Домой Цветы Применение втсп. Открыт новый тип высокотемпературных сверхпроводников. Развить новую индустрию

Применение втсп. Открыт новый тип высокотемпературных сверхпроводников. Развить новую индустрию

Высокотемпературная сверхпроводимость

Открытие в конце 1986 года нового класса высокотемпературных сверхпроводящих материалов радикально расширяет возможности практического использования сверхпроводимости для создания новой техники и окажет революционизирующее воздействие на эффективность отраслей народного хозяйства.

Явление, заключающееся в полном исчезновении электрического сопротивления проводника при его охлаждении ниже критической температуры, было открыто в 1911 году, однако практическое использование этого явления началось в середине шестидесятых годов, после того как были разработаны сверхпроводящие материалы, пригодные для технических применений. В связи с тем, что критические температуры этих материалов не превышали 20 К, все созданные сверхпроводниковые устройства эксплуатировались при температурах жидкого гелия, т.е. при 4-5 К. Несмотря на дефицитность этого хладоагента, высокие энергозатраты на его ожижение, сложность и высокую стоимость систем теплоизоляции по целому ряду направлений началось практическое использование сверхпроводимости. Наиболее крупномасштабными применениями сверхпроводников явились электромагниты ускорителей заряженных частиц, термоядерных установок, МГД-генераторов. Были созданы опытные образцы сверхпроводниковых электрогенераторов, линий электропередачи, накопителей энергии, магнитных сепараторов и др. В последние годы в различных капиталистических странах началось массовое производство диагностических медицинских ЯМР-томографов со сверхпроводниковыми магнитами, потенциальный рынок которых оценивается в несколько млрд. долларов.

Открытие высокотемпературных сверхпроводников, критическая температура которых с запасом превышает температуру кипения жидкого азота, принципиально меняет экономические показатели сверхпроводниковых устройств, поскольку стоимость хладоагента и затраты на поддержание необходимой температуры снижаются в 50-100 раз. Кроме того, открытие высокотемпературной сверхпроводимости (ВТСП) сняло теоретический запрет на дальнейшее повышение критической температуры с 30 - вплоть до комнатной. Так, со времени открытия этого явления критическая температура повышена с 30 - 130 К.

Государственная научно-техническая программа предусматривает широкий комплекс работ, включающих в себя фундаментальные и прикладные исследования, направленные на решение проблемы технической реализации высокотемпературной сверхпроводимости.

В соответствии со структурой программы главными направлениями работ являются:

1. ИССЛЕДОВАНИЕ ПРИРОДЫ И СВОЙСТВ ВТСП.

Основными задачами этого направления являются фундаментальные исследования по выяснению механизма высокотемпературной сверхпроводимости, разработка теории ВТСП, прогнозирование поиска новых соединений с высокими критическими параметрами и определение их физико-химических свойств.

2. ВЛИЯНИЕ ВНЕШНИХ ФАКТОРОВ НА СВОЙСТВА ВТСП МАТЕРИАЛОВ.

По данному направлению будут проводиться исследования влияния высоких давлений, механических и тепловых воздействий, ионизирующих излучений, электромагнитных полей и других внешних факторов на свойства ВТСП материалов и выработка рекомендаций по вопросам создания ВТСП материалов с оптимальными технологическими и техническими характеристиками.

3. НАУЧНЫЕ ОСНОВЫ И ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ВТСП МАТЕРИАЛОВ.

Главными задачами исследований по данному направлению являются разработка теоретических основ получения высокотемпературных сверхпроводящих материалов с заданными свойствами, синтез новых материалов с необходимыми для технической реализации параметрами, разработка технологий получения высокотемпературных сверхпроводников заданных технических форм. Ключевыми вопросами этого направления и всей программы в целом является создание технологичных и стабильных тонкопленочных структур, приемлемых для реализации в слаботочной технике, и особенно сильноточных токонесущих элементов в виде проводов, лент, кабелей и др. для использования в сильноточной технике.

4. СЛАБОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Создание конкретных технических изделий на основе ВТСП материалов наиболее реально в ближайшее время именно в слаботочной технике, т.е. в микроэлектронике и вычислительной технике.

В рамках программы предполагается разработка и освоение серийного производства трех классов электронных сверхпроводниковых приборов:

СКВИДы (приборы на основе джозефсоновских переходов) как детекторы слабых магнитных полей для применения в медицине (магнитоэнцефалография), геологии и геофизике (поиск полезных ископаемых, изучение геологического строения земной коры, прогноз землетрясений), материаловедении
(неразрушающий контроль материалов, конструкций), военной технике
(обнаружение магнитных аномалий, в частности, глубинных подводных лодок), научных исследованиях, связи и навигации.

Широкое освоение и внедрение СКВИД магнитометрического метода измерений позволит в короткий срок качественно изменить многие виды измерительной техники, повысить в сотни и более раз чувствительность приборов и точность измерений, подвести измерительные возможности широкой номенклатуры датчиков к теоретическому пределу, вывести измерительную технику на высший качественно новый уровень.

Аналого-цифровые приборы (АЦП), использующие сверхбыстрые (доли пикосекунды) переключения от джозефсоновского к "гиверовскому" режиму работы, для применений в новейших системах связи, цифровых вычислительных устройствах для обработки и анализа аналоговых сигналов и др.

Приборы, основанные на эффекте появления на джозефсоновском переходе постоянного напряжения при подаче на него СВЧ сигнала, для использования в прецизионных измерительных системах (например, эталон
Вольта).

Широкое применение ВТСП найдет в вычислительной технике. Уже в настоящее время разработаны, изготовлены и испытаны макеты ячейки памяти, сверхчувствительный элемент считывания на ВТСП пленках с кратным снижением энерговыделения по сравнению с полупроводниковыми усилителями считывания, сверхскоростные линии связи, которые позволят увеличить производительность систем в 10 - 100 раз. Внедрение ВТСП в вычислительную технику даст кратное увеличение ее быстродействия и степени интеграции. Так, переход на
ВТСП соединения и снижение рабочей температуры полупроводниковых суперЭВМ позволит повысить их производительность с 10х9 до 10х12 операций/сек.

Широкие перспективы использования ВТСП открываются в СВЧ-технике и в создании датчиков видимого и ИК диапазона с высокой чувствительностью.

5. СИЛЬНОТОЧНЫЕ ПРИМЕНЕНИЯ ВТСП.

Применение ВТСП в сильноточной технике будет иметь наиболее радикальные экономические последствия для народного хозяйства.

Это направление включает в себя создание электроэнергетических устройств и систем, вырабатывающих, передающих и преобразующих электроэнергию в промышленных масштабах. Основой этого направления является способность сверхпроводников нести без потерь высокие плотности (10х9-10х10 А/м2) транспортного тока в сильных магнитных полях при температурах ниже критической. Это свойство сверхпроводников позволяет создавать электроэнергетическое оборудование различного назначения с улучшенными массогабаритными характеристиками, более высоким
КПД и значительно (в десятки раз) сниженными эксплуатационными расходами.

Так, при передаче по кабельным линиям электропередач мощностей свыше 20 млн. кВт на расстояние свыше 2000 км ожидается снижение электрических потерь на 10%, что соответствует сбережению от 7 до 10 млн. т.у.т. в год. При этом приведенные затраты на сверхпроводящую кабельную ЛЭП могут быть не больше, чем на высоковольтную ЛЭП традиционного исполнения.
Синхронные сверхпроводящие генераторы для ТЭС, АЭС и ГЭС будут иметь на
0,5-0,8% более высокий КПД и на 30% меньшие весогабаритные показатели. Предполагается создание сверхпроводниковых индуктивных накопителей энергии, которые по сравнению с гидроаккумулирующими станциями, единственным типом накопителей энергии, нашедшим промышленное применение в энергетике, будут обладать существенно более высоким КПД (до 97-98% вместо 70%). В рамках программы предполагается создание широкой гаммы электротехнических и электроэнергетических устройств, при этом масштабы суммарной экономии электроэнергии за счет массового применения ВТСП будут столь велики, что позволят радикальным образом пересмотреть сложившуюся экстенсивную стратегию развития топливно-энергетического комплекса.

Согласно структуре программы, предусматривается разработка и выпуск сверхпроводящих устройств и систем, создание которых экономически и технически целесообразно на основе традиционных гелиевых сверхпроводников.
Это сверхпроводящие сепараторы, ЯМР-томографы, магнитные системы для удержания плазмы в ТОКОМАКах и ускорителях заряженных частиц и др.
Создание таких систем кроме реального экономического эффекта от их внедрения заложит необходимую техническую и технологическую основу для быстрого перехода на ВТСП по мере создания технологичных ВТСП проводников.

6. КРИОСТАТИРОВАНИЕ.

Поскольку несмотря на значительное повышение критических температур новых сверхпроводящих материалов их абсолютное значение остается на уровне криогенных температур, одним из важнейших направлений исследований и разработок является создание высокоэкономичных, надежных автоматизированных ожижительных и рефрижераторных азотных установок, систем криостатирования для конкретных сверхпроводящих изделий, а также поиск принципиально новых методов получения холода в диапазоне рабочих температур ВТСП.

Предусматривается создание систем диагностики и контроля параметров криостатирующих устройств.

Кроме того, для изделий и систем, создаваемых на основе традиционных сверхпроводников, будут разработаны и изготовлены гелиевые установки нового поколения с высокими технико-экономическими показателями.

7. ОБЕСПЕЧЕНИЕ РАБОТ ПО ПРОГРАММЕ ВТСП.

В рамках этого направления предусматривается проведение широкого комплекса работ по научно-техническому прогнозированию и технико- экономическому обоснованию применения ВТСП, разработка и внедрение автоматизированных информационных систем, создание баз данных по ВТСП.
Кроме того будет осуществляться комплексная программа подготовки и переподготовки кадров различной квалификации для работ по проблематике
ВТСП.

Возможности практического использования ВТСП-материалов остаются многообещающими для микроэлектроники, медицины, эффективных систем производства, накопления и передачи энергии.

Использование пленок позволило создать пилотные образцы систем связи нового поколения (включая электромагнитные экраны, модуляторы, антенны, коммутаторы и фильтры СВЧ- и импульсных сигналов, многослойные пленочные структуры, включающие, помимо слоев ВТСП, слои диэлектриков, сегнетоэлектриков, нормальных металлов), болометры миллиметрового, субмиллиметрового и инфракрасного диапазона излучений, принципиальные схемы сверхбыстродействующих компьютеров, чувствительных медицинских томографов и сверхчувствительных диагностических устройств, способных реагировать даже на изменения психического состояния человека (измерительные устройства, использующие эффект Джозефсона).

За годы существования ВТСП критические токи и размеры лент с высокими сверхпроводящими характеристиками выросли на порядки, что позволяет говорить о реальных возможностях практического применения данного класса ВТСП-материалов, в том числе для создания сверхмощных магнитов и линий бездиссипативной передачи энергии. Ленты в серебряной оболочки уже могут выпускаться многими компаниями на промышленной основе и в объеме (многие километры), достаточном для большинства требуемых применений, и ограничивает этот процесс пока еще их высокая стоимость. Тем не менее, многие пилотные проекты и тестовые линии уже действуют.

Опыты по левитации человеческих существ в лаборатории сверхпроводимости (Superconductivity Research Laboratory, ISTEC, Токио, Япония )

Перспективы использования ВТСП-материалов на основе фазы 123 связаны с тем, что наиболее удачные и практически значимые решения в этой области могут быть найдены для объемных изделий, обладающих достаточно простой формой. Подобные изделия можно разделить на два больших класса. К первому из них относятся образцы, обладающие высокой способностью экранировать внешнее магнитное поле или выталкиваться им, что может быть охарактеризовано так называемой силой левитации, зависящей от плотности внутрикристаллитного критического тока. Другой класс составляют ВТСП-материалы с высокими значениями транспортного (межкристаллитного) тока. Ожидаемыми практическими применениями такой керамики являеются: (1) постоянные магниты c "вмороженным" магнитным потоком, (2) поезда на магнитной подушке (проект MAGLEV), (3) механические (ротационные) аккумуляторы энергии на основе левитирующих маховиков (flying wheels), (4) подшипники, вращающиеся без силы трения, (5) эффективные, экономичные моторы и сверхмощные генераторы, трансформаторы, (6) магнитные сепараторы руды, (7) сверхпроводящие реле, быстродействующие ограничители предельно допустимого тока, (8) мощные бездиссипативные тоководы, (9) активно применяющиеся в последнее время в медицине томографы, (10) мощные магнитные системы для термоядерного синтеза, ускорителей элементарных частиц (Токамак нового поколения), (11) магнитогидродинамические генераторы.

Наиболее реальным практическим применением крупных монокристаллов могут стать подложечные материалы в технологии тонких пленок и микроэлектронике. Это вызвано тем, что будучи созданными из материала, близкого по химическому составу осаждаемым тонким пленкам, монокристаллы должны демонстрировать низкие величины рассогласования параметров элементарной ячейки с пленкой, близкие коэффициенты термического расширения и способствовать эпитаксиальному росту пленок. Все кристаллохимические и термомеханические параметры кристаллов-подложек могут быть достаточно точно отъюстированы за счет использования твердых растворов с различными замещениями как в позиции иттрия, так и в позиции бария.

Таким образом, в результате исследований в области химических сверхпроводников было решено огромное число проблем и достигнуты действительно выдающиеся результаты. В свою очередь, глубокое понимание физико-химических основ протекающих при получении различных ВТСП-материалов процессов явились первопричинами и краеугольными камнями этого успеха, и это значительно обогатило теорию и практику неорганического синтеза сложных оксидных соединений. Специфика современных российских исследований по ВТСП состоит в высоком удельном весе фундаментальных изысканий, в которых отечественная академическая наука призвана играть немаловажную роль. Именно эти исследования, на наш взгляд, будут способствовать созданию вполне реальных и конкурентоспособных отечественных разработок.

Явление высокотемпературной сверхпроводимости (ВТСП) не так давно интересовало только ученых. Однако сегодня на рынок электроэнергетического оборудования выходят коммерчески прибыльные продукты на основе ВТСП, в том числе российского производства. ВТСП может совершить прорыв в технологиях передачи электроэнергии.

Совсем не жаркая ВТСП

В начале ХХ века было открыто, что ряду металлов и сплавов свойственна сверхпроводимость, то есть способность обладать нулевым сопротивлением, при температуре, близкой к абсолютному нулю (около −270°С). Долгое время сверхпроводники можно было использовать только при температуре жидкого гелия, что позволило создать ускорительное оборудование и магнитно-резонансные томографы.

В 1986 г. открыли сверхпроводимость при температуре около 30К, что было удостоено Нобелевской премии, а в начале 1990-х гг. удалось достичь сверхпроводимости уже при 138К, причем в качестве сверхпроводника использовались уже не металлы, а оксидные соединения.
Керамические материалы, обладающие нулевым сопротивлением при температуре выше температуры жидкого азота (77К) получили название высокотемпературных сверхпроводников (ВТСП). Однако если мы переведем Кельвины в более привычные для нас градусы Цельсия, то поймем, что речь идет о не слишком высоких температурах, скажем, порядка минус 169–200°С. Такие условия даже суровая русская зима обеспечить не в состоянии.

Умы исследователей будоражит идея найти материалы, способные переходить в сверхпроводящее состояние при комнатной температуре (293К). Теоретически такая возможность существует. По некоторым данным, сверхпроводящие свойства якобы удавалось зафиксировать даже у отдельных зерен графита после специальной обработки. На сегодняшний день поиск «комнатнотемпературных» сверхпроводников (КТСП) считается одной из ключевых исследовательских задач в области нанотехнологий. Однако пока не только практическое применение, но и надежное экспериментальное подтверждение КТСП остается вопросом завтрашнего дня. Сегодняшняя электроэнергетика осваивает использование ВТСП.

Оборудование на основе высокотемпературной сверхпроводимости требует охлаждения жидким азотом. Как отмечают эксперты отрасли, это относительно дешевый и удобный хладагент, обеспечивающий температуру 77К и позволяющий реализовывать практические проекты.

Польза сверхпроводимости

Сверхпроводимость может использоваться (и уже используется) в самых разных сферах. Впервые она была применена при создании магнитов с высокими полями. С помощью сверхпроводников может быть обеспечена магнитная левитация, позволяющая высокоскоростным поездам двигаться плавно, без шума и трения. Создаются ВТСП электродвигатели для судов и промышленности, которые обладают существенно меньшими массогабаритными параметрами при равной мощности. Сверхпроводимость интересна с точки зрения микроэлектроники и компьютерной техники. Низкотемпературные сверхпроводники применяются в медицинских диагностических аппаратах (томографах), и даже в таких экзотических проектах «меганауки», как большой адронный коллайдер и международный термоядерный реактор.

С высокотемпературной сверхпроводимостью связаны надежды на преодоление глобальной энергетической дилеммы, связанной, с одной стороны, с постоянным ростом энергопотребления в настоящем и будущем, а с другой стороны, с необходимостью радикально сокращать выбросы углекислого газа, чтобы предотвратить изменения климата. Ведь по сути дела ВТСП выводит привычное оборудование для генерации и передачи электроэнергии на принципиально новый уровень с точки зрения эффективности.

Одно из самых очевидных применений сверхпроводников связано с передачей электроэнергии. ВТСП кабели могут передавать значительную мощность при минимальном сечении, то есть обладают пропускной способностью другого порядка, нежели традиционные кабели. При прохождении тока через сверхпроводник не выделяется тепло, и практически отсутствуют потери, то есть решается главная проблема распределительных сетей.

Генераторы благодаря обмоткам из сверхпроводящих материалов, обеспечивающим огромные магнитные поля, становятся значительно мощнее. К примеру, концерн Siemens построил три ВТСП генератора мощностью до 4 МВт. Машина в два раза легче и меньше по сравнению с обычным генератором той же мощности. Также, ВТСП генератор показал большую устойчивость по напряжению при изменении нагрузки и более высокие характеристики с точки зрения потребления реактивной мощности.

Сегодня в мире активно ведутся разработки ветрогенераторов на основе высокотемпературной сверхпроводимости. При использовании ВТСП обмоток реально создание ВТСП генераторов мощностью 10 МВт, которые будут в 2–4 раза легче обычных.

Перспективная сфера для широкого применения сверхпроводников - накопители энергии, роль которых также велика с точки зрения развития современных энергосистем, использующих возобновляемые источники энергии. Даже привычное электрооборудование, такое как трансформаторы, приобретает качественно новые характеристики благодаря ВТСП.

Сверхпроводимость позволяет создавать такие необычные устройства как ограничители тока короткого замыкания, полностью автоматически ограничивающие ток при замыкании и автоматически же включающиеся при снятии КЗ.


Лента второго поколения

Что же из этих многообещающих идей уже удалось воплотить на практике, и чьими усилиями? В первую очередь нужно отметить, что на сегодняшний день на рынке представлены высокотемпературные сверхпроводники первого и второго поколения (ВТСП-1 и ВТСП-2). По объему выпущенной на сегодняшний день продукции пока выигрывают ВТСП-1, но для экспертов очевидно, что будущее за сверхпроводниками второго поколения. Это связано с тем, что в конструкции сверхпроводников ВТСП-2 более 70% составляет матрица, изготовленная из серебра.

Одна из ключевых российских компаний, работающих над темой сверхпроводников второго поколения, - ЗАО «СуперОкс». Зародилась она в стенах МГУ имени Ломоносова, где научная группа химического факультета работала над технологией осаждения тонких пленок сверхпроводников. В 2006 г. на базе накопленных знаний был запущен коммерческий проект по созданию отечественного производства ВТСП-проводов 2-го поколения.

В 2011 г. сфера интересов «СуперОкс» была расширена за счет тесного взаимодействия с вновь созданной компанией SuperOx Japan LLC. Была создана пилотная производственная линия, позволяющая производить ВТСП-провод с критическим током до 500 А/см ширины. С 2011 г. компания «СуперОкс-Инновации» также является резидентом «Сколково», где ведет прикладные исследования, направленные на оптимизацию технических характеристик ВТСП лент второго поколения, разрабатывает различные технологии производства этих материалов. В 2013 г. было запущено производство ленты ВТСП-2 в московском технопарке «Слава».

«Наш продукт, сверхпроводящая лента второго поколения представляет собой подложку из специальной нержавеющей стали, устойчивой к высоким температурам, которая впоследствии при нанесении тонких пленок не теряет своих механических свойств, - рассказывает Вадим Амеличев, ведущий специалист ЗАО «СуперОкс». - Специальными методами на эту подложку наносятся буферные оксидные слои, а в качестве функционального слоя - пленка купрата гадолиния-бария. Затем эта структура покрывается тонкими слоями серебра или меди, и в таком виде используется в сверхпроводниковых устройствах.

У такого материала при толщине пленки всего в один-два микрона токопроводящая способность около 500 А на 1 мм² сечения, то есть в сотни раз больше, чем у обычного медного кабеля. Соответственно, такая лента идеальна для применений, где требуется высокий ток. Кабели на большие токи, магниты на большие поля - основная область применения».

«СуперОкс» обладает полным циклом производства ленты ВТСП-2. В 2012 г. стартовали продажи этого инновационного продукта, и сейчас материал поставляется не только в Россию, но и экспортируется в девять стран, в том числе Евросоюз, Японию, Тайвань и Новую Зеландию.
«В мире не так много производителей ленты ВТСП-2, - поясняет Вадим Амеличев. - Есть две американские фирмы, компании в Южной Корее и Японии. В Европе кроме нас никто в промышленных масштабах такую ленту не производит. Нашу ленту тестировали во многих исследовательских центрах и подтвердили конкурентоспособность ее характеристик».

Развить новую индустрию

«Несмотря на то, что высокотемпературная сверхпроводимость появилась совсем недавно, вопросами ее применения в технике интенсивно занимаются в технологически развитых странах мира, - рассказывает Виктор Панцырный, д.т.н., действительный член АЭН РФ, директор по развитию АО «Русский сверхпроводник», - В нашей стране в рамках Комиссии при Президенте РФ по модернизации и технологическому развитию экономики России инициирован проект «Сверхпроводниковая индустрия» как часть проекта «Инновационная энергетика» по приоритетному направлению «Энергоэффективность».

Данный проект в области сверхпроводниковой индустрии координирует компания «Русский сверхпроводник», созданная Госкорпорацией «Росатом». За пятилетку с 2011 по 2015 г. здесь планируют создать конкурентоспособные технологии производства высокотемпературных сверхпроводников второго поколения, опытное производство длинномерных (до 1000 м) ленточных проводов ВТСП-2, а также разработать прототипы оборудования на основе ВТСП-2 проводов для электроэнергетики. Это и генераторы большой мощности, и ограничители тока (СОТ), и кинетические накопители энергии (КНЭ), а также мощные токовводы для магнитных систем, индуктивные накопители энергии (СПИН), трансформаторы, электродвигатели большой мощности.

С 2016 г. планируется запустить серийное производство ВТСП-2 проводов и ряда устройств на их основе. В работах по данному проекту участвуют около 30 организаций, включая ВУЗы, академические и отраслевые научно-исследовательские центры, проектные бюро и промышленные организации, в частности ОАО «ВНИИНМ», ОАО «НИИЭФА», ОАО «НИИТФА», ОАО «ГИРЕДМЕТ», ОАО «НИФХИ», ОАО ТВЭЛ, ОАО «Точмаш» так и вне его, в НИЦ «Курчатовский институт», ЭНИН им. Кржижановского, ФГБОУ МАИ, НИЯУ МИФИ, ГУАП, ОАО «Россети», ОАО «НТЦ ФСК ЕЭС», ЗАО «СуперОкс», ОАО «ВНИИКП», ОАО «НИИЭМ», ОКБ «Якорь» и др.

«Структурно проект состоит из девяти задач, выполняемых параллельно, - поясняет Виктор Панцырный. - С 2011 по 2013 гг. удалось создать первые отечественные действующие макеты сверхпроводниковых машин - двигатель и генератор мощностью 50 кВт, кинетический накопитель энергии на 0,5 МДж, сверхпроводниковый ограничитель токов короткого замыкания мощностью 3,5 МВт для энергетических сетей напряжением 3,5 кВ, сверхпроводниковый трансформатор мощностью 10 кВА, токовводы для магнитных систем, пропускающие ток 1500А.

Также созданы основы технологии полностью отечественного производства ленточных проводов ВТСП-2, начиная от сырьевых материалов и заканчивая методами контроля готовой продукции. Были найдены основные технологические решения, позволившие перейти к созданию полномасштабных прототипов энергетических устройств. Так в настоящее время завершается работа по созданию двигателя мощностью 200 кВт».

Благодаря применению ВТСП-2 обмоток такой двигатель при его установке на электромобиль (электробус) позволит увеличить пробег на 15–20% между подзарядками аккумуляторных батарей. Изготовлен и готовится к испытаниям в сети железнодорожного транспорта сверхпроводящий ограничитель токов короткого замыкания мощностью более 7 МВА. Завершается изготовление генератора мощностью 1 МВА, перспективного для применения в ветряных энергетических установках.
На базе уникальных технологий Росатома создается кинетический накопитель энергии со сверхпроводниковым подвесом маховиков, который имеет энергоемкость более 7 МДж. Следует отметить разработку индуктивного накопителя энергии, способного в предельно короткое время отдать аккумулированную энергию до нескольких МДж. В завершающей стадии находятся и работы по созданию сверхпроводникового трансформатора мощностью уже 1000 кВА.

«Кроме того, важнейшими результатами проекта будут создание мощной экспериментальной и технологической базы, а также формирование коллективов высококвалифицированных специалистов в сфере сверхпроводниковых технологий, - заключает Виктор Панцырный. - В этом году в НИЦ Курчатовский институт заработает комплексная производственно-исследовательская линия по получению ВТСП-2 ленточных сверхпроводников методом лазерной абляции. Линия станет инструментом развития науки и технологии ВТСП материалов, используя в максимальной степени мощную научную инфраструктуру курчатовского НБИКС центра. Это позволит интенсивно развивать перспективную высокотехнологичную область, ведущую к коммерциализации сверхпроводниковых технологий».


Кабели переменного тока

Нельзя не рассказать о российском проекте по созданию сверхпроводящего кабеля длиной 200 м. Над созданием кабеля работали ОАО «Энергетический институт им. Г.М. Кржижановского» (ЭНИН), ОАО «Всероссийского научно-исследовательский институт кабельной промышленности» (ВНИИКП), Московский авиационный институт и ОАО «НТЦ электроэнергетики». Разработка началась в 2005 г., в 2009 г. был создан опытный образец, успешно прошедший испытания на специально созданном уникальном полигоне.

Основные достоинства ВТСП кабеля - высокая токовая нагрузка, малые потери, экологическая чистота и пожарная безопасность. Кроме того, при передаче большой мощности по такому кабелю при напряжении 10–20 кВ не требуются промежуточные подстанции.

ВТСП кабель представляет собой сложную многослойную конструкцию. Центральный несущий элемент выполнен в виде спирали из нержавеющей стали, окруженной пучком проводов из меди и нержавеющей стали, обмотанных медной лентой. Поверх центрального элемента укладываются два повива сверхпроводящих лент, а сверху - высоковольтная изоляция. Затем следует наложение сверхпроводящего экрана, повивы гибких медных лент, обмотанных лентой из нержавеющей стали. Каждая жила кабеля затягивается в собственный гибкий криостат длиной 200 м.

Создание этой многокомпонентной конструкции осложняется тем, что ВТСП лента крайне чувствительна Основная часть технологических операций проводилась на базе ОАО «ВНИИКП». Однако для изготовления высоковольтной изоляции кабель свозили в г. Пермь на завод «Камский кабель».

«Для ВТСП кабеля мы производили операцию наложения бумажной изоляции, - рассказывает Александр Азанов, заместитель главного технолога ООО «Камский кабель». - Было задействовано уникальное оборудование, которое ранее использовалось для производства маслонаполненных кабелей высокого напряжения. Именно поэтому не пожалели ресурсов на доставку полуфабриката из Москвы в Пермь и обратно. И, думаю, что пока для производства таких специальных кабелей целесообразно задействовать уникальное оборудование, установленное на разных заводах, чем организовывать производство в одном месте.

В ближайшее время организация серийного производства данного кабеля на нашем или любом другом заводе маловероятна, так как монтаж линий со сверхпроводниками производится крайне редко и очень малыми длинами (не более 1 км). Главная причина тому - стоимость ВТСП кабелей и их обслуживания (требуется постоянно прокачивать жидкий азот через кабель)».

Кабели постоянного тока

На сегодняшний день разработки в области создания ВТСП кабелей продолжаются. ОАО «ФСК ЕЭС» и ОАО «НТЦ ФСК ЕЭС» ведут совместный НИОКР «Создание высокотемпературной сверхпроводящей кабельной линии постоянного тока на напряжение 20 кВ с током 2500 А длиной до 2500 м». Первый прототип будущей инновационной системы передачи энергии - два отрезка биполярного ВТСП кабеля по 30 м, разработанные в НТЦ ФСК ЕЭС и изготовленные на заводе «Иркутсккабель», - успешно прошли токовые и высоковольтные испытания в 2013 г.

В ноябре 2014 г. состоялись испытания комплекта преобразовательного оборудования для инновационной передачи электроэнергии мощностью 50 МВт с использованием сверхпроводящего кабеля длиной в несколько сотен метров. Применение ВТСП кабеля для электроснабжения крупных городов позволит добиться уменьшения площадей землеотводов, отказаться от строительства воздушных линий и снизить потери электроэнергии.

В НТЦ ФСК ЕЭС отмечают, что кабельная линия постоянного тока на основе ВТСП обладает рядом достоинств по сравнению с линией переменного тока. Она не только позволяет передавать мощность с минимальными потерями, но и ограничивать токи короткого замыкания, регулировать реактивную мощность, управлять потоками мощности и обеспечивать ее реверс.

«Приятно осознавать, что российские разработчики ВТСП кабелей находятся на передовых рубежах, - говорит Виталий Высоцкий, д.т.н., академик АЭН РФ, директор научного направления - зав. отделением сверхпроводящих проводов и кабелей ОАО «ВНИИКП». - Например, кабель 200 м являлся крупнейшим в Европе в 2009–2013 гг., и только в 2014 г. в Германии был установлен кабель длиной 1 км. Но и этот рекорд будет перекрыт с испытанием кабеля 2,5 км для С.-Петербурга».

От господдержки - к частным инвестициям

Эксперты прогнозируют достаточно активное развитие мирового и российского рынка сверхпроводников. Так, Андрей Вавилов, председатель Совета Директоров ЗАО «СуперОкс», отмечает, что объем мирового рынка ВТСП удваивается каждый год и в 2017 г. достигнет $1 млрд, при этом долю РФ в мировом рынке можно оценить примерно в 10%.

«Рынок сверхпроводимости для электроэнергетики обязан развиваться, поскольку плотность потребления энергии постоянно растет и без сверхпроводимости поддерживать растущие запросы невозможно», - уверен Виталий Высоцкий. - Однако энергетики весьма консервативны по отношению ко всему новому, да еще и дорогостоящему. Поэтому пока главная задача - все-таки продвижение новых проектов с поддержкой государственных организаций. Это станет доказательством надежности и эффективности сверхпроводящих устройств. Появление новых проектов вызовет спрос на производство ВТСП лент, увеличение их выпуска и снижение цены, что опять же поможет развитию рынка».

«На данной стадии комплексное решение всех поставленных задач невозможно без всесторонней помощи государства, но с каждым годом повышается инвестиционная привлекательность ВТСП техники, что позволяет с высокой долей уверенности ожидать притока частных инвестиций в ее дальнейшее коммерческое развитие», - соглашается с коллегой Виктор Панцырный.
Экспертов радует, что в целом на уровне государства есть понимание значимости сверхпроводниковых технологий.
«Развитие сверхпроводниковой индустрии имеет общенациональное значение и является важной составной частью перехода на инновационный путь развития экономики страны. Это было недавно констатировано на расширенном заседании Консультативного Совета при председателе Комитета Государственной Думы по энергетике ФС РФ, где, в частности, было отмечено, что для обеспечения экономической и политической независимости России стратегически необходимо иметь отечественное производство низко- и высокотемпературных сверхпроводящих материалов, сверхпроводниковых устройств и изделий на их основе», - сообщает Виктор Панцырный.

Планы на будущее

Мы попросили экспертов оценить, какие сферы применения сверхпроводимости, на их взгляд, наиболее перспективны и где можно ожидать коммерческого использования технологии в ближайшие годы.

«Как и во всем мире, в России сегодня наиболее продвинуты проекты сверхпроводящих кабелей. Они должны и, надеемся, будут развиваться, - рассказывает Виталий Высоцкий. - Сверхпроводящие кабели на основе ВТСП - уже сейчас чисто коммерческий продукт, правда, пока еще достаточно дорогой. Он станет дешевле, когда начнется его широкое внедрение и потребуется значительное количество ВТСП лент, что и удешевит их производство.

Однако, на мой взгляд, наиболее необходимыми и востребованными для электроэнергетики являются сверхпроводящие ограничители тока КЗ на уровни напряжения от 100 кВ и выше. Обычных устройств такого класса напряжения просто не существует, и без сверхпроводимости здесь просто не обойтись. Такие проекты уже обсуждаются в нашей стране. Кроме того, по моему мнению, хорошие перспективы имеют ВТСП машины для ветрогенераторов. Они сулят значительное (в разы) снижение веса единичного генератора и увеличение единичной мощности».

«Сегодня драйвер развития рынка сверхпроводниковых изделий - электроэнергетика (силовые кабели и ограничители тока), - считает Андрей Вавилов. - Но и в ряде других отраслей имеется значительный потенциал. Например, сегодня разрабатываются варианты применения ВТСП провода как эффективной замены низкотемпературных сверхпроводников в ускорительной технике, используемой для науки, производства изотопов и медицины. В России имеются большие планы в этой области, в частности, по строительству современного коллайдера NICA в Дубне.

Большой потенциал имеет создание эффективных вращающихся машин, имеющих уникальные тяговые характеристики, низкую массу и вес. Такие двигатели востребованы в первую очередь для обеспечения движения больших судов, а генераторы могут использоваться в возобновляемой энергетике.

Совершенно новые перспективы сегодня открывает явление магнитной левитации. Это не только транспортные системы, но и бесконтактные манипуляторы, а также долговечные подшипники с широким спектром применения».

«Дальнейшее развитие высокотемпературной сверхпроводимости будет иметь выраженный мультипликативный эффект не только в электроэнергетике, но и в иных отраслях, таких как космический, авиационный, морской, автомобильный и железнодорожный транспорт, машиностроение, металлургия, электроника, медицина, ускорительная техника. Технологии сверхпроводимости также важны и для укрепления обороноспособности страны», - убежден Виктор Панцырный.

Одним словом, дальнейшее развитие технологий на основе сверхпроводимости открывает перед человечеством огромные перспективы, причем уже в обозримом времени.

Физикам удалось синтезировать новый тип сверхпроводников с общей химической формулой ReFeAsO (где Re обозначает какой-либо из редкоземельных металлов: Sm — самарий, Nd — неодим, Pr — празеодим, Ce — церий, La — лантан). Эти вещества обладают неожиданно высокой температурой перехода в сверхпроводящее состояние, достигающей 55 К. В состав почти всех открытых до этого высокотемпературных сверхпроводников (ВТСП) входил оксид меди. Полученный впервые широкий класс некупратных ВТСП вселяет надежду на то, что будет наконец найдено теоретическое объяснение явления высокотемпературной сверхпроводимости, а также открывает новые возможности на пути к дальнейшему повышению температуры перехода в сверхпроводящее состояние.

Сверхпроводимость — это явление полного отсутствия сопротивления при протекании электрического тока, а также идеальный диамагнетизм (то есть «выталкивание» магнитного поля из образца: магнитное поле не проникает вглубь материала).

Идеальный диамагнетизм сверхпроводника можно пояснить тем, что по поверхности образца начинает течь незатухающий ток, магнитное поле которого полностью компенсирует внешнее магнитное поле. Плотность незатухающего тока, экранирующего внешнее магнитное поле, быстро убывает при удалении от поверхности внутрь сверхпроводника. Соответственно, в этой области уменьшается внешнее магнитное поле от некоторого значения на поверхности до нуля в глубине. Описанное явление было открыто в 1933 году немецкими физиками Вальтером Мейснером и Робертом Оксенфельдом и носит название эффекта Мейснера-Оксенфельда. Принято считать состояние сверхпроводящим, если оно удовлетворяет двум требованиям: отсутствие сопротивления и выталкивание магнитного поля из образца (эффект Мейснера-Оксенфельда).

Вне всяких сомнений, главной задачей технологов — специалистов по «прикладной» сверхпроводимости является создание сверхпроводника с комнатной критической температурой (T c ). Разумеется, искать наобум такие материалы сложно, поэтому на помощь материаловедам приходят физики, которые своими моделями стараются указать направление поиска. Хотя, как показывает история, в случае со сверхпроводимостью, скорее, наблюдается обратный процесс — технологи находят ВТСП, теоретики строят модель. Тем не менее если бы теория высокотемпературной сверхпроводимости была построена, поиск веществ с комнатной T c наверняка бы стал проще.

Первой теорией, удовлетворительно описывающей явление сверхпроводимости, была теория Бардина-Купера-Шриффера (теория БКШ). Это теория низкотемпературной сверхпроводимости. Суть ее в следующем: электроны в веществе, посредством взаимодействия с колебаниями кристаллической решетки материала (фононами), объединяются в пары, называемые куперовскими, и ведут себя как будто единый «организм» с огромными по атомным масштабам размерами. Вследствие этого электронная система куперовских пар «не замечает» препятствий при своем протекании через материал (то есть испытывает нулевое сопротивление).

Когда в 1986 году Йоханнес Беднорц и Карл Мюллер , сотрудники Цюрихского филиала корпорации IBM, обнаружили способность керамики на основе оксида меди, лантана и бария (La 2-x Ba x CuO 4) при 30 К переходить в сверхпроводящее состояние, это был первый этап на пути к высокотемпературной сверхпроводимости. С тех пор было открыто еще немало веществ, относящихся к ВТСП. Более того, с тех пор критическую температуру удалось повысить более чем в 5 раз (см. рис. 1), но построить теоретическую модель, хорошо описывающую наблюдаемые свойства ВТСП, пока что так и не удалось.

Попытки применить теорию БКШ к объяснению высокотемпературной сверхпроводимости не увенчались успехом; в настоящее время существует больше десятка разнообразнейших в своих подходах моделей, каждая из которых в отдельности дает некоторые правильные предсказания. Важно отметить, что, как видно из графика на рисунке 1, в состав всех открытых после La 2-x Ba x CuO 4 веществ с высокой T c почти неизменно входит оксид меди (одно из исключений — упомянутый ниже диборид магния MgB 2) — большинство вышеупомянутых моделей высокотемпературной сверхпроводимости используют этот факт. Поэтому неудивительно, что появившиеся этой весной сообщения о целом классе ВТСП не на основе оксида меди, заинтересовали научную общественность, надеющуюся увидеть прогресс в проблеме «комнатной» сверхпроводимости.

До настоящего времени наиболее высокой температурой перехода (39 К) среди некупратных ВТСП обладал диборид магния MgB 2 . Сверхпроводимость в нем была открыта в 2001 году и, как выяснилось, имеет свои интересные особенности: столь высокая критическая температура достигается за счет существования в нем двух (!) «сортов» куперовских пар, которые, взаимодействуя между собой, повышают критическую температуру.

Первое сообщение об открытии некупратного ВТСП под названием Iron-Based Layered Superconductor LaFeAs (x = 0.05-0.12) with Tc = 26 K (индекс х обозначает в какой пропорции были заменены атомы кислорода атомами фтора — как говорят физики, степень допирования) поступило из Токийского технологического института, где группа ученых под руководством Хидео Хосоно (Hideo Hosono) синтезировала материал, не обладающий электрическим сопротивлением при температуре ниже 26 К.

Конечно, 26 К — это еще не 39. Однако это было только начало. В своей статье (еще в феврале) Хосоно предположил, что T c можно увеличить, например, сжимая материал или заменяя лантан другим элементом. И действительно, некоторое время спустя стали появляться сообщения об открытии сверхпроводимости в других арсенид-железных соединениях. Вот названия статей в хронологическом порядке: Superconductivity at 36 K in Gadolinium-arsenide Oxides GdO 1-x F x FeAs — наблюдалась сверхпроводимость в материале GdOFeAs с = 36 К, Superconductivity at 43 K in Samarium-arsenide Oxides — сверхпроводимость в материале SmOFeAs c T c = 43 К, Superconductivity at 52 K in iron-based F-doped layered quaternary compound PrFeAs — отсутствие сопротивления при 52 К и ниже в допированном фтором соединении PrOFeAs. Что касается использования давления для повышения критической температуры, то тот же допированный фтором LaOFeAs, как было установлено в работе Superconductivity at 43 K in an iron-based layered compound LaO 1-x F x FeAs , может при давлении 4 ГПа (в 40 000 раз больше атмосферного) увеличить T c до 43 К.

И вот совсем недавно появилась статья Superconductivity at 55 K in iron-based F-doped layered quaternary compound SmFeAs о наблюдении сверхпроводимости в SmFeAs с рекордным значением T c = 55 К (рис. 3).

Одновременно с открытием этих соединений встал вопрос о том, как в них образуется сверхпроводимость — то есть каким образом происходит возникновение куперовских пар, ответственных за сверхпроводимость вещества.

Выяснилось, что по своей кристаллической структуре ReFeAsO практически ничем не отличаются от купратных сверхпроводников — такое же чередование слоев, по которым и происходит распространение сверхпроводящего тока (см. рис. 3). Такая аналогия навела ученых на мысль, что, вероятно, природа образования сверхпроводимости у них такая же, как и в купратных ВТСП. Для проверки этой гипотезы были выполнены расчеты , которые показали, что, если куперовские пары образуются в «свежеиспеченных» ВТСП так, как это предсказывает теория БКШ, то критическая температура в них не должна превышать 1 К, что очевидно противоречит экспериментальным данным. Появлялись работы , в которых говорится о таких же механизмах образования сверхпроводимости, как в дибориде магния. Однако, как и в случае с купратными ВТСП, окончательной теории пока что тоже не создано.

Тем не менее недооценивать важность этих открытий нельзя. Вполне возможно, что новый вид арсенид-железных ВТСП поможет пролить свет на теоретическое объяснение высокотемпературной сверхпроводимости и укажет технологам путь к повышению критической температуры.

Высокотемпературные сверхпроводники, как правило, имеют зернистую текстуру , они состоят из зерен – кристаллитов, соединенных между собой. Области соединения являются сильнодефектными, поэтому различают свойства внутригранульные и межгранульные. Например, внутригранульный критический тип много больше межгранульного. В данном разделе мы рассматриваем структуру гранулы или монокристалла. Как уже было отмечено, иттриевые, висмутовые, таллиевые и ртутные ВТСП соединения принадлежат к слоистым металлооксидам. В то же время соединения на основе висмута, таллия имеют плоскости атомов меди и кислорода, а соединения на основе иттрия содержат как плоскости, так и цепочки Cu – O. Роли цепочек и плоскостей в ВТСП материалах посвящены многочисленные работы. В настоящее время считается, что плоскости играют определяющую роль в сверхпроводимости, а цепочки служат и емкостью для электронов. Они могут быть или заполненными, или пустыми, в зависимости от содержания кислорода и легирующих примесей. Если число атомов кислорода в элементной ячейке изменяется, изменяется температура перехода или сверхпроводимость вовсе теряется. Кислородные вакансии находятся в основном в пределах одной цепочки. Например, в соединении YBa 2 Cu 3 O 7- d при d<1 существуют упорядоченные массивы цепочек, имеющих недостаток кислорода, при d=1 цепочки отсутствуют.

Можно получить серию веществ на основе висмута, таллия или ртути с различным стехиометрическим составом; при этом в элементарной ячейке будет содержаться различное число плоскостей, различными будут и свойства ВТСП, в частности, температура перехода. Также сверхпроводники объединяются общей формулой с переменными стехиометрическими коэффициентами (см. табл. 2.1). Так, например, соединения Tl-2212, Tl-2223 и Tl-2201 имеют общую формулу:

Tl 2 Ba 2 Ca n -1 Cu n O 2 n+4 , (2.1)

где n – принимает значения 2, 3, 1 соответственно, и показывает число CuO слоев.

Таблица 2.1

Основные свойства некоторых ВТСП

№ п/п Соединение (сокр. обозн.) Сингония Размеры элементарной ячейки, А 0 Т СП
(La 1-x Sr x)CuO 4 Тетрагональная a=b=3,78 c=13,2 37,5
YBa 2 Cu 3 O 7-x (Y-123) ромбическая a=3,82 b=3,88 c=13,2
Bi 2 Sr 2 Ca 2 Cu 2 O 8 (Bi-2212) ромбическая a=5,41 b=5,42 c=30,9
Bi 4 Sr 4 CaCu 3 O 14 (Bi-4413) ромбическая a=5,411 b=5,417 c=27
Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) ромбическая a=5,41 b=5,41 c=37,1
Tl 2 Ba 2 CuO 6 (Tl-2201) ромбическая a=5,411 b=5,473 c=23,24
Tl 2 Ba 2 CaCu 2 O 8 (Tl-2212) тетрогональная a=b=3,86 c=29,3
Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) тетрогональная a=b=3,85 c=35,9
HgBa 2 CuO 4 (Hg-1201) тетрогональная a=b=3,86 c=9,51
HgBa 2 CaCu 2 O 6 (Hg-1212) тетрогональная a=b=3,86 c=12,7
HgBa 2 Ca 2 Cu 3 O 8 (Hg-1223) тетрогональная a=b=3,86 c=15,9

Аналогично можно записать общие формулы для висмутсодержащих или ртутьсодержащих ВТСП групп:

Bi 2 Sr 2 Ca n -1 Cu n O 2 n +4 , (2.2)

HgBa 2 Ca n -1 Cu n O 2 n +2 , (2.3)

Как оказалось изготовить однофазные образцы висмутовых, таллиевых и др. соединений довольно сложно. Обычно получается комбинация фаз, каждая из которых имеет свое число слоев CuO и CaO на ячейку и свои критические параметры. Это вызывает наличие не критической температуры, но температурного интервала в 4-6 К.

Такое «сосуществование» затрудняет темпы проведения ряда экспериментов, связанных с учетом характеристик конкретной фазы или ее поведения в магнитном поле и т.д.

Как уже отмечалось, структура ВТСП материалов, особенно внутри групп (2.1), (2.2) и других, имеет общие элементы. Поэтому рассмотрим структуру фаз: YBa 2 Cu 3 O 7- x (ромбическая сингония) и Bi 2 Sr 2 Ca 2 Cu 2 O 8 в качестве примеров.

Рис. 2.1. Кристаллическая структура YBa 2 Cu 3 O 6,5+ d , δ ≈ 0,5;
● – Ba, ▲ – Y, – Cu, ○ – O

Структура фазы (Y-123) показана на рис. 2.1. Ее можно представить в виде последовательности слоев, расположенных перпендикулярно оси с:

… (CuO )(BaO)(CuO 2)(Y)(CuO 2)(BaO)(CuO ) … (2.4)

где  – вакансия атома кислорода.

Особенностью данной структуры является относительная легкость изменения ее кислородной стехиометрии, при этом состав медного слоя (Z=0) изменяется от CuO 2 (d=-0,5) до (CuO ) (d=0,5).

При d = -0,5 элементарная ячейка тетрагональная и состав YBa 2 Cu 3 O 6 обладает полупроводниковыми свойствами. Однако при d ³ -0,2 структура становится ромбической (a¹b) вследствие заселения атомами кислорода позиций в плоскости (x,y,o) и обладает сверхпроводниковыми свойствами. При этом с возрастанием d происходит увеличение T С .

Введение дополнительных катионов в ВТСП может преследовать три цели. Во-первых, это поиск новых сверхпроводников или увеличение температуры перехода уже существующих, во-вторых, – усиление фазообразования и, наконец, в-третьих, – дополнительные катионы могут вводиться с целью увеличения пиннинга магнитных вихрей, как на включениях получающихся несверхпроводящих фаз, так и на дефектах структуры образующихся при этом.

Необходимо отметить, что замещение атомов иттрия на иные, изменяет свойства соединения.

Так, замещение атомов иттрия на атомы празеодима приводит к потере сверхпроводимости. Замещение атомов иттрия на атомы тория сдвигает температуру перехода (Т С =67 К). Легирование иттриевой керамики некоторыми лантанидами может оказаться перспективным, поскольку существенно изменяет температуру перитектического распада фазы Y-123. Дело в том, что иттриевая позиция представляет собой слабое место в структуре сверхпроводящей фазы, поскольку ион иттрия сжимает структуру, создает структурные искажения. Так, замена атомов иттрия на атомы с более крупным радиусом (Na 3+ ,S 3+ , En 3+ , Gd 3+ и др.) стабилизирует структуру и обеспечивает более высокие характеристики ВТСП материалов.

Например, японские специалисты склоняются к полному замещению иттрия в структуре на неодим.

Замещение атомов меди на другие, как правило, приводит к снижению температуры перехода до 60 – 65 К.

В завершение необходимо отметить, что кроме рассмотренной фазы Y-123 могут образоваться и другие сверхпроводящие фазы: YBa 2 Cu 4 O 8, Yba 4 Cu 7 O 14 с температурами перехода соответственно 80 К и 40 К.

Структура другого популярного ВТСП, соединения Bi-2212 показана на рис. 2.2.

Рис. 2.2. Модель структуры Bi 2 Sr 2 Ca 2 Cu 2 O 8:
● – Bi, Δ – Sr, ▲- Ca, ■ – Cu, ○ – O

Необходимо отметить, что структуры висмутовых и таллиевых ВТСП материалов имеют много общего и представляют собой когерентное срастание блоков перовскита и NaCl. В данном случае набор плоскостей по оси С выглядит следующим образом:

(CuO 2) (Ca )(CuO 2)(SrO)(OBi)(BiO)(OSr)(O 2 Cu) … (2.5)

В данной структуре первые 3 плоскости соответсвуют перовскитному блоку, а последние 5 – блоку по типу NaCl. Атом кальция занимает позицию, аналогичную позиции иттрия (рис. 2.1) и обладающую высокой концентрацией анионных вакансий.

В настоящее время проведено много работ, связанных с введением каких-либо добавок в сверхпроводники ряда BiSr 2 Ca n -1 Cu n O x . Это могут быть катионы, замещающие позиции в кристаллической решетке, или нейтральные добавки. К примеру, катион Pb 2+ позволяет улучшить электрофизические характеристики сверхпроводника, в частности, увеличить его критический ток. Замещение редкоземельными элементами и замещение свинцовых катионов приводит к увеличению пиннинга, а последнее увеличивает и значение критического магнитного поля. Введение серебра также позволяет увеличивать критический ток.

В завершение разговора о структуре ВТСП кристаллов, следует выделить основные характеристики , обоснование которых выходит за рамки данного пособия, но которые являются общими для всех полученных материалов:

1. Структуры фаз являются производными от структуры перовскита .

2. Структуры имеют большое число анионных вакансий , концентрацию которых можно варьировать (температура и скорости обжига, время и давление выдержки в кислороде и т.д.).

3. В структурах имеются атомы меди в различных степенях окисления (II и III). Вследствие изменения количества атомов кислорода в структуре происходит понижение уровня Ферми и образование дырок.

4. Структуры ВТСП фаз – слоистые , непременным их элементом является наличие плоскостей (CuO 2). Образование слоистых структур происходит либо из-за упорядочения анионных вакансий, либо из-за нарушения идеальной последовательности слоев вдоль оси 4-го порядка.

5. В этих перовскитоподобных структурах В-позиции заняты только атомами меди. Синтез структур с иными атомами в В-позициях пока результатов не дал.

Контрольные вопросы

1. Назовите основные типы ВТСП материалов.

2. Каковы особенности структуры ВТСП материалов?

3. Как влияют примеси на структуру и свойства ВТСП?

4. Какова роль цепочек и плоскостей в структуре?

Новое на сайте

>

Самое популярное