Домой Заготовки на зиму Крупнейшая бактерия. Гиганты мира микробов — самые большие одноклеточные организмы. Бактерии и люди

Крупнейшая бактерия. Гиганты мира микробов — самые большие одноклеточные организмы. Бактерии и люди

Бактерии — самая древняя группа организмов из ныне существующих на Земле. Первые бактерии появились, вероятно, более 3,5 млрд лет назад и на протяжении почти миллиарда лет были единственными живыми существами на нашей планете. Поскольку это были первые представители живой природы, их тело имело примитивное строение.

Со временем их строение усложнилось, но и поныне бактерии считаются наиболее примитивными одноклеточными организмами. Интересно, что некоторые бактерии и сейчас ещё сохранили примитивные черты своих древних предков. Это наблюдается у бактерий, обитающих в горячих серных источниках и бескислородных илах на дне водоёмов.

Большинство бактерий бесцветно. Только немногие окрашены в пурпурный или в зелёный цвет. Но колонии многих бактерий имеют яркую окраску, которая обусловливается выделением окрашенного вещества в окружающую среду или пигментированием клеток.

Первооткрывателем мира бактерий был Антоний Левенгук — голландский естествоиспытатель 17 века, впервые создавший совершенную лупу-микроскоп, увеличивающую предметы в 160-270 раз.

Бактерии относят к прокариотам и выделяют в отдельное царство — Бактерии.

Форма тела

Бактерии — многочисленные и разнообразные организмы. Они различаются по форме.

Название бактерии Форма бактерии Изображение бактерии
Кокки Шарообразная
Бацилла Палочковидная
Вибрион Изогнутая в виде запятой
Спирилла Спиралевидная
Стрептококки Цепочка из кокков
Стафилококки Грозди кокков
Диплококки Две круглые бактерии, заключённые в одной слизистой капсуле

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других — на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно — азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии — передвигаться в капиллярах почвы.

Место обитания

В силу простоты организации и неприхотливости бактерии широко распространены в природе. Бактерии обнаружены везде: в капле даже самой чистой родниковой воды, в крупинках почвы, в воздухе, на скалах, в полярных снегах, песках пустынь, на дне океана, в добытой с огромной глубины нефти и даже в воде горячих источников с температурой около 80ºС. Обитают они на растениях, плодах, у различных животных и у человека в кишечнике, ротовой полости, на конечностях, на поверхности тела.

Бактерии — самые мелкие и самые многочисленные живые существа. Благодаря малым размерам они легко проникают в любые трещины, щели, поры. Очень выносливы и приспособлены к различным условиям существования. Переносят высушивание, сильные холода, нагревание до 90ºС, не теряя при этом жизнеспособность.

Практически нет места на Земле, где не встречались бы бактерии, но в разных количествах. Условия жизни бактерий разнообразны. Одним из них необходим кислород воздуха, другие в нём не нуждаются и способны жить в бескислородной среде.

В воздухе: бактерии поднимаются в верхние слои атмосферы до 30 км. и больше.

Особенно много их в почве. В 1 г. почвы могут содержаться сотни миллионов бактерий.

В воде: в поверхностных слоях воды открытых водоёмов. Полезные водные бактерии минерализуют органические остатки.

В живых организмах: болезнетворные бактерии попадают в организм из внешней среды, но лишь в благоприятных условиях вызываю заболевания. Симбиотические живут в органах пищеварения, помогая расщеплять и усваивать пищу, синтезируют витамины.

Внешнее строение

Клетка бактерии одета особой плотной оболочкой — клеточной стенкой, которая выполняет защитную и опорную функции, а также придаёт бактерии постоянную, характерную для неё форму. Клеточная стенка бактерии напоминает оболочку растительной клетки. Она проницаема: через неё питательные вещества свободно проходят в клетку, а продукты обмена веществ выходят в окружающую среду. Часто поверх клеточной стенки у бактерий вырабатывается дополнительный защитный слой слизи — капсула. Толщина капсулы может во много раз превышать диаметр самой клетки, но может быть и очень небольшой. Капсула — не обязательная часть клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она предохраняет бактерию от высыхания.

На поверхности некоторых бактерий имеются длинные жгутики (один, два или много) или короткие тонкие ворсинки. Длина жгутиков может во много раз превышать разметы тела бактерии. С помощью жгутиков и ворсинок бактерии передвигаются.

Внутреннее строение

Внутри клетки бактерии находится густая неподвижная цитоплазма. Она имеет слоистое строение, вакуолей нет, поэтому различные белки (ферменты) и запасные питательные вещества размещаются в самом веществе цитоплазмы. Клетки бактерий не имеют ядра. В центральной части их клетки сконцентрировано вещество, несущее наследственную информации. Бактерии, — нуклеиновая кислота — ДНК. Но это вещество не оформлено в ядро.

Внутренняя организация бактериальной клетки сложна и имеет свои специфические особенности. Цитоплазма отделяется от клеточной стенки цитоплазматической мембраной. В цитоплазме различают основное вещество, или матрикс, рибосомы и небольшое количество мембранных структур, выполняющих самые различные функции (аналоги митохондрий, эндоплазматической сети, аппарата Гольджи). В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Гранулы могут состоять из соединений, которые служат источником энергии и углерода. В бактериальной клетке встречаются и капельки жира.

В центральной части клетки локализовано ядерное вещество — ДНК, не отграниченная от цитоплазмы мембраной. Это аналог ядра — нуклеоид. Нуклеоид не обладает мембраной, ядрышком и набором хромосом.

Способы питания

У бактерий наблюдаются разные способы питания. Среди них есть автотрофы и гетеротрофы. Автотрофы — организмы, способные самостоятельно образовывать органические вещества для своего питания.

Растения нуждаются в азоте, но сами усваивают азот воздуха не могут. Некоторые бактерии соединяют содержащиеся в воздухе молекулы азота с другими молекулами, в результате чего получаются вещества, доступные для растений.

Эти бактерии поселяются в клетках молодых корней, что приводит к образованию на корнях утолщений, называемых клубеньками. Такие клубеньки образуются на корнях растений семейства бобовых и некоторых других растений.

Корни дают бактериям углеводы, а бактерии корням — такие содержащие азот вещества, которые могут быть усвоены растением. Их сожительство взаимовыгодно.

Корни растений выделяют много органических веществ (сахара, аминокислоты и другие), которыми питаются бактерии. Поэтому в слое почвы, окружающем корни, поселяется особенно много бактерий. Эти бактерии превращают отмершие остатки растений в доступные для растения вещества. Этот слой почвы называют ризосферой.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня:

  • через повреждения эпидермальной и коровой ткани;
  • через корневые волоски;
  • только через молодую клеточную оболочку;
  • благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты;
  • благодаря стимуляции синтеза В-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз:

  • инфицирование корневых волосков;
  • процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножается, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина.

Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные. К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Бактерии клубеньков создают десятки и сотни килограммов азотных удобрений на гектаре почвы.

Обмен веществ

Бактерии отличаются друг от друга обменом веществ. У одних он идёт при участии кислорода, у других — без его участия.

Большинство бактерий питается готовыми органическими веществами. Лишь некоторые из них (сине-зелёные, или цианобактерии), способны создавать органические вещества из неорганических. Они сыграли важную роль в накоплении кислорода в атмосфере Земли.

Бактерии впитывают вещества извне, разрывают их молекулы на части, из этих частей собирают свою оболочку и пополняют своё содержимое (так они растут), а ненужные молекулы выбрасывают наружу. Оболочка и мембрана бактерии позволяет ей впитывать только нужные вещества.

Если бы оболочка и мембрана бактерии были полностью непроницаемыми, в клетку не попали бы никакие вещества. Если бы они были проницаемыми для всех веществ, содержимое клетки перемешалось бы со средой — раствором, в которой обитает бактерия. Для выживания бактерии необходима оболочка, которая нужные вещества пропускает, а ненужные — нет.

Бактерия поглощает находящиеся близ неё питательные вещества. Что происходит потом? Если она может самостоятельно передвигаться (двигая жгутик или выталкивая назад слизь), то она перемещается, пока не найдёт необходимые вещества.

Если она двигаться не может, то ждёт, пока диффузия (способность молекул одного вещества проникать в гущу молекул другого вещества) не принесёт к ней необходимые молекулы.

Бактерии в совокупности с другими группами микроорганизмов выполняют огромную химическую работу. Превращая различные соединения, они получают необходимую для их жизнедеятельности энергию и питательные вещества. Процессы обмена веществ, способы добывания энергии и потребности в материалах для построения веществ своего тела у бактерий разнообразны.

Другие бактерии все потребности в углероде, необходимом для синтеза органических веществ тела, удовлетворяют за счёт неорганических соединений. Они называются автотрофами. Автотрофные бактерии способны синтезировать органические вещества из неорганических. Среди них различают:

Хемосинтез

Использование лучистой энергии — важнейший, но не единственный путь создания органического вещества из углекислого газа и воды. Известны бактерии, которые в качестве источника энергии для такого синтеза используют не солнечный свет, а энергию химических связей, происходящих в клетках организмов при окислении некоторых неорганических соединений — сероводорода, серы, аммиака, водорода, азотной кислоты, закисных соединений железа и марганца. Образованное с использованием этой химической энергии органическое вещество они используют для построения клеток своего тела. Поэтому такой процесс называют хемосинтезом.

Важнейшую группу хемосинтезирующих микроорганизмов составляют нитрифицирующие бактерии. Эти бактерии живут в почве и осуществляют окисление аммиака, образовавшегося при гниении органических остатков, до азотной кислоты. Последняя, реагирует с минеральными соединениями почвы, превращаются в соли азотной кислоты. Этот процесс проходит в две фазы.

Железобактерии превращают закисное железо в окисное. Образованная гидроокись железа оседает и образует так называемую болотную железную руду.

Некоторые микроорганизмы существуют за счёт окисления молекулярного водорода, обеспечивая тем самым автотрофный способ питания.

Характерной особенностью водородных бактерий является способность переключаться на гетеротрофный образ жизни при обеспечении их органическими соединениями и отсутствии водорода.

Таким образом, хемоавтотрофы являются типичными автотрофами, так как самостоятельно синтезируют из неорганических веществ необходимые органические соединения, а не берут их в готовом виде от других организмов, как гетеротрофы. От фототрофных растений хемоавтотрофные бактерии отличаются полной независимостью от света как источника энергии.

Бактериальный фотосинтез

Некоторые пигментосодержащие серобактерии (пурпурные, зелёные), содержащие специфические пигменты — бактериохлорофиллы, способны поглощать солнечную энергию, с помощью которой сероводород в их организмах расщепляется и отдаёт атомы водорода для восстановления соответствующих соединений. Этот процесс имеет много общего с фотосинтезом и отличается только тем, что у пурпурных и зелёных бактерий донором водорода является сероводород (изредка — карбоновые кислоты), а у зелёных растений — вода. У тех и других отщепление и перенесение водорода осуществляется благодаря энергии поглощённых солнечных лучей.

Такой бактериальный фотосинтез, который происходит без выделения кислорода, называется фоторедукцией. Фоторедукция углекислого газа связана с перенесением водорода не от воды, а от сероводорода:

6СО 2 +12Н 2 S+hv → С6Н 12 О 6 +12S=6Н 2 О

Биологическое значение хемосинтеза и бактериального фотосинтеза в масштабах планеты относительно невелико. Только хемосинтезирующие бактерии играют существенную роль в процессе круговорота серы в природе. Поглощаясь зелёными растениями в форме солей серной кислоты, сера восстанавливается и входит в состав белковых молекул. Далее при разрушении отмерших растительных и животных остатков гнилостными бактериями сера выделяется в виде сероводорода, который окисляется серобактериями до свободной серы (или серной кислоты), образующий в почве доступные для растения сульфиты. Хемо- и фотоавтотрофные бактерии имеют существенное значение в круговороте азота и серы.

Спорообразование

Внутри бактериальной клетки образуются споры. В процессе спорообразования бактериальная клетка претерпевает ряд биохимических процессов. В ней уменьшается количество свободной воды, снижается ферментативная активность. Это обеспечивает устойчивость спор к неблагоприятным условиям внешней среды (высокой температуре, высокой концентрации солей, высушиванию и др.). Спорообразование свойственно только небольшой группе бактерий.

Споры — не обязательная стадия жизненного цикла бактерий. Спорообразование начинается лишь при недостатке питательных веществ или накоплении продуктов обмена. Бактерии в виде спор могут длительное время находиться в состоянии покоя. Споры бактерий выдерживают продолжительное кипячение и очень длительное проммораживание. При наступлении благоприятных условий спора прорастает и становится жизнеспособной. Спора бактерий — это приспособление к выживанию в неблагоприятных условиях.

Размножение

Размножаются бактерии делением одной клетки на две. Достигнув определённого размера, бактерия делится на две одинаковые бактерии. Затем каждая из них начинает питаться, растёт, делится и так далее.

После удлинения клетки постепенно образуется поперечная перегородка, а затем дочерние клетки расходятся; у многих бактерий в определённых условиях клетки после деления остаются связанными в характерные группы. При этом в зависимости от направления плоскости деления и числа делений возникают разные формы. Размножение почкованием встречается у бактерий как исключение.

При благоприятных условиях деление клеток у многих бактерий происходит через каждые 20-30 минут. При таком быстром размножении потомство одной бактерии за 5 суток способно образовать массу, которой можно заполнить все моря и океаны. Простой подсчёт показывает, что за сутки может образоваться 72 поколения (720 000 000 000 000 000 000 клеток). Если перевести в вес — 4720 тонн. Однако в природе этого не происходит, так как большинство бактерий быстро погибают под действием солнечного света, при высушивании, недостатке пищи, нагревании до 65-100ºС, в результате борьбы между видами и т.д.

Бактерия (1), поглотившая достаточно пищи, увеличивается в размерах (2) и начинает готовиться к размножению (делению клетки). Её ДНК (у бактерии молекула ДНК замкнута в кольцо) удваивается (бактерия производит копию этой молекулы). Обе молекулы ДНК (3,4) оказываются, прикреплены к стенке бактерии и при удлинении бактерии расходятся в стороны (5,6). Сначала делится нуклеотид, затем цитоплазма.

После расхождения двух молекул ДНК на бактерии появляется перетяжка, которая постепенно разделяет тело бактерии на две части, в каждой из которых есть молекула ДНК (7).

Бывает (у сенной палочки), две бактерии слипаются, и между ними образуется перемычка (1,2).

По перемычке ДНК из одной бактерии переправляется в другую (3). Оказавшись в одной бактерии, молекулы ДНК сплетаются, слипаются в некоторых местах (4), после чего обмениваются участками (5).

Роль бактерий в природе

Круговорот

Бактерии — важнейшее звено общего круговорота веществ в природе. Растения создают сложные органические вещества из углекислого газа, воды и минеральных солей почвы. Эти вещества возвращаются в почву с отмершими грибами, растениями и трупами животных. Бактерии разлагают сложные вещества на простые, которые снова используют растения.

Бактерии разрушают сложные органические вещества отмерших растений и трупов животных, выделения живых организмов и разные отбросы. Питаясь этими органическими веществами, сапрофитные бактерии гниения превращают их в перегной. Это своеобразные санитары нашей планеты. Таким образом, бактерии активно участвуют в круговороте веществ в природе.

Почвообразование

Поскольку бактерии распространены практически повсеместно и встречаются в огромном количестве, они во многом определяют различные процессы, происходящие в природе. Осенью опадают листья деревьев и кустарников, отмирают надземные побеги трав, опадают старые ветки, время от времени падают стволы старых деревьев. Всё это постепенно превращается в перегной. В 1 см 3 . поверхностного слоя лесной почвы содержатся сотни миллионов сапрофитных почвенных бактерий нескольких видов. Эти бактерии превращают перегной в различные минеральные вещества, которые могут быть поглощены из почвы корнями растений.

Некоторые почвенные бактерии способны поглощать азот из воздуха, используя его в процессах жизнедеятельности. Эти азотофиксирующие бактерии живут самостоятельно или поселяются в корнях бобовых растений. Проникнув в корни бобовых, эти бактерии вызывают разрастание клеток корней и образование на них клубеньков.

Эти бактерии выделяют азотные соединения, которые используют растения. От растений бактерии получают углеводы и минеральные соли. Таким образом, между бобовым растением и клубеньковыми бактериями существует тесная связь, полезная как одному, так и другому организму. Это явление носит название симбиоза.

Благодаря симбиозу с клубеньковыми бактериями бобовые растения обогащают почву азотом, способствуя повышению урожая.

Распространение в природе

Микроорганизмы распространены повсеместно. Исключение составляют лишь кратеры действующих вулканов и небольшие площадки в эпицентрах взорванных атомных бомб. Ни низкие температуры Антарктики, ни кипящие струи гейзеров, ни насыщенные растворы солей в соляных бассейнах, ни сильная инсоляция горных вершин, ни жёсткое облучение атомных реакторов не мешают существованию и развитию микрофлоры. Все живые существа постоянно взаимодействуют с микроорганизмами, являясь часто не только их хранилищами, но и распространителями. Микроорганизмы — аборигены нашей планеты, активно осваивающие самые невероятные природные субстраты.

Микрофлора почвы

Количество бактерий в почве чрезвычайно велико — сотни миллионов и миллиардов особей в 1 грамме. В почве их значительно больше, чем в воде и воздухе. Общее количество бактерий в почвах меняется. Количество бактерий зависит от типа почв, их состояния, глубины расположения слоёв.

На поверхности почвенных частиц микроорганизмы располагаются небольшими микроколониями (по 20-100 клеток в каждой). Часто они развиваются в толщах сгустков органического вещества, на живых и отмирающих корнях растений, в тонких капиллярах и внутри комочков.

Микрофлора почвы очень разнообразна. Здесь встречаются разные физиологические группы бактерий: бактерии гниения, нитрифицирующие, азотфиксирующие, серобактерии и др. среди них есть аэробы и анаэробы, споровые и не споровые формы. Микрофлора — один из факторов образования почв.

Областью развития микроорганизмов в почве является зона, примыкающая к корням живых растений. Её называют ризосферой, а совокупность микроорганизмов, содержащихся в ней, — ризосферной микрофлорой.

Микрофлора водоёмов

Вода — природная среда, где в большом количестве развиваются микроорганизмы. Основная масса их попадает в воду из почвы. Фактор, определяющий количество бактерий в воде, наличие в ней питательных веществ. Наиболее чистыми являются воды артезианских скважин и родниковые. Очень богаты бактериями открытые водоёмы, реки. Наибольшее количество бактерий находится в поверхностных слоях воды, ближе к берегу. При удалении от берега и увеличении глубины количество бактерий уменьшается.

Чистая вода содержит 100-200 бактерий в 1 мл., а загрязнённая — 100-300 тыс. и более. Много бактерий в донном иле, особенно в поверхностном слое, где бактерии образуют плёнку. В этой плёнке много серо- и железобактерий, которые окисляют сероводород до серной кислоты и тем самым предотвращают замор рыбы. В иле больше спороносных форм, в то время как в воде преобладают неспороносные.

По видовому составу микрофлора воды сходна с микрофлорой почвы, но встречаются и специфические формы. Разрушая различные отбросы, попавшие в воду, микроорганизмы постепенно осуществляют так называемое биологическое очищение воды.

Микрофлора воздуха

Микрофлора воздуха менее многочисленна, чем микрофлора почвы и воды. Бактерии поднимаются в воздух с пылью, некоторое время могут находиться там, а затем оседают на поверхность земли и гибнут от недостатка питания или под действием ультрафиолетовых лучей. Количество микроорганизмов в воздухе зависит от географической зоны, местности, времени года, загрязнённостью пылью и др. каждая пылинка является носителем микроорганизмов. Больше всего бактерий в воздухе над промышленными предприятиями. Воздух сельской местности чище. Наиболее чистый воздух над лесами, горами, снежными пространствами. Верхние слои воздуха содержат меньше микробов. В микрофлоре воздуха много пигментированных и спороносных бактерий, которые более устойчивы, чем другие, к ультрафиолетовым лучам.

Микрофлора организма человека

Тело человека, даже полностью здорового, всегда является носителем микрофлоры. При соприкосновении тела человека с воздухом и почвой на одежде и коже оседают разнообразные микроорганизмы, в том числе и патогенные (палочки столбняка, газовой гангрены и др.). Наиболее часто загрязняются открытые части человеческого тела. На руках обнаруживают кишечные палочки, стафилококки. В ротовой полости насчитывают свыше 100 видов микробов. Рот с его температурой, влажностью, питательными остатками — прекрасная среда для развития микроорганизмов.

Желудок имеет кислую реакцию, поэтому основная масса микроорганизмов в нём гибнет. Начиная с тонкого кишечника реакция становится щелочной, т.е. благоприятной для микробов. В толстых кишках микрофлора очень разнообразна. Каждый взрослый человек выделяет ежедневно с экскрементами около 18 млрд. бактерий, т.е. больше особей, чем людей на земном шаре.

Внутренние органы, не соединяющиеся с внешней средой (мозг, сердце, печень, мочевой пузырь и др.), обычно свободны от микробов. В эти органы микробы попадают только во время болезни.

Бактерии в круговороте веществ

Микроорганизмы вообще и бактерии в частности играют большую роль в биологически важных круговоротах веществ на Земле, осуществляя химические превращения, совершенно недоступные ни растениям, ни животным. Различные этапы круговорота элементов осуществляются организмами разного типа. Существование каждой отдельной группы организмов зависит от химического превращения элементов, осуществляемого другими группами.

Круговорот азота

Циклическое превращение азотистых соединений играет первостепенную роль в снабжении необходимыми формами азота различных по пищевым потребностям организмов биосферы. Свыше 90% общей фиксации азота обусловлено метаболической активностью определённых бактерий.

Круговорот углерода

Биологическое превращение органического углерода в углекислый газ, сопровождающееся восстановлением молекулярного кислорода, требует совместной метаболической активности разнообразных микроорганизмов. Многие аэробные бактерии осуществляют полное окисление органических веществ. В аэробных условиях органические соединения первоначально расщепляются путём сбраживания, а органические конечные продукты брожения окисляются далее в результате анаэробного дыхания, если имеются неорганические акцепторы водорода (нитрат, сульфат или СО 2).

Круговорот серы

Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.

Круговорот железа

В некоторых водоёмах с пресной водой содержатся в высоких концентрациях восстановленные соли железа. В таких местах развивается специфическая бактериальная микрофлора — железобактерии, окисляющие восстановленное железо. Они участвуют в образовании болотных железных руд и водных источников, богатых солями железа.

Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Около 2,5 млрд. лет они доминировали на Земле, формируя биосферу, участвовали в образовании кислородной атмосферы.

Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

Я думаю, в школе вы слышали про бактерии Это такие маленькие существа, которых везде тьма-тьмущая, и без которых мы бы не смогли существовать. Так вот, оказывается, среди них есть свои гиганты и карлики. Причем, самая большая из них - величиной с гору по сравнению с остальными! Эта гигантская бактерия называется Epulopiscium. Размерами (до 0.5 мм) она может сравниться с песчинкой соли - огромный размер в мире микроскопических существ. Ее даже можно увидеть невооруженным взгядом. Эта зверушка может достигать размеров маленьких насекомых и ракообразных существ.

В академии Корнуэлла были проведены и опубликованы исследования с целью определить причины таких больших размеров. Оказалось, что эта бактерия хранит в себе до 85 тысяч копий ДНК. Для сравнения - в человеческих клетках содержится максимум 3 копии. Живет это милое существо с помощью симбиоза в пищеварительном тракте рыбы-хирурга (тропическая рифовая рыба). Это было обнаружено в 1985 году.

«Другие бактерии также содержат в себе множество копий ДНК, но количество их не больше 100-200. Но эта единственная хранит целый банк своей генетической информации», - говорит Эшер Ангерт, профессор микробиологии университета Корнуэлла.

Обычные бактерии очень малы и просты по строению. Они лишены каких-либо органов (в клетках они называются органеллы), способствующих росту клеток, как, например, клетки растений или животных. Питаются бактерии с помощью всасывания питательных веществ сквозь оболочку клетки. Внутри питательные вещества распределяются «самоходом», поэтому бактерии вынуждены быть небольшими, иначе питательные вещества не смогут распространиться по всему их объему.

Но вышеупомянутая гигантская бактерия самокопирует свою ДНК многократно, и распределяет копии равномерно вблизи оболочки, чтобы они получали питательные вещества быстро и в достаточном объеме.

«Наличие тысяч копий ДНК, распределенных по периферии, дает возможность мгновенно реагировать на внешние факторы - температуру, раздражение и прочие», - добавляет Эшер Ангерт. Поэтому, несмотря на большие размеры, эта бактерия мгновенно реагирует на атаки хищников в своем мире, которых в пищеварительном тракте рыбы весьма много. Еще одна особенность ее - особый способ деления. Большинство бактерий просто делятся на 2 части, но Epulopiscium выращивает две дочерних клетки внутри себя, которые после ее смерти выходят наружу.

Но оказывается, есть и еще большие бактерии! В 1999 году был обнаружен еще больший вид - Thiomargarita namibiensis. Она достигает размера 0.75 мм. Питается это создание нитратами, синтезируя из них органические вещества. Живут эти гиганты на побережье Намибии, а некоторые их дальние родственники - в водах Мексиканского залива.

Бактерии - мельчайшие клеточные организмы, меньше их только вирусы. Обычная бактерия в 10 раз меньше клетки человека, составляя 0.5-5.0 микрометров (такие можно рассмотреть только в микроскопе). Тысячи бактерий десятков видов находятся, к примеру, в капельке слюны. В грамме почвы содержится около 40 миллионов бактерий, в мельчайшей капле сырой воды количество бактерий также составляет миллионы. На планете содержится (приблизительно, конечно) 5.000.000.000.000.000.000.000.000.000.000 бактерий (30 нулей). Они представляют собой самую распространенную форму жизни, присутствующую везде - от дна океана до высокогорных снегов.

ps. На фото изображена героиня статьи. Другие бактерии на этом фото выглядят еле заметными маленькими точками вокруг.

С бактерий началась жизнь на нашей планете. Ученые полагают, что ими все и закончится. Ходит шутка, что когда инопланетяне изучали Землю, то они не могли понять, кто же ее настоящий хозяин - человек или бацилла. Самые интересные факты о бактериях подобраны ниже.

Бактерия - это отдельный организм, который и размножается с помощью деления. Чем благоприятней среда обитания, тем скорее она делится. Живут эти микроорганизмы во всех живых существах, а также в воде, продуктах питания, в трухлявых деревьях, в растениях.

Этим список не ограничивается. Бациллы прекрасно выживают на предметах, которые трогал человек. Например, на поручне в общественном транспорте, на ручке холодильника, на кончике карандаша. Интересные факты о бактериях недавно открыли из Аризонского университета. По их наблюдениям на Марсе обитают «спящие» микроорганизмы. Ученые уверены, что это одно из доказательств существования жизни на других планетах, кроме того, по их мнению, инопланетные бактерии можно «оживить» на Земле.

Впервые микроорганизм рассмотрел в оптический микроскоп голландский ученый Антоний ван Левенгук еще в конце 17 века. В настоящий момент известных видов бацилл насчитывается порядка двух тысяч. Все их можно условно разделить на:

  • вредные;
  • полезные;
  • нейтральные.

При этом вредные обычно воюют с полезными и нейтральными. Это одна из наиболее частных причин, из-за которых болеет человек.

Самые любопытные факты

В целом, одноклеточные организмы участвуют во всех жизненных процессах.

Бактерии и люди

С рождения человек попадает в мир полный различных микроорганизмов. Какие-то помогают ему выжить, другие вызывают инфекции и болезни.

Самые любопытные интересные факты о бактериях и людях:

Получается, бацилла может как полностью излечить человека, так и уничтожить наш вид. В настоящее время уже существует и бактериальные токсины.

Как бактерии помогли нам выжить?

Вот еще некоторые интересные факты о бактериях, которые приносят пользу человеку:

  • некоторые виды бацилл защищают человека от аллергии;
  • с помощью бактерий можно утилизировать опасные отходы (например, продукты из нефти);
  • без микроорганизмов в кишечнике человек бы не выжил.

Как рассказать малышам о бациллах?

Малыши о бациллах готовы разговаривать уже в 3-4 года. Чтобы правильно донести информацию, стоит рассказать интересные факты о бактериях. Для детей, к примеру, очень важно понимание того, что существуют злые и добрые микробы. Что добрые способны превратить молоко в ряженку. А также, что они помогают животику переваривать пищу.

Внимание нужно обращать на злых бактерий. Рассказывать, что они очень маленькие, поэтому их не видно. Что, попадая в тело человека, микробов быстро становится много, и они начинают нас кушать изнутри.

Ребенок должен знать, чтобы злой микроб не попал в организм нужно:

  • Мыть руки после улицы и перед едой.
  • Не есть много сладкого.
  • Ставить прививки.

Лучше всего показать бактерии с помощью картинок и энциклопедий.

Что должен знать каждый школьник?

С ребенком постарше лучше говорить уже не о микробах, а рассказывать про бактерии. Интересные факты для школьников важно аргументировать. То есть, рассказывая о важности мытья рук, можно поведать, что на ручках туалетов живут 340 колоний вредных бацилл.

Можно вместе найти информацию о том, какие бактерии вызывают кариес. А также рассказать школьнику, что шоколад в небольшом количестве обладает антибактериальным эффектом.

Даже ученик младших классов сможет понять, что такое вакцина. Это когда в организм вводится небольшое количество вируса или бактерий, а иммунная система их побеждает. Поэтому так важно ставить прививки.

Уже с детских лет должно прийти понимание, что страна бактерий - это целый, еще не до конца изученный, мир. И пока есть эти микроорганизмы, есть и сам человеческий вид.

Попытки отсеквенировать геном гигантской серной бактерии Achromatium oxaliferum дали парадоксальный результат: оказалось, что каждая бактериальная клетка содержит не один, а множество различающихся геномов. Уровень внутриклеточного генетического разнообразия A. oxaliferum сопоставим с разнообразием многовидового бактериального сообщества. По-видимому, различающиеся хромосомы размножаются в разных участках цитоплазмы, подразделенной крупными кальцитовыми включениями на множество слабо сообщающихся отсеков (компартментов). Важную роль в поддержании внутреннего генетического разнообразия играют многочисленные мобильные генетические элементы, способствующие переносу генов с хромосомы на хромосому. Авторы открытия предполагают, что естественный отбор у этого уникального организма идет не столько на уровне клеток, сколько на уровне отдельных компартментов внутри одной гигантской клетки.

1. Загадочная бактерия

Гигантская серная бактерия Achromatium oxaliferum была открыта еще в XIX веке, однако ее биология до сих пор остается загадочной - во многом потому, что ахроматиум не поддается культивированию в лаборатории. Клетки ахроматиума могут достигать 0,125 мм в длину, что делает его крупнейшей из пресноводных бактерий (в морях есть еще более крупные серные бактерии, такие как Thiomargarita , о которой рассказано в новости Древнейшие докембрийские эмбрионы оказались бактериями? , «Элементы», 15.01.2007).

Achromatium oxaliferum живет в донных осадках пресных озер, где он обычно встречается на границе кислородной и бескислородной зон, но проникает и в полностью бескислородные слои. Другие разновидности (или виды) ахроматиума обитают в минеральных источниках и в соленых осадках приливно-отливных маршей .

Ахроматиум получает энергию за счет окисления сероводорода сначала до серы (которая хранится в виде гранул в цитоплазме), а затем и до сульфатов. Он способен к фиксации неорганического углерода, но может усваивать и органические соединения. Неясно, способен ли он обходиться только автотрофным метаболизмом или ему необходима органическая подкормка.

Уникальной особенностью ахроматиума является наличие в его клетках многочисленных крупных включений коллоидного кальцита (рис. 1). Зачем это нужно бактерии и какую роль играет карбонат кальция в его метаболизме, точно не известно, хотя есть правдоподобные гипотезы (V. Salman et al., 2015. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh).

Цитоплазма ахроматиума ютится в просветах между кальцитовыми гранулами, которые фактически подразделяют ее на множество сообщающихся отсеков (компартментов). Хотя отсеки и не изолированы полностью, обмен веществом между ними, по-видимому, затруднен, тем более что у прокариот гораздо слабее, чем у эукариот, развиты системы активного внутриклеточного транспорта.

И вот теперь выяснилось, что кальцитовые гранулы - не единственная уникальная особенность ахроматиума. И даже не самая поразительная. В статье, опубликованной в журнале Nature Communications , немецкие и британские биологи сообщили о парадоксальных результатах, к которым привели попытки прочесть геномы индивидуальных клеток A. oxaliferum из донных отложений озера Штехлин (Stechlin) на северо-востоке Германии. Результаты эти настолько необычны, что в них трудно поверить, хотя оснований сомневаться в их достоверности, по-видимому, нет: работа выполнена в методологическом отношении очень тщательно.

2. Подтверждение полиплоидности

Хотя ахроматиум, как уже говорилось, относится к некультивируемым бактериям, это неудобство отчасти компенсируется гигантскими размерами клеток. Их отлично видно в световой микроскоп даже при небольшом увеличении, и их можно отбирать вручную из проб донных осадков (предварительно пропущенных через фильтр, чтобы удалить крупные частицы). Именно так авторы и собирали материал для своего исследования. Клетки A. oxaliferum покрыты органическим чехлом, на поверхности которого кишат разнообразные сожители - мелкие бактерии. Всю эту сопутствующую микробиоту авторы тщательно смывали с отобранных клеток, чтобы уменьшить долю посторонней ДНК в пробах.

Для начала исследователи покрасили клетки ахроматиума специальным флуоресцентным красителем для ДНК, чтобы понять, сколько в клетке генетического материала и как он распределен. Оказалось, что молекулы ДНК не приурочены к какому-то одному участку цитоплазмы, а образуют множество (в среднем около 200 на клетку) локальных скоплений в просветах между гранулами кальцита (рис. 1, b, d).

Учитывая всё, что известно на сегодняшний день о крупных бактериях и их генетической организации, этого факта уже достаточно, чтобы считать доказанным, что A. oxaliferum является полиплоидом, то есть в каждой его клетке содержится не одна, а множество копий генома.

Впрочем, задним числом и так понятно, что такая огромная прокариотическая клетка не могла бы обойтись единственной копией. Ее бы просто не хватило, чтобы обеспечить всю клетку необходимыми для синтеза белка транскриптами .

Судя по тому, что скопления ДНК различаются по яркости флуоресценции, эти скопления, скорее всего, содержат разное количество хромосом. Здесь нужно оговориться, что обычно весь геном прокариотической клетки помещается на одной кольцевой хромосоме. Для ахроматиума это не доказано, но весьма вероятно. Поэтому авторы для простоты пользуются термином «хромосома» как синонимом термина «одна копия генома», и мы поступим так же.

На данном этапе ничего сенсационного еще не было обнаружено. Прошли те времена, когда все думали, что у прокариот всегда или почти всегда только одна кольцевая хромосома в каждой клетке. Сегодня уже известно много видов полиплоидных бактерий и архей (см. , «Элементы», 14.06.2016).

3. Метагеном многовидового сообщества - в одной клетке

Чудеса начались, когда авторы приступили к выделению ДНК из отобранных и отмытых клеток и к секвенированию. Из 10 000 клеток был получен метагеном (см. Метагеномика), то есть множество (около 96 млн) коротких отсеквенированных случайных фрагментов хромосом (ридов), принадлежащих разным индивидуумам и в совокупности дающих представление о генетическом разнообразии популяции.

Затем исследователи приступили к секвенированию ДНК из индивидуальных клеток. Сначала из 27 клеток были выделены фрагменты гена 16s-рРНК, по которому принято классифицировать прокариот и по которому обычно определяют присутствие того или иного вида микробов в анализируемой пробе. Практически все выделенные фрагменты принадлежали ахроматиуму (то есть примерно совпадали с последовательностями 16s-рРНК ахроматиума, уже имеющимися в генетических базах данных). Из этого следует, что изучаемая ДНК не была загрязнена генетическим материалом каких-то посторонних бактерий.

Оказалось, что каждая клетка A. oxaliferum, в отличие от подавляющего большинства других прокариот, содержит не один, а несколько различающихся вариантов (аллелей) гена 16s-рРНК. Точное число вариантов определить трудно, потому что мелкие различия могут объясняться ошибками секвенирования, а если считать «разными» только сильно различающиеся фрагменты, то встает вопрос, насколько сильно они должны различаться. С использованием самых строгих критериев получилось, что в каждой клетке присутствует примерно 4–8 разных аллелей гена 16s-рРНК, причем это минимальная оценка, а на самом деле их, скорее всего, больше. Это резко контрастирует с ситуацией, характерной для других полиплоидных прокариот, у которых, как правило, на всех хромосомах одной клетки сидит один и тот же вариант данного гена.

Более того, оказалось, что аллели гена 16s-рРНК, присутствующие в одной и той же клетке A. oxaliferum , нередко образуют весьма далекие друг от друга веточки на общем генеалогическом дереве всех вариантов этого гена, обнаруженных (ранее и сейчас) у A. oxaliferum. Иными словами, аллели 16s-рРНК из одной клетки не более родственны друг другу, чем аллели, взятые наугад из разных клеток.

Наконец, авторы провели тотальное секвенирование ДНК из шести индивидуальных клеток. Для каждой клетки было прочтено примерно по 12 млн случайных фрагментов - ридов. В нормальной ситуации этого с избытком хватило бы, чтобы при помощи специальных компьютерных программ собрать из ридов, используя их перекрывающиеся части, шесть весьма качественных (то есть прочтенных с очень высоким покрытием, см. Coverage) индивидуальных геномов.

Но не тут-то было: хотя практически все риды бесспорно принадлежали ахроматиуму (примесь посторонней ДНК была пренебрежимо малой), прочтенные фрагменты наотрез отказались собираться в геномы. Дальнейший анализ прояснил причину неудачи: оказалось, что фрагменты ДНК, выделенные из каждой клетки, в действительности принадлежат не одному, а множеству довольно сильно различающихся геномов. Фактически то, что авторы получили из каждой отдельной клетки, представляет собой не геном, а метагеном. Подобные наборы ридов обычно получают при анализе не одного организма, а целой популяции, обладающей к тому же высоким уровнем генетического разнообразия.

Этот вывод был подтвержден несколькими независимыми способами. В частности, известны десятки генов, которые практически всегда присутствуют в бактериальных геномах в единственном экземпляре (single copy marker genes). Эти однокопийные маркерные гены широко используются в биоинформатике для проверки качества сборки геномов, оценки числа видов в метагеномных пробах и других подобных задач. Так вот, в геномах (или «метагеномах») индивидуальных клеток A. oxaliferum большая часть этих генов присутствует в виде нескольких различающихся копий. Как и в случае с 16s-рРНК, аллели этих однокопийных генов, находящиеся в одной клетке, как правило, не более родственны друг другу, чем аллели из разных клеток. Уровень внутриклеточного генетического разнообразия оказался сопоставим с уровнем разнообразия всей популяции, оцененным на основе метагенома 10 000 клеток.

Современная метагеномика уже располагает методами, позволяющими из множества разнородных обрывков ДНК, обнаруженных в пробе, выделить фрагменты, с большой вероятностью принадлежащие одному и тому же геному. Если таких фрагментов наберется достаточно много, то из них можно собрать значительную часть генома и даже полный геном. Именно таким способом недавно был открыт и подробно охарактеризован новый надтип архей - асгардархеи (см. Описан новый надтип архей, к которому относятся предки эукариот , «Элементы», 16.01.2017). Авторы применили эти методы к «метагеномам» индивидуальных клеток A. oxaliferum. Это позволило выявить в каждом «метагеноме» по 3–5 наборов генетических фрагментов, соответствующих, скорее всего, индивидуальным кольцевым геномам (хромосомам). Или, скорее, каждый такой набор соответствует целой группе похожих друг на друга геномов. Число различающихся геномов в каждой клетке A. oxaliferum скорее всего больше, чем 3–5.

Уровень различий между геномами, присутствующими в одной и той же клетке A. oxaliferum , примерно соответствует межвидовому: бактерии с таким уровнем различий, как правило, относятся к разным видам одного рода. Иными словами, генетическое разнообразие, присутствующее в каждой отдельной клетке A. oxaliferum, сопоставимо даже не с популяцией, а с многовидовым сообществом. Если бы ДНК из одной-единственной клетки ахроматиума анализировали современными методами метагеномики «вслепую», не зная, что вся эта ДНК происходит из одной клетки, то анализ бы однозначно показал, что в пробе присутствует несколько видов бактерий.

4. Внутриклеточный перенос генов

Итак, у A. oxaliferum обнаружен принципиально новый, прямо-таки неслыханный тип генетической организации. Безусловно, открытие порождает массу вопросов, и прежде всего вопрос «как такое вообще может быть?!»

Не будем рассматривать самый неинтересный вариант, состоящий в том, что всё это - результат грубых ошибок, допущенных исследователями. Если так, мы скоро об этом узнаем: Nature Communications - журнал серьезный, исследование захотят повторить другие коллективы, так что вряд ли опровержение заставит себя долго ждать. Гораздо интереснее обсудить ситуацию, исходя из допущения, что исследование проведено тщательно и результат достоверен.

В таком случае нужно прежде всего попытаться выяснить причины обнаруженного у A. oxaliferum беспрецедентного внутриклеточного генетического разнообразия: как оно формируется, почему оно сохраняется, и как сам микроб при этом ухитряется выжить. Все эти вопросы - очень непростые.

У всех остальных изученных на сегодняшний день полиплоидных прокариот (в том числе у известной читателям «Элементов» солелюбивой археи Haloferax volcanii ) все копии генома, присутствующие в клетке, сколько бы их ни было, очень похожи друг на друга. Ничего похожего на колоссальное внутриклеточное разнообразие, обнаруженное у A. oxaliferum, у них не наблюдается. И это отнюдь не случайность. Полиплоидность дает прокариотам ряд преимуществ, однако она способствует бесконтрольному накоплению рецессивных вредных мутаций, что в конечно счете может привести к вымиранию (подробнее см. в новости Полиплоидность предков эукариот - ключ к пониманию происхождения митоза и мейоза , «Элементы», 14.06.2016).

Чтобы избежать накопления мутационного груза, полиплоидные прокариоты (и даже полиплоидные пластиды растений) активно используют генную конверсию - асимметричный вариант гомологичной рекомбинации , при котором два аллеля не меняются местами, переходя с хромосомы на хромосому, как при кроссинговере , а один из аллелей замещается другим. Это ведет к унификации хромосом. Благодаря интенсивной генной конверсии вредные мутации либо быстро «затираются» неиспорченной версией гена, либо переходят в гомозиготное состояние, проявляются в фенотипе и отбраковываются отбором.

У A. oxaliferum генная конверсия и унификация хромосом, скорее всего, тоже происходят, но не в масштабах всей клетки, а на уровне отдельных «компартментов» - просветов между гранулами кальцита. Поэтому в разных частях клетки накапливаются разные варианты генома. Авторы проверили это при помощи избирательного окрашивания разных аллельных вариантов гена 16s-рРНК (см. Fluorescent in situ hybridization). Выяснилось, что в разных частях клетки концентрация разных аллельных вариантов действительно различается.

Впрочем, этого еще недостаточно, чтобы объяснить высочайший уровень внутриклеточного генетического разнообразия, обнаруженный у A. oxaliferum . Авторы видят его главную причину в высоких темпах мутагенеза и внутриклеточных геномных перестроек. Сравнение фрагментов хромосом из одной и той же клетки показало, что эти хромосомы, по-видимому, живут очень бурной жизнью: постоянно мутируют, перестраиваются и обмениваются участками. У A. oxaliferum из озера Штехлин резко повышено число мобильных генетических элементов по сравнению с другими бактериями (в том числе и с ближайшими родственниками - ахроматиумами из соленых маршей, у которых уровень внутриклеточного разнообразия, судя по предварительным данным, гораздо ниже). Активность мобильных элементов способствует частым геномным перестройкам и переносу участков ДНК с одной хромосомы на другую. Авторы даже придумали для этого специальный термин: «внутриклеточный перенос генов» (intracellular gene transfer, iGT), по аналогии со всем известным горизонтальным переносом генов (HGT).

Одно из ярких свидетельств частых перестроек в хромосомах A. oxaliferum - различающийся порядок генов в разных версиях генома, в том числе и в пределах одной клетки. Даже в некоторых консервативных (редко меняющихся в ходе эволюции) оперонах отдельные гены иногда располагаются в разной последовательности на разных хромосомах в пределах одной клетки.

На рисунке 2 схематично показаны основные механизмы, которые, по мнению авторов, создают и поддерживают высокий уровень внутриклеточного генетического разнообразия у A. oxaliferum .

5. Внутриклеточный отбор

Частые перестройки, внутриклеточный перенос генов, высокий темп мутагенеза - даже если всё это и может худо-бедно объяснить высокое внутриклеточное генетическое разнообразие (а я думаю, что не может, об этом мы поговорим ниже), то остается неясным, как ухитряется ахроматиум в таких условиях сохранять жизнеспособность. Ведь подавляющее большинство ненейтральных (влияющих на приспособленность) мутаций и перестроек должны быть вредными! Полиплоидные прокариоты и без того обладают повышенной склонностью к накоплению мутационного груза, а если мы допустим еще и сверхвысокие темпы мутагенеза, становится и вовсе непонятно, как такая тварь, как ахроматиум, может существовать.

И тут авторы выдвигают поистине новаторскую гипотезу. Они предполагают, что естественный отбор у ахроматиума действует не столько на уровне целых клеток, сколько на уровне отдельных компартментов - слабо сообщающихся просветов между гранулами кальцита, в каждом из которых, наверное, размножаются свои варианты генома.

На первый взгляд предположение может показаться диким. Но если подумать, почему бы и нет? Для этого достаточно допустить, что каждая хромосома (или каждое локальное скопление похожих хромосом) имеет ограниченный «радиус действия», то есть белки, закодированные в этой хромосоме, синтезируются и работают в основном в ее ближайших окрестностях, а не размешиваются равномерно по всей клетке. Скорее всего, так оно и есть. В таком случае те компартменты, где находятся более удачные хромосомы (содержащие минимум вредных и максимум полезных мутаций), будут быстрее реплицировать свои хромосомы, их будет становиться больше, они начнут распространяться внутри клетки, постепенно вытесняя менее удачные копии генома из соседних компартментов. Вообразить такое в принципе можно.

6. Внутриклеточное генетическое разнообразие нуждается в дополнительных объяснениях

Идея об интенсивном внутриклеточном отборе геномов, отвечая на один вопрос (почему ахроматиум не вымирает при таком высоком темпе мутагенеза), тут же создает другую проблему. Дело в том, что благодаря такому отбору более удачные (быстрее реплицирующиеся) копии генома должны вытеснять внутри клетки менее удачные копии, неизбежно снижая при этом внутриклеточное генетическое разнообразие. То самое, которое мы с самого начала хотели объяснить.

Более того, очевидно, что внутриклеточное генетическое разнообразие должно резко снижаться при каждом клеточном делении. Разные хромосомы сидят в разных компартментах, поэтому при делении каждая дочерняя клетка получит не все, а только некоторые варианты генома, имеющиеся у материнской клетки. Это видно даже на рис. 2.

Внутриклеточный отбор плюс компартментализация геномов - два мощных механизма, которые должны сокращать внутреннее разнообразие настолько быстро, что никакой мыслимый (совместимый с жизнью) темп мутагенеза не сможет этому противостоять. Таким образом, внутриклеточное генетическое разнообразие остается необъясненным.

Обсуждая полученные результаты, авторы неоднократно ссылаются на нашу работу, о которой рассказано в новости Полиплоидность предков эукариот - ключ к пониманию происхождения митоза и мейоза . В частности, они упоминают, что полиплоидным прокариотам очень полезно обмениваться генетическим материалом с другими клетками. Однако они полагают, что в жизни ахроматиума межклеточный генетический обмен не играет большой роли. Это обосновывается тем, что в метагеноме ахроматиума хотя и обнаружены гены для поглощения ДНК из внешней среды (трансформации, см. Transformation), но нет генов для конъюгации (см. Bacterial conjugation).

На мой взгляд, генетическая архитектура ахроматиума указывает не на конъюгацию, а на более радикальные способы смешивания генетического материала разных особей, такие как обмен целыми хромосомами и слияние клеток. Судя по полученным данным, с генетической точки зрения клетка A. oxaliferum представляет собой нечто вроде прокариотического плазмодия или синцития, вроде тех, что образуются в результате слияния множества генетически разнородных клеток у слизевиков . Напомним, что ахроматиум - бактерия некультивируемая, поэтому не исключено, что какие-то элементы ее жизненного цикла (такие как периодическое слияние клеток) могли ускользнуть от внимания микробиологов.

В пользу того, что внутриклеточное генетическое разнообразие ахроматиума формируется не внутриклеточно, свидетельствует один из главных фактов, обнаруженных авторами, а именно то, что находящиеся в одной клетке аллели многих генов образуют далекие друг от друга ветви на филогенетическом дереве. Если бы всё внутриклеточное разнообразие аллелей формировалось внутри клонально размножающихся клеток, не меняющихся друг с другом генами, то следовало бы ожидать, что аллели в пределах клетки будут более родственны друг другу, чем аллели из разных клеток. Но авторы убедительно показали, что это не так. В общем, я бы поставил на то, что в жизненном цикле ахроматиума присутствует слияние клеток. Это представляется самым экономным и правдоподобным объяснением колоссального внутриклеточного генетического разнообразия.

В заключительной части статьи авторы намекают, что генетическая архитектура ахроматиума может пролить свет на происхождение эукариот. Они формулируют это так: «Между прочим, Марков и Казначеев предположили, что, подобно ахроматиуму из озера Штехлин, клетки прото-эукариот могли быть быстро мутирующими, разнообразящими свои хромосомы, полиплоидными бактериями/археями ». Совершенно верно, но мы также показали, что такое существо не могло бы выжить без интесивного межорганизменного генетического обмена. Будем надеяться, что дальнейшие исследования прольют свет на оставшиеся неразгаданными загадки ахроматиума.

Карлики и гиганты среди бактерий

Бактерии – мельчайшие живые организмы, являющиеся самой распространенной формой жизни на Земле. Обычные бактерии примерно в 10 раз мельче человеческой клетки. Их размер составляет порядка 0,5 микрон, а разглядеть их можно только при помощи микроскопа. Однако, в мире бактерий, оказывается, тоже есть свои карлики и гиганты. Одной из таких гигантов считается бактерия Epulopiscium fishelsoni, размеры которой достигают половины миллиметра! То есть, она достигает по величине размеров песчинки или крупинки соли и ее можно разглядеть невооруженным взглядом.

Размножение Epulopiscium

В Корнуэлльской академии были проведены исследования, направленные на определение причин таких крупных размеров. Как оказалось, бактерия хранит в себе 85 000 копий ДНК. Для сравнения, в клетках человека содержится только 3 копии. Это милое создание проживает в пищеварительном тракте тропической рифовой рыбы Acanthurus nigrofuscus (рыбы-хирурга).

Обычные виды бактерий очень малы и примитивны, у них нет органов и питание происходит через оболочку. Питательные вещества равномерно распределяются по телу бактерий, поэтому они должны быть небольшие. В отличие от них, Epulopiscium многократно копирует свою ДНК, равномерно, вдоль оболочки распределяет копии, и они в достаточном объеме получают питание. Такое строение дает ей возможность мгновенного реагирования на внешние раздражители. Непохож на остальные бактерии и способ ее деления. Если обычные бактерии просто делятся пополам, то она выращивает внутри себя две клетки, которые после ее смерти просто выходят наружу.

Намибийская серная жемчужина

Однако, даже эта, далеко не маленькая бактерия, не может сравниться с самой большой бактерией в мире , которой считается Thiomargarita namibiensis , по другому «Намибийская серная жемчужина» - грам-отрицательная морская бактерия, открытая в 1997 году. Она не только состоит всего из одной клетки, но при этом, у неё нет поддерживающего скелета также, как и у эукариотов. Размеры Thiomargarita достигают 0,75-1 мм, что позволяет увидеть её невооруженным взглядом.

По типу обмена веществ Тиомаргарита является организмом, который получает энергию в результате восстановительно-окислительных реакций и может использовать нитрат, как конечный объект, получающий электроны. Клетки Намибийской серной жемчужины неподвижны, а потому содержание нитрата может колебаться. Thiomargarita может запасать нитрат в вакуоли, занимающей около 98% от всей клетки. При низкой концентрации нитрата, её содержимое используется для дыхания. Сульфиды окисляются нитратами до серы, которая собирается во внутренней среде бактерии в виде мелких гранул, чем и объясняется жемчужная окраска Тиомаргариты.

Исследование Тиомаргариты

Исследования, проведённые не так давно, показали, что Thiomargarita namibiensis может быть не облигатным, а факультативным организмом, получающим энергию без присутствия кислорода. Она способна к кислородному дыханию, если этого газа достаточно. Ещё одна отличительная черта данной бактерии – возможность палинтомического деления, происходящего без увеличения промежуточного роста. Этот процесс используется Thiomargarita namibiensis в стрессовых состояниях, вызванных голоданием.

Бактерия была открыта в донных осадках выровненной окраины материка, вблизи Намибийского побережья, Хайде Шульц, немецким биологом и её коллегами в 1997 году, а в 2005 году, в холодных клюдах дна Мексиканского залива, обнаружили близкий штамм, что является подтверждением широкого распространения Намибийской серной жемчужины.

Виктор Островский, Samogo.Net

Новое на сайте

>

Самое популярное