Домой Грибы Нобелевская премия по физике сумма. Теория нейтринных осцилляций, за подтверждение которых присуждена нобелевская премия по физике, была выдвинута в ссср. Открытие существования нейтрино

Нобелевская премия по физике сумма. Теория нейтринных осцилляций, за подтверждение которых присуждена нобелевская премия по физике, была выдвинута в ссср. Открытие существования нейтрино

Такааки Каита (Takaaki Kajita) и Артур Б. Макдональд (Arthur B. McDonald)

Нобелевская премия по физике 2015 года присуждена за открытие нейтринных осцилляций. Лауреатами премии стали ученые Артур Б. Макдональд (Arthur B. McDonald) из Канады и Такааки Каита (Takaaki Kajita) из Японии.

За их важный вклад в эксперименты, которые продемонстрировали, что нейтрино может менять состояние. Эта метаморфоза требует, чтобы у нейтрино имелась масса. Открытие ученых изменило наше представление о материи и может решающим образом изменить наше представление о Вселенной, — сообщили в Нобелевском комитете.

Макдональд является профессором Калифорнийского технологического института (США) и почетным профессором Университета Куинс (Канада). Такааки Каита возглавляет Институт исследования космических лучей и является профессором Университета Токио.

В прошлом году Нобелевскую премию по физике вручили Исаму Акасаки (Япония), Хироси Амано (Япония) и Сюдзи Накамуре (США) за изобретение нового энергоэффективного и экологически чистого источника света — голубого светоизлучающего диода (LED). Изобретение ученых — эффективная альтернатива привычных электрических лампочек.

Наибольшее число премий по физике было присуждено за исследования элементарных частиц (34), в ядерной физике (28), физике конденсированного состояния (28) и квантовой механике (11), сообщает BBC. Самым известным Нобелевским лауреатом всех времен, дисциплин и народов стал Альберт Эйнштейн. В 1921 году он получил Нобелевскую премию по физике — как было сказано, За заслуги в области теоретической физики, и в особенности за открытие фотоэлектрического эффекта.

Физики, лауреаты Нобелевской премии 2015 , открыли явление, несовместимое с общепринятой Стандартной Моделью элементарных частиц . Независимо друг от друга они экспериментально подтвердили, что нейтрино имеет массу . Хиггсовский механизм образования масс элементарных частиц не может объяснить это явление. По Стандатной Модели нейтрино не должно иметь массу .

Возникает много вопросов, открывается широкое поле для новых исследований.

Еще в 60-е годы прошлого столетия Бруно Понтекорво , знаменитый итальянский и советский (иммигрировал в СССР в 1950 году) физик , работавший в Объединенном институте ядерных исследований в Дубне , предположил, что нейтрино обладает массой, и предложил идею экспериента для проверки этой гипотезы. Доказательством наличия массы у нейтрино может служить наблюдение их осцилляций. Осцилляции - это повторяющиеся процессы состояния системы.

Для нейтрино - это повторяющееся превращение трех разновидностей нейтрино (электронного, мюонного и тау-нейтрино) друг в друга. Из теории следовало, что продолжительность периодов осцилляций определяется разностью квадратов масс нейтрино, переходящих из одного вида в другой. Считалось,что наименьшая масса у электронного нейтрино, у мюонного чуть больше, у тау-нейтрино - еще больше. Наблюдая осцилляции, можно оценить разность квадратов масс и этим доказать, что массы у нейтрино существуют, но в этом эксперименте значение масс каждого вида нейтрино в отдельности оценить невозможно.

Лауреат Нобелевской премии Артур МакДональд исследовал поток солнечных нейтрино на нейтринной обсерватории Садбери в Канаде. Потоки нейтрино от Солнца исследовались многократно на различных подземных обсерваториях мира, и всегда получалось, что наблюдаемый поток нейтрино в три раза меньше ожидаемого . Ожидаемый поток оценивался в соответствии с выходом нейтрино при термоядерных реакциях, происходящих в ядре Солнца. В результате этих реакций из Солнца истекает поток электронных нейтрино. Именно такой тип нейтрино способны были фиксировать детекторы. Уже давно предполагалось,что на пути от Солнца нейтрино могут превращаться из электронного в другие виды. Артур МакДональд смог пронаблюдать потоки всех трех видов нейтрино и показать, что в сумме они соответствуют ожидаемому. При этом было показано,что период осцилляций короче времени прохождения потока нейтрино от Солнца к Земле, и за это время большое количество электронных нейтрино успевают превратиться в мюонные и тау. Таким образом экспериментально был обнаружен процесс осцилляций и, следовательо, было подтверждено, что нейтрино обладает массой.

Лауреат Нобелевской премии Такааки Каджита проводил наблюдения высокоэнергичных нейтрино на нейтринном телескопе Супер-Камиоканде. Нейтрино высоких энергий возникают в атмосфере Земли в результате действия космических лучей. Эксперимент заключался в сравнении потоков мюонных нетрино, попадающих на детектор непосредственно из атмосферы, с потоком нейтрино с противоположной стороны Земли, прошедшим на детектор через всю толщу Земли. Оказалось, что во втором потоке часть мюонных нейтрино перешла в электронные. Так независимо было доказано, что в потоках нейтрино происходят осцилляции, и, следовательно, нейтрино обладает массой.

В реальности и сами процессы, и их наблюдения на много порядков сложнее описанных в этом тексте.

  • Физика
  • Нобелевская премия 2015 года вручена за “открытие нейтринных осцилляций, которые доказывают, что нейтрино обладает массой”

    В 1998 году Такааки Каджиита (Takaaki Kajita), участник в то время коллаборации Super-Kamiokande, представил данные, демонстрирующие исчезновение атмосферных мю-нейтрино, то есть нейтрино, образованных при прохождении космических лучей через атмосферу, на пути их полета к детектору. В 2001 году Артур Б. Макдональд (Arthur B. McDonald), руководитель Sudbury Neutrino Observatory (SNO) Collaboration, опубликовал доказательства превращения солнечных электронных нейтрино в мю- и тау-нейтрино. Эти открытия имели большое значение и ознаменовали прорыв в физике элементарных частиц. Нейтринные осцилляции и взаимосвязанные вопросы природы нейтрино, массы нейтрино и возможности нарушения симметрии зарядового соотношения лептонов – это важнейшие на сегодняшний день вопросы космологии и физики элементарных частиц.

    Мы живем в мире нейтрино. Тысячи миллиардов нейтрино “протекают” через наше тело каждую секунду. Их нельзя увидеть и нельзя почувствовать. Нейтрино проносятся через пространство почти со скоростью света и практически не взаимодействуют с веществом. Существует огромное количество источников нейтрино как в космосе, так и на Земле. Часть нейтрино родилась в результате Большого Взрыва. А сейчас источники нейтрино - это и взрывы супер новых звезд, и распад звездных супергигантов, а также радиоактивные реакции на атомных электростанция и процессы естественного радиоактивного распада в природе. Таким образом, нейтрино это вторые по численности элементарные частицы после фотонов, частиц света. Но несмотря на это, долгое время их существование не было определено.

    Возможность существования нейтрино была предложена австрийским физиком Вольфгангом Паули как попытка объяснить превращение энергии при бета-распаде (вид радиоактивного распада атома с излучением электронов). В декабре 1930 года он предположил, что часть энергии забирает с собой электрически нейтральная, слабовзаимодействующая частица с очень малой массой (возможно, безмассовая). Сам Паули верил в существование такой частицы, но вместе с тем, он понимал как трудно обнаружить частицу с такими параметрами методами экспериментальной физики. Он писал об этом: “Я совершил ужасную вещь, я постулировал существование частицы, которая не может быть обнаружена“. В скором времени, после открытия в 1932 году массивной, сильновзаимодействующей частицы, похожей на протон, но только нейтральной (часть атома - нейтрон) итальянский физик Энрико Ферми предложил неуловимую элементарную частицу Паули назвать – нейтрино.

    Возможность обнаружить нейтрино появилась только в конце 50х годов, когда было построено большое количество атомных электростанций и поток нейтрино значительно возрос. В 1956 году Ф. Райнс (также в последствии лауреат Нобелевской премии 1995 года) провел эксперимент по реализации идеи советского физика Б.М. Понтекорво по детектированию нейтрино и антинейтрино на ядерном реакторе в Южной Королине. В результате он отправил телеграмму Вольфгангу Паули (всего за год до его смерти), в которой сообщал, что нейтрино оставили следы в их детекторе. А уже в 1957 году Б.М. Понтекорво опубликовал ещё одну пионерскую работу по нейтрино, в которой первым выдвинул идею осцилляций нейтрино.
    С 60х годов ученые активно стали развивать новое научное направление – нейтринную астрономию. Одна из задач состояла в том, чтобы подсчитать количество нейтрино, родившихся в результате ядерных реакций на Солнце. Но попытки зарегистрировать расчетное количество нейтрино на Земле показывали, что отсутствует примерно две третьих нейтрино! Конечно, могли быть ошибки в произведенных расчетах. Но одно из возможных решений заключалось в том, что часть нейтрино изменяли свой тип. В соответствии с действующей сегодня в физике элементарных частиц Стандартной Моделью (рисунок 1), существует три типа нейтрино – электронные нейтрино, мю-нейтрино и тау-нейтрино.

    Рисунок 1 - Станда́ртная моде́ль - теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Содержит 6 лептонов (электрон, мюон, тау-лептон, электронное нейтрино, мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц. (http://elementy.ru/LHC/HEP/SM)

    Каждому типу нейтрино соответствует его заряженный партнер – электрон, и две других более тяжелых, обладающих меньшим временем жизни частицы - мюон и тау-лептон. В результате ядерных реакций на Солнце происходит рождение только электронных нейтрино и недостающие нейтрино могли бы быть найдены, если бы по пути на Землю электронные нейтрино могли превращаться в мю-нейтрино и тау-нейтрино.

    Поиски нейтрино глубоко под землей

    Поиск нейтрино ведется непрерывно, днем и ночью, на установках колоссального размера, построенных глубоко под землей для экранирования посторонних шумов, создаваемых космическим излучением и спонтанными радиоактивными реакциями в окружающей среде. Очень тяжело отличить сигналы нескольких настоящих солнечных нейтрино от миллиардов ложных.

    Нейтронная обсерватория Super-Kamiokande построена в 1996 году под горой Kamioka в 250 км на северо-запад от Токио. Другая обсерватория Sudbury Neutrino Observatory (SNO) была построена в 1999 году в никелевом руднике вблизи Онтарио.


    Рисунок 2 – Super-Kamiokande – это детектор атмосферных нейтрино. Когда нейтрино взаимодействует с водой, образуется электрически заряженная частица. Это приводит к возникновению излучения Черенкова-Вавилова, которое регистрируется детекторами света. Форма и интенсивность спектра излучения Черенкова-Вавилова позволяет определить тип частицы и откуда она прилетела.

    Super-Kamiokande – это гигантский детектор, построенный на глубине 1000 метров. Он состоит из бака размерами 40 на 40 метров, заполненного 50 000 тонн воды. Вода в баке такой чистоты, что свет может пройти расстояние в 70 метров, прежде чем его интенсивность уменьшится в два раза. В обычном бассейне для плавания это расстояние составляет всего пару метров. По сторонам бака, на его верхней и нижней частях расположено 11 000 детекторов света, позволяющие зарегистрировать малейшую вспышку света в воде. Большое количество нейтрино проходит сквозь бак с водой, но только некоторые из них взаимодействуют с атомами и/или электронами с образованием электрически заряженных частиц. Мюон образуются из мю-нейтрино и электроны из электронных нейтрино. Вокруг образованных заряженных частиц образуются вспышки голубого света. Это, так называемое, излучение Черенкова-Вавилова, которое возникает при движении заряженных частиц со скоростью, превышающей скорость света в данной среде. И это не противоречит теории Эйнштейна, которая гласит, что ничто не может двигаться со скоростью выше скорости света в вакууме. В воде скорость света составляет только 70 % от скорости света в вакууме и, поэтому, может перекрыта скоростью движения заряженной частицы.

    При прохождении космического излучения через слои атмосферы рождается большое количество мю-нейтрино, которым необходимо пройти до детектора путь лишь в несколько десятков километров. Super-Kamiokande может детектировать мю-нейтрино приходящие прямо из атмосферы, а также те нейтрино, которые попадают на детектор с обратной стороны, проходя сквозь всю толщу земного шара. Ожидалось, что количество мю-нейтрино детектируемых в двух направлениях будет одинаковым, ведь толща земли не представляет для нейтрино какой-либо преграды. Однако, количество нейтрино попадающих на Super-Kamiokande прямо из атмосферы было значительно больше. Количество же электронных нейтрино приходящих в обоих направлениях не отличалось. Получается, что та часть мю-нейтрино, которая проходила больший путь сквозь толщу земли, скорее всего превращалась каким-то образом в тау-нейтрино. Однако, зарегистрировать данные превращения напрямую в обсерватории Super-Kamiokande было невозможно.

    Чтобы получить окончательный ответ на вопрос о возможности нейтринных превращений или нейтринных осцилляций был реализован еще один эксперимент во второй нейтринной обсерватории Sudbury Neutrino Observatory (рисунок 3). Она была построена на глубине 2000 метров под землей и оснащена 9500 детекторов света. Обсерватория предназначена для детектирования именно солнечных нейтрино, энергия которых значительно меньше, чем рожденных в слоях атмосферы. Бак заполнялся не просто очищенной водой, а тяжелой водой, в которой каждый атом водорода в молекуле воды имеет дополнительный нейтрон. Таким образом, вероятность взаимодействия нейтринно с тяжелыми атомами водорода значительно выше. Кроме того, наличие тяжелых ядер позволяет нейтрино взаимодействовать с протеканием других ядерных реакций, а следовательно, будут наблюдаться световые вспышки другой интенсивности. Некоторые типы реакций позволяют детектировать все типы нейтрино, но к сожалению, не позволяют точно отличить один тип от другого.


    Рисунок 3 – Sudbury Neutrino Observatory – это детектор солнечных нейтрино. Реакции между тяжелыми ядрами водорода и нейтрино дают возможность регистрировать как только электронные нейтрино, так и все типы нейтрино одновременно. (иллюстрации 2 и 3 с сайта нобелевского комитета nobelprize.org и шведской академии наук kva.se)

    После начала эксперимента обсерватория детектировала 3 нейтрино в день из 60 миллиардов нейтрино через 1 см2, прилетающих на Землю от Солнца. И все равно это было в 3 раза меньше расчетного количества электронных солнечных нейтрино. Суммарное же количество всех типов нейтрино, задетектированных в обсерватории, с высокой точностью соответствовало ожидаемому числу нейтрино, испускаемых Солнцем. Обобщение экспериментальных результатов двух нейтринных обсерваторий, теории предложенной Понтекорво о принципиальной возможности нейтринных осцилляций позволило доказать существование нейтринных превращений на пути от Солнца на Землю. В этих двух обсерваториях Super-Kamiokande и Sudbury Neutrino Observatory впервые были получены описанные результаты и в 2001 году предложена их интерпретация. Чтобы окончательно убедиться в правильности проведенных экспериментов, спустя год, в 2002 году начался эксперимент KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector), в котором в качестве источника нейтронов использовали реактор. Спустя несколько лет, после накопления достаточной статистики, результаты по превращению нейтрино были подтверждены с высокой точностью.

    Чтобы объяснить механизм нейтринных превращений или нейтринных осцилляций ученые обратились к классической теории квантовой механики. Эффект превращения электронных нейтрино в мю- и тау-нейтрино предполагает с точки зрения квантовой механики наличие у нейтрино массы, иначе данный процесс невозможен даже теоретически. В квантовой механике частице определенной массы соответствует волна определенной частоты. Нейтрино представляют собой суперпозицию волн, которые и соответствуют нейтрино различного типа с различной массой. Когда волны софазны невозможно отличить один тип нейтрино от другого. Но за значительное время движения нейтрино от Солнца до Земли может происходить дефазировка волн и потом возможна их последующая суперпозиция другим образом. Тогда и становится возможным отличить один тип нейтрино от другого. Такие своеобразные изменения происходят из-за того, что различные типы нейтрино имеют различные массы, но отличающиеся на очень малую величину. Масса нейтрино оценивается в миллионы раз меньше, чем масса электрона – это ничтожна малая величина. Однако, за счет того, что нейтрино весьма распространенная частица, сумма масс всех нейтрино приблизительно равна массе всех видимых звезд.

    Не смотря на такие успехи физиков многие вопросы остаются до сих пор нерешенными. Почему нейтрино такие легкие? Существуют ли другие типы нейтрино? Почему нейтрино так сильно отличаются от других элементарных частиц? Эксперименты продолжаются и есть надежда, что они позволят узнать новые свойства нейтрино и, таким образом, приблизить нас к понимаю истории, структуры и будущего Вселенной.

    Подготовлено по материалам с сайта nobelprize.org.

    Популярная литература и ресурсы

    Физики исследуют не только свойства больших тел, включая огромную Вселенную, но и мир очень маленьких или так называемых элементарных частиц. Один из разделов современной физики, в котором изучаются свойства частиц, называется физикой элементарных частиц. Обнаруженных частиц оказалось так много, что была составлена таблица, подобная периодической таблице Менделеева для химических элементов, но частиц в отличие от химических элементов оказалось гораздо больше ста. Естественно, что физики пытались классифицировать эти частицы путём создания различных моделей. Одна из них – так называемая Стандартная модель, которая объясняет свойства всех известных частиц, а также их взаимодействия.

    Известно, что наша Вселенная управляется четырьмя взаимодействиями – слабое, сильное, электромагнитное, гравитация. Эти взаимодействия – результат распада некоей суперсилы, природа которой нам неизвестна. Она привела к Большому Взрыву и образованию нашей Вселенной. Разгадка суперсилы поможет нам понять механизм образования нашего мира, а также установить причину, каким образом физические законы и фундаментальные постоянные были встроены в нашу Вселенную и управляют ею. По мере остывания Вселенной суперсила распалась на четыре силы, без которых в ней не было бы никакого порядка. Мы можем понять природу суперсилы путём объединения четырёх взаимодействий. Стандартная модель учитывает лишь три вида взаимодействия частиц – слабое, сильное и электромагнитное, т.к. гравитация в мире маленьких частиц ничтожна в силу ничтожности их масс и поэтому не рассматривается. Эта модель не является «теорией всего», т.к. она не описывает тёмную материю и тёмную энергию, из которых состоит почти 96% нашей Вселенной, а также не учитывает гравитацию.

    Поиски отклонений от этой модели и создание «новой физики» – одна из самых интересных направлений исследований в современной физике. Суперколлайдер в Европе был построен, кроме всего прочего, для проверки Стандартной модели и создания «новой физики». Согласно этой модели нейтрино является безмассовой частицей. Открытие массы у нейтрино явилось важным критическим тестом этой модели.

    История физики элементарных частиц началась в конце 19 века, когда английский физик Дж. Дж. Томсон открыл электрон, изучая отклонения катодных лучей в магнитном поле. Позже Беккерелем было открыто явление радиоактивности, в котором образуются три вида излучения. Они назывались альфа-, бета- и гамма- лучами (три первые буквы греческого алфавита). Исследование природы этих излучений показало, что альфа частицы – это положительно заряженные ядра атомов гелия, бета частицы – электроны с отрицательным зарядом, а гамма частицы – частицы света или фотоны, не имеющие ни массы, ни заряда. В 1905 г. Рентгеном были открыты Х-лучи. Это те же гамма лучи, но с высокой проникающей способностью. В 1911 г. знаменитый английский учёный Резерфорд, изучая отклонение альфа частиц тоненькими пластинками золота, установил планетарную модель атома. Это был год рождения ядерной физики. Согласно этой модели атомы состоят из положительно заряженных ядер, вокруг которых вращаются отрицательно заряженные электроны. Атомы электрически нейтральны, т.к. число электронов равно числу протонов. В 1932 г. была сформулирована протон-нейтронная модель атомных ядер после предсказания английским физиком Чэдвиком новой незаряженной частицы – нейтрона с массой близкой массе протона. Вскоре нейтроны были обнаружены в ядерной реакции взаимодействия углерода с альфа частицами. Число элементарных частиц возросло к 1932 г. до четырёх – электрон, фотон, протон и нейтрон. Тогда же Поль Дирак предсказал античастицы. Например, античастицей электрона является позитрон. Античастицей атома является антиатом, который состоит из отрицательно заряженных антипротонов и нейтральных антинейтронов с положительно заряженными позитронами, вращающимися вокруг антиядра. Эффект преобладания материи над антиматерией во Вселенной – одна из фундаментальных проблем физики, которая будет решаться с помощью суперколлайдера.

    Если вы читали книгу Дэна Брауна «Ангелы и Демоны», то наверняка помните, как физики с помощью мощного ускорителя, синхрофазотрона, получили маленькое количество антивещества в количестве меньше 1 грамма, но которое обладает мощной разрушительной силой, например, по версии автора, уничтожить Ватикан в Риме. Так кто же и когда предсказал маленькое нейтрино?

    Когда физики изучали явление бета-распада, они обнаружили, что спектр испускаемых электронов не был дискретным, как предсказывалось законом сохранения энергии, а был непрерывным. Т.е. часть энергии электрона куда – то исчезала и таким образом закон сохранения энергии как бы нарушался. Знаменитый Нильс Бор даже предположил, что, возможно, при бета-распаде ядер закон сохранения энергии нарушается. Однако физики скептически отнеслись к этой идее и пытались найти другое объяснение причины исчезновения энергии.

    Австрийский физик Вольфганг Паули в 1932 г. предсказал существование в процессе бета распада ещё одной частицы, не имеющей ни массы, ни заряда и уносящей недостающую энергию. Итальянский физик Э. Ферми, построивший затем теорию бета-распада, предложил называть эту частицу нейтрино, т.е. маленький нейтрон. Однако зарегистрировать нейтрино оказалось невозможным в течение почти 25 лет, т.к. эта частица свободно, без каких-либо взаимодействий, могла проникать через огромные толщи пространства, не взаимодействуя с ней. Например, пока вы читаете эту статью, через ваше тело пролетит сотни триллионов нейтрино, не взаимодействуя с вами.

    Автор Илья ГУЛЬКАРОВ

    Потребовалось почти 25 лет после предсказания Паули, чтобы эта необычайная частица была наконец обнаружена. Существование нейтрино впервые было подтверждено американскими физиками Коуэном и Райнис в 1956 г. Так как нейтрино – «неуловимая» частица, то её регистрируют косвенным путём. Обычно детектор помещают глубоко под Землёй (1500 м), чтобы исключить влияние различных факторов, и заполняют его, например, хлором в количестве 400,000 литров. Солнечные нейтрино в очень редких случаях (одно/два нейтрино в день) могут превратить хлор в радиоактивный аргон, который можно зарегистрировать, т.к. он излучает фотоны.

    В канадском эксперименте детектор – это сфера с диаметром 12 м, которая заполнялась 1000 тонн тяжёлой дейтериевой водой и помещалась на глубину 2000 м. Нейтрино, пролетая сквозь эту сферу, в очень редких случаях взаимодействует с дейтерием (около 10 событий в день), образуя электроны, спектр которых измеряется, или нейтроны, которые регистрируются с помощью детекторов. Таким образом были зарегистрированы солнечные нейтрино. Первые эксперименты с целью обнаружения нейтрино показали, что на самом деле их в три раза меньше по сравнению с рассчитанными на основе математической модели Солнца и эта проблема тогда называлась solar neutrino problem . O казалось, что на самом деле имеются три вида нейтрино – электронное, мюонное и тау-нейтрино. Превращения нейтрино одного вида в другой называется нейтринные осцилляции . Причина осцилляций – это наличие у нейтрино массы. В недрах Солнца в реакциях термоядерного синтеза рождается только электронное нейтрино, но на пути к Земле оно может превращаться в другие виды нейтрино – мю и тау. Поэтому в первых экспериментах их регистрировалось в

    «Весёлые» шарики – три вида нейтрино электронное, мюонное и тау-нейтрино в три раза меньше. Немецкий учёный Ганс Бете предсказал серию протон-протонных реакций на Солнце объясняющих, почему Солнце излучает грандиозную энергию. Позже за это открытие ему была присуждена Нобелевская премия. В этих реакциях четыре атома водорода превращаются в атом гелия. При этом образуются нейтрино, позитроны и выделяется огромная энергия. Каждую секунду четыре миллиона тонн массы Солнца (!) превращается в энергию в соответствии с формулой Эйнштейна Е = мс². Но масса Солнца настолько велика (напомню, что Солнце тяжелее Земли более, чем в 330,000 раз), что излучение Солнца будет продолжаться миллиарды лет. Используя те же реакции, которые происходят на Солнце, физики сконструировали водородную бомбу, т.е. маленькое «рукотворное» Солнце на Земле, в котором происходят те же термоядерные реакции, что и на Солнце. Если бы наше понимание этих реакций было неправильным, взрыв водородной бомбы был бы просто невозможен.

    Новые эксперименты А. Макдональда (Канада) и Т. Каджита (Япония) позволили им определить массу нейтрино, т.е. они доказали в своих тонких экспериментах существование нейтринных осцилляций, т.е. превращения нейтрино друг в друга. Масса нейтрино оказалась чрезвычайно мала, в миллионы раз меньше массы электрона, самой лёгкой элементарной частицы во Вселенной. Напомню, что фотон, т.е. частица света, не имеет массы и является самой распространённой частицей во Вселенной. За это открытие они получили Нобелевскую премию по физике 2015 года. Как объявил Нобелевский комитет, награды вручены «за открытие осцилляции нейтрино, показывающее, что у нейтрино есть масса». Они доказали реальность нейтринных осцилляций, т.е. превращения одного вида нейтрино в другие и наоборот.

    Это открытие является фундаментальным, т.к. меняет баланс масс во Вселенной. От массы нейтрино зависят оценки массы нашей Вселенной. Информация о точном значении массы нейтрино важна для объяснения скрытой массы Вселенной, так как, несмотря на её малость, их концентрация во Вселенной огромна и это может существенно повлиять на её полную массу.

    Подведём итоги. Предсказание нейтрино Паули позволило физикам объяснить явление бета распада и подтвердить, что при этом процессе закон сохранения энергии не нарушается. Регистрация солнечных нейтрино позволила физикам проверить математическую модель Солнца и предсказать протон-протонные реакции, объясняющие огромное выделение энергии Солнцем и открыть три вида нейтрино. Это позволило физикам создать маленькое Солнце на Земле в виде водородной бомбы. Нейтринные осцилляции, т.е. превращения нейтрино одного вида в другие, явились следствием наличия массы у нейтрино. Их открытие было отмечено Нобелевской премией 2015. Хотя масса нейтрино в миллионы раз меньше массы электрона, от него зависят оценки массы Вселенной и, в конечном счёте, это поможет физикам понять природу скрытой массы нашей Вселенной. Благодаря ненулевой массе нейтрино физики ищут выход за пределы Стандартной модели, т.е. нейтринные исследования приближают их к созданию «новой физики» и новому пониманию процессов внутри нашего мира.

    Нобелевская премия по физике в 2015 году присуждена ученым, сделавшим гениальное открытие. Работая параллельно, Такааки Кадзито и Артур Макдональд доказали, что неуловимые частицы, именуемые нейтрино, имеют вес. Разумеется, эти показатели немногим превосходят нулевую отметку, однако теперь наука получила в свое распоряжение объяснения зарождения вселенной в принципе, равно как и многих процессов, происходящих на Земле.

    Маленькая нейтральная частица

    Нейтрино в переводе с итальянского языка означает «маленький нейтральный». Эти микроскопические частицы не имеют электрического заряда, поэтому ученые долгое время полагали, что нейтрино имеют нулевую массу. Однако опыты, проведенные Кадзито в университете Токио, а также Макдональдом в Канадском королевском университете, полностью опровергли имеющуюся теорию. Представители Нобелевского комитета уже заявили, что это открытие поможет изменить понимание самых сокровенных выработок материи, а также оказать решающий фактор на новое видение Вселенной.

    Как проходили испытания

    Как мы уже отмечали, ученые совершали опыты параллельно, в двух разных местах. Для этого один детектор был встроен под землю на один километр под японской горой Гифу, а другой на два километра в глубину под старым никелевым рудником в провинции Онтарио. В ходе испытаний ученые обнаружили, что нейтрино могут переходить из одного состояния в другое, в то время, когда они мчатся в пространстве. Исходя из поведения частиц, меняющих свою форму, можно с уверенностью констатировать, что масса нейтрино существует.

    Что рассказали лауреаты

    Отвечая на вопросы журналистов после того, как были объявлены лауреаты по физике, Макдональд описал свое состояние коротким и емким архимедовским «Эврика!», добавив, что это был непростой опыт. К счастью у исследователя было много коллег, которые помогали ему в работе и которые в данный момент готовы разделить его радость.

    Когда Кадзито узнал о том, что стал победителем, он смог произнести одно лишь слово: «Невероятно». На пресс-конференции, проходившей в Токио, нобелевский лауреат добавил, что жаждет поблагодарить нейтрино. И так как эти частицы создаются космическими лучами, он благодарит и космос.

    Самые распространенные частицы во Вселенной

    Нейтрино являются одними из наиболее распространенных частиц во Вселенной. Никто из нас не может почувствовать, как миллиарды из них проходят сквозь наше тело каждую секунду. Мы не ощущаем их, но они существуют. Многие из этих частиц стали последствием Большого взрыва, они постоянно создаются в недрах Земли в процессе радиоактивного распада, эти частицы посылаются на Землю солнечными лучами, они способны возникать из взрывов звезд, а также других ядерных явлений.

    Открытие существования нейтрино

    Сегодняшнее открытие не смогло бы иметь место без обнаружения следов нейтрино, которое датируется 1956 годом. Еще ранее ученые предполагали, что такие частицы могут существовать, но не имели технической возможности выйти на их след. Всего существует три типа нейтрино: электронное, мюонное и тау-нейтрино.

    Польза, которую извлечет современная наука

    Фундаментальная работа проводилась в двух обсерваториях с разных сторон Земли в течение долгого промежутка времени. Так, еще в 1998 году команда Кадзито обнаружила, что нейтрино создаются при проникновении космических лучей в атмосферу земли, а на своем пути к детектору под гору Камиоко частицы изменили свою идентичность. Аналогичный процесс тремя годами позднее обнаружила группа Макдональда, улавливая нейтрино, идущие от солнца в обсерватории Садбери. Это открытие поможет завершить объяснение фундаментальных строительных блоков вселенной, а также найдет практическое применение в разработке ядерного синтеза.

    Заключение

    Теперь ученые знают, что масса нейтрино более чем в миллион раз меньше, чем масса электрона. Но так как микроскопические частицы настолько многочисленные, по оценкам экспертов, общий вес нейтрино может быть приравнен к общей массе всех видимых звезд во вселенной.

    Новое на сайте

    >

    Самое популярное