушившейся кометы.

Уже вечером 17 июля даже в небольшие телескопы можно было наблюдать поразительное зрелище: южное полушарие Юпитера, примерно посередине между экватором и южным полюсом, покрылось темными пятнами, каждое из которых было величиной с нашу Землю.

Кинетическая энергия падавших на Юпитер фрагментов кометного ядра была очень велика. Каждое падение завершалось грандиозным взрывом и сильной световой вспышкой. Так, например, при столкновении самого большого осколка, поперечник которого составлял около 3 км, выделилась энергия, в сотни миллионов раз превысившая энергию Тунгусского взрыва. Даже если бы только один кометный фрагмент упал на нашу Землю, то последствия были бы самые трагические. Поэтому не случайно на проблему защиты Земли от астероидно-кометной опасности земляне должны направить весь свой ум, силы и средства. В противном случае от всей земной цивилизации может не остаться и следа...

43 г. до н. э. - на этот раз появление кометы связали с убийством Юлия Цезаря. Римские граждане, по свидетельству Светония, наблюдая в июле 44 г. до н. э. в течение семи ночей «хвостатую звезду», верили, что это дух убитого незадолго до того Цезаря соединяется с богами на небесах.

70 г. - появление кометы ассоциировали с падением Иерусалима. Плиний Старший писал, что на нее с трудом можно было смотреть, так как в комете замечено «изображение Божие в человеческом виде». За четыре года до этого события была замечена еще одна комета, но на нее как на предвестницу падения Иерусалима не обратили внимания.

451 г. - варвары вторглись на территорию будущей Франции. Римляне, во главе которых стоял талантливый полководец Аэций, нанесли захватчикам сокрушительный удар в битве при Марне. Но сами римские солдаты приписали победу не столько своему военачальнику, своим силе и мужеству, сколько комете, появившейся в это время на небосклоне.

1066 г. - вторжение норманнов в Южную Англию совпало с появлением на небе кометы Галлея. Состоялась знаменитая битва при Гастингсе, в которой войска нормандского герцога Вильгельма разбили английскую армию. Супруга Вильгельма королева Матильда Фландрская в честь этой победы выткала гобелен, состоящий из многочисленных эпизодов, в том числе с появлением кометы, считавшейся знамением исхода битвы. Подобное же совпадение произошло в 1453 г., когда пал Константинополь.

В средние века кометам стали уделять еще больше внимания. Они по-прежнему внушали ужас. Врачи же усматривали в кометах предвестниц болезней и эпидемий. Ученые и писатели не уставали повторять, что кометы всегда приносят несчастья. А вот флорентийский живописец Джотто представил комету как символ счастливого события. На одной из фресок в капелле города Падуи (1304–1306) он изобразил ее в виде Вифлеемской звезды над библейским хлевом с яслями. Это была комета Галлея, перекочевавшая с неба в сцену Рождества благодаря художнику Джотто ди Бондоне.

В 1577 г. появилась такая яркая комета, что она была видна даже сквозь облака. Датский астроном Тихо Браге (1546–1601), наблюдавший эту комету, утверждал, что она путешествует в пространстве далеко за Луной. Это полностью опровергало пугливые теории Аристотеля и его последователей, считавших кометы опасным погодным явлением. Так родилась новая наука - космология.

Знаменитый французский популяризатор астрономии Камилл Фламмарион иронично заметил, что комета, появившаяся в 1680 г., «произвела впечатление даже на кур». В своей «Истории неба» он опубликовал старинный рисунок куриного яйца с изображением кометы: «4 декабря 1680 г. курица снесла яйцо, на котором увидели фигуру кометы и около нее другие знаки».

Но даже сегодня ученые связывают с полетом комет возможность космических катастроф. Подобное, вероятно, произошло 65 млн лет назад. На полуострове Юкатан обнаружен кратер диаметром 180 км. Взрыв поднял огромные столбы пыли почти со всей поверхности планеты, что повлекло за собой глобальное изменение климата. Согласно гипотезе американского физика Луиса Альвареса, именно это явление вызвало быстрое вымирание динозавров.

Оставили заметный след «вестницы небес» и в отечественной истории. По поводу кометы Галлея 1066 г. русский летописец Нестор пишет: «В си же времена бысть знамение на западе, звезда превелика, луче имуща аки кровавы, восходяща с вечера по заходе солнечнем и пре-бысть за 7 дней; се же проявляша не на добро: посем бо быша усобице много и нашествие поганых (половцев) на Русьскую землю, си бо звезда бе аки кровава, прояв-ляющи кровипролитие».

В Украине народное поверье говорило о падающих звездах - метеорах, как о ведьмах, которые каждую ночь уносят с неба звезды, складывая их в кувшины.

«Допустим, эти предрассудки остались в прошлом, но ведь существует опасность столкновения кометы с Землей! - скажет просвещенный читатель, знакомый с современной картиной мира. - Какие же будут последствия?» Да, действительно, такое событие может стать печальной реальностью. Столкновение подобной кометы с Землей привело бы к катастрофическим последствиям не только для цивилизации, но и для жизни в целом.

Испепеляющий взрыв, ударная волна, несколько раз обогнувшая земной шар, в стратосферу выносятся миллиарды тонн пыли и мельчайших частиц кометного и земного вещества. Черное облако расползается по всему небосводу, затмевая солнечный свет на многие годы. Растения перестают расти, и наступившие холод и голод приводят к гибели многих видов жизни на Земле. Подобная картина апокалипсиса напоминает описание «ядерной зимы».

Для создания эффективной системы предупреждения таких столкновений следует вести непрерывные наблюдения за небесными посланниками. Но кометы несут большую опасность, так как они становятся видимыми лишь в непосредственной близости от Земли при движении с далеких окраин Солнечной системы. Если какая-нибудь из комет «возьмет курс» на столкновение с Землей, мы узнаем об этом лишь за несколько месяцев до катастрофы. По-видимому, тогда уже будет поздно что-либо предпринимать. Хотя вероятность такого события мала, порядка 2-1018 в течение года, тем не менее такое возможно. Найджел Колдер в книге «Комета надвигается!» великолепно направил сознание людей на созидательную миссию: «Земля в своей материнской мудрости породила нас, чтобы мы пораскинули мозгами и спасли все живущее от судьбы динозавров».

КОМЕТА ШУМЕЙКЕРА - ЛЕВИ

Может ли неизвестная нам комета застать врасплох землян? Нет, это абсолютно исключено. Не только астрономы-профессионалы, но и тысячи любителей нацеливают свои телескопы, подзорные трубы, другую дальнобойную оптику в небесные дали. Они осматривают подробнейшим образом небо в поисках новой или хорошо забытой старой кометы. Что ими движет? Очень часто не только научный интерес, но и честолюбие, желание внести свое имя в каталог небесных объектов, как это произошло с 19-летним японским юношей Каору Икейя, который открыл свою первую комету в 1963 г. А спустя два года весь мир наблюдал знаменитую яркую комету Икейя - Секи-1965, открытую им совместно с приятелем, преподавателем музыки Дутому Секи.

Информация со всего мира о реальных и мнимых небесных «новичках» направляется в международное бюро «Астрограм» в США, где и регистрируется. Специалисты бюро анализируют характер представляемого объекта. К сожалению, ошибочных сообщений поступает больше.

А теперь обратимся к Юпитеру. Эта планета превышает Землю более чем в 11 раз по размерам и в 300 раз по массе, поэтому она в значительной мере влияет на траектории комет, движущихся из космических глубин к ближайшему околосолнечному пространству. Работая как гигантский магнит, за счет массы Юпитер и другие планеты-гиганты искривляют орбиты или притягивают к себе значительную часть опасных «гостей». Так это произошло и с кометой, обнаруженной группой американских ученых - супругами Шумейкер совместно с Леви на 5-метровом телескопе Паломарской обсерватории 24 марта 1993 г. На предыдущем витке комета, пролетая мимо Юпитера, была разорвана приливными силами тяготения более чем на 20 частей. Теперь этот рой осколков был окончательно захвачен и поглощен мощным притяжением гиганта.

Падение каждого фрагмента - это фантастической силы взрыв в плотной атмосфере Юпитера, эквивалентный многим миллионам мегатонн тротила. Такая энергия превышает весь накопленный человечеством ядерный потенциал в тысячи раз. Взрыв кометного тела сопровождается ударной волной, яркой вспышкой, мгновенным разогревом, дроблением и испарением вещества кометы. Раскаленная масса за несколько секунд погружается на сотни километров в глубь атмосферы Юпитера, достигая плотных слоев, где и тормозится. Затем быстро расширяющееся раскаленное облако стремительно поднимается вверх, усиливая и без того весьма мощные атмосферные потоки и вихри на Юпитере. Каждый упавший фрагмент порождает вихревое облако, которое может фиксироваться как пятно на лике планеты.

Кометы являются вестницами перемен и чрезвычайных событий, причем глобального, порой даже общекосмического характера. Именно к таким вестницам грядущих глобальных изменений в мире можно отнести недавнюю нашу гостью - комету Шумейкера-Леви, которую открыли лучшие профессиональные «ловцы» комет - астрономы Кэролайн и Юджин Шумейкеры 25 марта 1993 года в обсерватории Маунт-Паломар.

Юпитер и осколки кометы

Она была «затянута» силой притяжения самой большой планеты Солнечной системы - Юпитера, который своим гравитационным полем изменил изначальную траекторию этой кометы.

Оказавшись «пленницей» Юпитера, вокруг которого она стала вращаться по вытянутой орбите, комета 7 июля 1992 года подошла слишком близко к этой гигантской планете, и приливные силы разорвали ее на 21 фрагмент, каждый из которых продолжал свое дальнейшее движение по собственной орбите.
Своим внешним видом разорванная комета напоминала нить жемчуга длиной 5 миллионов километров. В июле 1994 года жемчужины - фрагменты кометы Шумейкера-Леви - после более чем двухлетнего обращения вокруг Юпитера врезались в него и взорвались в его плотной атмосфере.

Бомбардировка» Юпитера, продолжавшаяся в течение семи дней с 16 по 22 июля, не прошла бесследно для космического гиганта - в его атмосфере остались огромные пятна, наблюдаемые астрономами с Земли.

Исследователям неба известно много комет, которые вырвавшись из кометного облака Оорта и достигнув области планет, сошли со своих первоначальных параболических и гиперболических орбит под воздействием сил тяготения планет-гигантов, оказавшись пленниками Солнца. Они превратились в периодические кометы, движущиеся по эллиптическим орбитам с различной степенью эксцентриситета.
Комета Шумейкера-Леви резко выделяется среди них, ибо став «личной» кометой Юпитера, а не Солнца, она разорвалась на цепь осколков и угодила прямо в Юпитер, прекратив свое существование столь необычным для комет образом. В истории было известно всего две кометы, ставших в последствии спутниками планеты, причем в обоих случаях - Юпитера, что было установлено путем экстраполяции их орбит в обратном направлении. Комета Шумейкера-Леви - первая наблюдаемая комета-спутница, чье длительное скитание по космосу в конечном счете прервалось в атмосфере планеты.

Любая комета - явление чрезвычайно уникальное, поскольку для того, чтобы просиять вблизи Солнца в течение каких-то считанных недель, она вынуждена тысячи лет добираться до центра Солнечной системы с ее окраин. Немногие кометы становятся периодическими, оказавшись захваченными силами тяготения крупных космических тел, каковыми являются планеты-гиганты, и уж совсем редчайшие из них врезаются в планеты. Именно такой необычайно редкой кометой стала рассматриваемая нами небесная гостья.

Подобное уникальное космическое явление, конечно же не осталось без пристального внимания астрономов, которые зафиксировали ее полет на многие фотопленки. Не могли не отреагировать на такое экстраординарное событие и астрологи, руководствующиеся в своих прогнозах знамениями небесными.

Авестийская астрологическая традиция, основывающаяся на зороастрийском космогенезисе, рассматривает Юпитер как планету Хормазда - Творца Вселенной. В эллинистические времена многие персидские божества отождествлялись с греко-римскими и, в частности, Ахура-Мазда (Хормазд) - с Зевсом-Юпитером. При подобном ракурсе рассмотрения данной проблемы, падение кометы на Юпитер приобретает мистериальную окраску. Согласно зороастрийской мифологии, Ахура-Мазда (Юпитер) создал материальную Вселенную в замкнутом времени, называемом Зерван Карана. В этом замкнутом, однонаправлено текущем времени заключен злой дух - Ангра-Манью, пытавшийся захватить власть над Миром. Время существования материального мира и заключенного в нем Зла ограничено девятью тысячами космических лет. Сам Творец - Ахура-Мазда - пребывает в вечности Зервана Акарана (букв.: «Бесконечное Время»). По истечении отведенных на борьбу со Злом девяти тысяч лет материальная Вселенная пройдет очищение в космическом пламени и перейдет в духовное состояние Зервана Акарана, при этом Ангра-Манью вместе со всеми своими чудовищными порождениями будет уничтожен. Конец света в зороастрийской традиции называется Фрашегирдом, и согласно авестийской мифологии, перед наступлением Фрашегирда Хормазд (Юпитер) прочтет Великую молитву Ахунвар , впервые произнесенную им в бесконечном времени (Зервана Акарана) при сотворении материального Мира. Прочтение этой молитвы ознаменовало рождение материального Мира и ограничение духа Зла - Ангра-Манью - в пределах замкнутого времени, а в конце времен возвестит об окончательном уничтожении космического Зла.
Эта молитва воплощает собой силу Божественного Слова, способного творить миры и побеждать зло. Библейские и евангельские изречения: «И сказал Бог: да будет свет. И стал свет» или же «В начале было Слово, и Слово было у Бога, и Слово было Бог», - восходят к зороастрийскому представлению о Боге, как некоему рождающему космическому началу, воплощенному в Слове. «Все чрез Него [Слово] начало быть и без Него ничто не начало быть, что начало быть» - сказано в Евангелии от Иоанна, и это полностью соответствует зороастрийскому осмыслению понятия Божественного Слова. Святая троица маздаяснийской религии - Ахура-Мазда, Воху-Ман и Аша-Вахишта - представлена морально-этической триадой: «Благая

Новое на сайте

>

Самое популярное