Домой Заготовки на зиму Lm317t параметры на русском. Интегральный стабилизатор напряжения LM317. Описание и применение. LM217, LM317 - Регулируемые стабилизаторы напряжения - DataSheet

Lm317t параметры на русском. Интегральный стабилизатор напряжения LM317. Описание и применение. LM217, LM317 - Регулируемые стабилизаторы напряжения - DataSheet

Регулируемый трехвыводной стабилизатор тока LM317 обеспечивает нагрузку в 100 мА. Диапазон выходного напряжения составляет от 1,2 до 37 В. Прибор очень удобен в применении и требует только пару наружных резисторов, обеспечивающих выходное напряжение. Плюс к этому, нестабильность по рабочим показателям имеет лучшие параметры, чем у аналогичных моделей с фиксированной подачей напряжения на выходе.

Описание

LM317 - стабилизатор тока и напряжения, который функционирует даже при отсоединенном управляющем выводе ADJ. При нормальной работе прибор не нуждается в подключении к дополнительным конденсаторам. Исключение составляет ситуация, когда устройство находится на значительном расстоянии от первичного фильтрующего питания. В этом случае потребуется монтаж входного шунтирующего конденсатора.

Выходной аналог позволяет улучшить показатели стабилизатора тока LM317. В итоге повышается интенсивность переходных процессов и значение коэффициента сглаживания пульсаций. Такой оптимальный показатель трудно достичь в других трехвыводных аналогах.

Предназначение рассматриваемого прибора заключается не только в замене стабилизаторов с фиксированным выходным показателем, но и для широкого спектра применения. Например, стабилизатор тока LM317 может использоваться в схемах с высоковольтным питанием. При этом индивидуальная система устройства влияет на разность между входным и выходным напряжением. Функционирование прибора в таком режиме может продолжаться неопределенный срок, пока разность между двумя показателями (входным и выходным напряжением) не превысит предельно допустимой точки.

Особенности

Стоит отметить, что стабилизатор тока LM317 удобен для создания простых регулируемых импульсных приборов. Они могут применяться в качестве прецизионного стабилизатора, посредством подсоединения постоянного резистора между двумя выходами.

Создание вторичных питающих источников, работающих при недлительных коротких замыканиях, стало возможным благодаря оптимизации показателя напряжения на управляющем выводе системы. Программа удерживает его на входе в пределах 1,2 вольта, что для большинства нагрузок очень мало. Стабилизатор тока и напряжения LM317 изготавливается в стандартном транзисторном остове ТО-92, режим рабочих температур составляет от -25 до +125 градусов по Цельсию.

Характеристики

Рассматриваемый прибор отлично подходит для проектирования простых регулируемых блоков и источников питания. При этом параметры могут быть корректируемыми и заданными в плане нагрузки.

Регулируемый стабилизатор тока на LM317 обладает следующими техническими характеристиками:

  • Диапазон выходного напряжения - от 1,2 до 37 вольт.
  • Нагрузочный ток по максимуму - 1,5 А.
  • Имеется защита от возможного короткого замыкания.
  • Предусмотрены предохранители схемы от перегрева.
  • Погрешность напряжения на выходе составляет не более 0,1%.
  • Корпус интегральной микросхемы - типа ТО-220, ТО-3 или D2PAK.

Схема стабилизатора тока на LM317

Максимально часто рассматриваемое устройство используется в источниках питания светодиодов. Далее представлена простейшая схема, в которой задействован резистор и микросхема.

На входе поставляется напряжение источника питания, а главный контакт соединяется с выходным аналогом при помощи резистора. Далее происходит агрегация с анодом светодиода. В самой популярной схеме стабилизатора тока LM317, описание которого приведено выше, используется следующая формула: R = 1/25/I. Здесь I - это выходной ток устройства, его диапазон варьируется в пределах 0, 01-1.5 А. Сопротивление резистора допускается в размерах 0, 8-120 Ом. Рассеиваемая резистором мощность вычисляется по формуле: R = IxR (2).

Полученная информация округляется в большую сторону. Постоянные резисторы выпускаются с малым разбросом окончательного сопротивления. Это влияет на получение расчетных показателей. Чтобы урегулировать данную проблему, в схему подключают дополнительный стабилизирующий резистор необходимой мощности.

Плюсы и минусы

Как показывает практика, при эксплуатации лучше увеличить по площади рассеивания на 30 %, а в отсеке низкой конвекции - на 50 %. Кроме ряда преимуществ, стабилизатор тока светодиода LM317 имеет несколько минусов. Среди них:

  • Небольшой коэффициент полезного действия.
  • Необходимость отвода тепла от системы.
  • Стабилизация тока свыше 20 % от предельного значения.

Избежать проблем в эксплуатации прибора поможет применение импульсных стабилизаторов.

Стоит отметить, что если нужно подключить мощный светодиодный элемент мощностью 700 миллиампер, потребуется рассчитать значения по формуле: R = 1, 25/0, 7 = 1.78 Ом. Рассеиваемая мощность соответственно составит 0, 88 Ватт.

Подключение

Расчет стабилизатора тока LM317 базируется на нескольких способах подключения. Ниже приведены основные схемы:

  1. Если использовать мощный транзистор типа Q1, можно без радиатора микросборки получить на выходе ток 100 мА. Этого вполне хватает для управления транзистором. В качестве подстраховки от излишнего заряда используются защитные диоды D1 и D2, а параллельный электролитический конденсатор выполняет функцию по снижению посторонних шумов. При использовании транзистора Q1, предельная выходная мощность прибора составит 125 Вт.
  2. В другой схеме обеспечивается ограничение подачи тока и стабильная работа светодиода. Специальный драйвер позволяет запитать элементы мощностью от 0, 2 ватт до 25 вольт.
  3. В очередной конструкции применяется трансформатор понижения напряжения из переменной сети от 220 Вт до 25 Вт. При помощи диодного мостика переменное напряжение трансформируется в постоянный показатель. При этом все перебои сглаживаются за счет конденсатора типа С1, что обеспечивает поддержание стабильной работы регулятора напряжения.
  4. Следующая схема подключения считается одной из самых простых. Напряжение поступает с вторичной обмотки трансформатора на 24 вольта, выпрямляется при проходе через фильтр, и на выдаче получается постоянный показатель 80 вольт. Это позволяет избежать превышения максимального порога подачи напряжения.

Стоит отметить, что простое зарядное устройство также можно собрать на базе микросхемы рассматриваемого прибора. Получится стандартный линейный стабилизатор с регулируемым показателем выходного напряжения. В аналогичной роли может функционировать микросборка устройства.

Аналоги

Мощный стабилизатор на LM317 имеет ряд аналогов на отечественном и зарубежном рынке. Самыми известными из них являются следующие марки:

  • Отечественные модификации КР142 ЕН12 и КР115 ЕН1.
  • Модель GL317.
  • Вариации SG31 и SG317.
  • UC317T.
  • ECG1900.
  • SP900.
  • LM31MDT.

Питания (БП) упрощается во много раз. Во-первых, есть возможность сделать регулировку. Во-вторых, стабилизация питания производится. Причем по отзывам многих радиолюбителей, эта микросборка в разы превосходит отечественные аналоги. В частности, ее ресурс очень большой, не идет ни в какое сравнение ни с каким другим элементом.

Основа блока питания - трансформатор

Необходимо использование в качестве преобразователя напряжения Его можно взять от практически любой бытовой техники - магнитофонов, телевизоров и пр. Также можно использовать трансформаторы марки ТВК-110, которые устанавливались в блоке кадровой развертки черно-белых телевизоров. Правда, у них выходное напряжение всего 9 В, а ток довольно маленький. И если необходимо запитывать мощного потребителя, его явно не хватит.

Но если требуется сделать мощный БП, то разумнее использовать силовые трансформаторы. Их мощность должна составлять хотя бы 40 Вт. Чтобы на микросборке LM317T блок питания для ЦАП сделать, вам потребуется выходное напряжение 3,5-5 В. Именно такое значение нужно поддерживать в цепи питания микроконтроллера. Не исключено, что потребуется вторичную обмотку слегка изменить. Первичная при этом не перематывается, только проводится ее изоляция (по необходимости).

Выпрямительный каскад

Выпрямительный блок - это сборка из полупроводниковых диодов. Ничего в ней сложного нет, только следует определиться с тем, какой тип выпрямления нужно использовать. Схема выпрямителя может быть:

  • однополупериодная;
  • двухполупериодная;
  • мостовая;
  • с удвоением, утроением, напряжения.

Последнюю разумно применять, если, например, на выходе трансформатора у вас 24 В, а нужно получить 48 или 72. При этом неминуемо уменьшается выходной ток, это следует учитывать. Для простого блока питания больше всего подходит мостовая схема выпрямителя. Используемая микросборка LM317T блок питания мощный не позволит сделать. Причина тому - мощность самой микросхемы составляет всего 2 Вт. Мостовая схема же позволяет избавиться от пульсаций, да и КПД у нее на порядок выше (если сравнивать с однополупериодной схемой). Допускается в выпрямительном каскаде использовать как диодные сборки, так и отдельные элементы.

Корпус для блока питания

В качестве материала для корпуса разумнее использовать пластик. Он удобен в обработке, поддается деформации при прогреве. Другими словами, можно без труда придать заготовкам любую форму. А для высверливания отверстий не потребуется много времени. Но можно немного потрудиться и сделать красивый, надежный корпус из листового алюминия. Конечно, с ним мороки будет побольше, зато внешний вид окажется потрясающим. После изготовления корпуса из листового алюминия, его можно тщательно зачистить, прогрунтовать и нанести по несколько слоев краски и лака.

К тому же вы сразу убьете двух зайцев - получите красивый корпус и обеспечите дополнительное охлаждение микросборке. На LM317T блок питания построен по такому принципу, что стабилизация осуществляется с выделением большого количества тепла. Например, у вас на выходе выпрямителя 12 Вольт, а стабилизация должна выдать 5 В. Вот эта разница, 7 Вольт, уходит на нагрев корпуса микросборки. Следовательно, она нуждается в качественном охлаждении. И алюминиевый корпус будет способствовать этому. Впрочем, можно поступить и более продвинуто - смонтировать на радиаторе термовыключатель, который будет управлять кулером.

Схема стабилизации напряжения

Итак, у вас есть микросборка LM317T, схема блока питания на ней перед глазами, теперь нужно определить назначение ее выводов. Их у нее всего три - вход (2), выход (3) и масса (1). Поверните корпус лицевой стороной к себе, нумерация производится слева направо. Вот и все, теперь осталось осуществить стабилизацию напряжения. А сделать это несложно, если выпрямительный блок и трансформатор уже готовы. Как вы понимаете, минус с выпрямителя подается на первый вывод сборки. С плюса выпрямителя происходит подача напряжения на второй вывод. С третьего снимается стабилизированное напряжение. Причем по входу и выходу необходимо установить электролитические конденсаторы с емкостью 100 мкФ и 1000 мкФ соответственно. Вот и все, только лишь на выходе желательно поставить постоянное сопротивление (порядка 2 кОм), которое позволит электролитам быстрее разряжаться после выключения.

Схема блока питания с возможностью регулировки напряжения

Сделать регулируемый блок питания на LM317T оказывается проще простого, для этого не потребуется особых знаний и умений. Итак, у вас есть уже блок питания со стабилизатором. Теперь можно его слегка модернизировать, чтобы на выходе изменять напряжение, в зависимости от того, какое вам требуется. Для этого достаточно отключить первый вывод микросборки от минуса питания. По выходу включаете последовательно два сопротивления - постоянное (номинал 240 Ом) и переменное (5 кОм). В месте их первый вывод микросборки. Такие несложные манипуляции позволяют сделать регулируемый блок питания. Причем максимальное напряжение, подаваемое на вход LM317T, может составлять 25 Вольт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера - буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов - LM317 и КТ819Г .

Схема регулируемого блока питания LM317

Список элементов схемы:

  • Стабилизатор LM317
  • Т1 - транзистор КТ819Г
  • Tr1 - трансформатор силовой
  • F1 - предохранитель 0.5А 250В
  • Br1 - диодный мост
  • D1 - диод 1N5400
  • LED1 - светодиод любого цвета
  • C1 - конденсатор электролитический 3300 мкф*43В
  • C2 - конденсатор керамический 0.1 мкф
  • C3 - конденсатор электролитический 1 мкф*43В
  • R1 - сопротивление 18K
  • R2 - сопротивление 220 Ом
  • R3 - сопротивление 0.1 Ом*2Вт
  • Р1 - сопротивление построечное 4.7K

Цоколёвка микросхемы и транзистора

Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.


Входную розетку оставил для питания самого БП. Печатная плата сделанная для навесного монтажа транзистора и микросхемы стабилизатора. Их закрепил на общем радиаторе через резиновую прокладку. Радиатор взял солидный (на фото его видно). Его нужно брать как можно больший - для хорошего охлаждения. Всё-таки 3 ампера - это немало!

Справочники по компонентам (или datasheets) являются необходимейшим элементом
при разработке электронных схем. Однако, у них есть одна, но неприятная особенность.
Дело в том, что документация на любой электронный компонент (например, микросхему)
всегда должна быть готова еще до того, как эта микросхема начнет выпускаться.
В итоге, реально мы имеем ситуцию, когда микросхемы уже поступили в продажу,
а еще ни одно изделие на их основе не было создано.
А, значит, все рекомендации и особенно схемы приложений, приводимые в datasheets,
носят теоретический, рекомендательный характер.
Эти схемы в основном демонстрируют принципы работы электронных компонентов,
но они не проверены на практике и не должны поэтому слепо приниматься во внимание
при разработке.
Это нормальное и логичное положение дел, если только со временем и по мере
накопления опыта в документацию вносятся изменения и дополнения.
Практика же показывает обратное,- в большинстве случаев все схемные решения,
приводимые в datasheet, так и остаются на теоретическом уровне.
И, к сожалению, частенько это не просто теории, а грубые ошибки.
И еще большее сожаление вызывает несоответствие реальных (и важнейших)
параметров микросхемы, заявленным в документации.

В качестве типичного примера подобных datasheets приведем справочник на LM317,-
трех-выводной регулируемый стабилизатор напряжения, который, кстати, выпускается
уже лет 20. А схемы и данные в его datasheet все те же …

Итак, недостатки LM317, как микросхемы и ошибки в рекомендациях по ее использованию.

1. Защитные диоды.
Диоды D1 и D2 служат для защиты регулятора,-
D1 для защиты от короткого замыкания на входе, а D2 для защиты от разряда
конденсатора C2 “через низкое выходное сопротивление регулятора” (цитата).
На самом деле, диод D1 не нужен, поскольку никогда не бывает ситуации, когда
напряжение на входе регулятора меньше, чем напряжение на выходе.
Поэтому, диод D1 никогда не открывается, а значит и не защищает регулятор.
Кроме, конечно, случая короткого замыкания на входе. Но это – нереальная ситуация.
Диод D2 может открываться, конечно, Но, конденсатор C2 прекрасно разряжается
и без него, через резисторы R2 и R1 и через сопротивление нагрузки.
И как-то специально его разряжать нет необходимости.
Кроме того, упоминание в Datasheet о “разряде С2 через выход регулятора”
не более, чем ошибка, потому, как схема выходного каскада регулятора –
это эмиттерный повторитель.
И конденсатору C2 просто нет может разряжаться через выход регулятора.

2. Теперь — о самом неприятном, а именно о несоответствии реальных
электрических характеристик заявленным.

В Datasheets всех производителей есть параметр Adjustment Pin Current
(ток по входу подстройки). Параметр весьма интересный и важный, определяющий,
в частности, максимальную величину резистора в цепи входа Adj.
А также и значение конденсатора C2. Заявленное типовое значение тока Adj равно 50 мкА.
Что весьма впечатляет и полностью устраивало бы меня, как схемотехника.
Если бы на самом деле оно не было бы в 10 раз больше, т.е. 500 мкА.

Это — реальное несоответствие, проверенное на микросхемах разных производителей
и на протяжении многих лет.
А началось все с недоумения — почему это на выходе во всех схемах такой низкоомный делитель?
А вот потому и низкоомный, что иначе невозможно получить на выходе LM317
минимальный уровень напряжения.

Самое интересное, что в методике измерения тока Adj низкоомный делитель
на выходе так же присутствует. Что фактически означает, что этот делитель включен
параллельно с электродом Adj.
Только с таким хитрым подходом и можно «влезть» в рамки типовой величины в 50 мкА.
Но это — довольно изящная, но уловка. «Особые условия измерения».

Я понимаю, весьма трудно добиться стабильного тока заявленной величины в 50 мкА.
Так не пишите липу в Datasheet. Иначе — это обман покупателя. А честность — лучшая политика.

3. Еще о самом неприятном.

В Datasheets LM317 есть параметр Line Regulation, который определяет
рабочий диапазон напряжений. И диапазон указан таки не плохой — от 3 до 40 Вольт.
Вот только одно маленькое НО …
Внутренняя часть LM317 содержит стабилизатор тока, в котором использован
стабилитрон на напряжение 6,3 В.
Поэтому, эффективное регулирование начинается с напряжения Вход-Выход в 7 Вольт.
Кроме того, выходной каскад LM317 — это транзистор n-p-n, включенный по схеме
эмиттерного повторителя. И на «раскачке» у него — такие же повторители.
Поэтому эффективная работа LM317 при напряжении в 3 В невозможна.

4. О схемах, обещающих получить на выходе LM317 регулируемое напряжение от ноля Вольт.

Минимальная величина напряжения на выходе LM317 составляет 1,25 В.
Можно было бы получить и меньше, если бы не встроенная схема защиты от
короткого замыкания на выходе. Не самая хорошая схема, мягко говоря …
В других микросхемах схема защиты от КЗ срабатывает при превышении тока нагрузки.
А в LM317 — при снижении выходного напряжение ниже 1,25 В. Простенько и со вкусом,-
закрылся себе транзистор при напряжении база-эмиттер ниже 1,25 В и все тут.
Вот поэтому, все схемы приложений, которые обещают получить на выходе
LM317 регулируемое напряжение, начиная аж от ноля вольт — не работают.
Все эти схемы предлагают подключить контакт Adj через резистор к источнику
отрицательного напряжения.
Но уже при напряжении между выходом и контактом Adj менее 1,25 В
сработает схема защиты от КЗ.
Все эти схемы — чистая теоретическая фантазия. Их авторы не знают, как работает LM317.

5. Способ защиты от КЗ на выходе, используемый в LM317, также накладывает
известные ограничения на запуск регулятора,- в ряде случаев запуск будет затруднен,
поскольку невозможно различить режим короткого замыкания и режим нормального включения,
когда выходной конденсатор еще не заряжен.

6. Рекомендации по номиналам конденсатора на выходе LM317 очень впечатляют,-
это диапазон от 10 до 1000 мкФ. Что в сочетании с величиной выходного сопротивления
регулятора порядка одной тысячной Ома является полным бредом.
Даже студенты знают, что конденсатор на входе стабилизатора существенно,
мягко говоря, эффективнее, чем на выходе.

7. О принципе регулирования выходного напряжения LM317.

LM317 представляет собой операционный усилитель, в котором регулирование
выходного напряжения осуществляется по НЕ инвертирующему входу Adj.
Другими словами — по цепи Положительной обратной связи (ПОС).

Чем это плохо? А тем, что все помехи с выхода регулятора через вход Adj проходят внутрь LM317,
а затем — опять на нагрузку. Хорошо еще, что коэффициент передачи по цепи ПОС меньше единицы …
А то получили бы автогенератор.
И не удивительно в связи с этим, что в цепи Adj рекомендуется ставить конденсатор С2.
Хоть как-то отфильтровывать помехи и повышать устойчивость к самовозбуждению.

Весьма занятным представляется и тот факт, что в цепи ПОС, внутри LM317,
имеется конденсатор 30 пФ. Что увеличивает уровень пульсаций на нагрузке с повышением частоты.
Правда, это честно показано на диаграмме Ripple Rejection. Вот только зачем этот конденсатор?
Он был бы весьма полезен, если бы регулирование осуществлялось по цепи
Отрицательной обратной связи. А в цени ПОС он только ухудшает устойчивость.

Кстати, и с самим понятием Ripple Rejection не все «по понятиям».
В общепринятом понимании эта величина означает, насколько хорошо регулятор
фильтрует пульсации со ВХОДА.
А для LM317 она фактически означает степень собственной ущербности
и показывает, как же хорошо LM317 борется с пульсациями, которые сама же
берет с выхода и опять загоняет внутрь самой себя.
В других регуляторах регулирование осуществляется по цепи
Отрицательной обратной связи, что максимально улучшает все параметры.

8. О минимальном токе нагрузки для LM317.

В Datasheet указан минимальный ток нагрузки в 3,5 мА.
При меньшем токе LM317 неработоспособна.
Весьма странная особенность для стабилизатора напряжения.
Значит, надо следить не только за максимальным током нагрузки, но и за минимальным тоже?
Это так же означает, что при токе нагрузки, равном 3,5 мА КПД регулятора не превышает 50 %.
Большое Вам спасибо, господа разработчики …

1. Рекомендации по применению защитных диодов для LM317 носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике.
А, поскольку, в качестве защитных диодов предлагается использовать мощные диоды Шоттки, то получаем ситуацию, когда стоимость (ненужной) защиты превышает цену самой LM317.

2. В Datasheets LM317 приведен неверный параметр на ток по входу Adj.
Он измерен в «особых» условиях при подключении низкоомного выходного делителя.
Эта методика измерения не соответствует общепринятому понятию «ток по входу» и показывает неспособность достичь при изготовлении LM317 заданных параметров.
А также и является обманом покупателя.

3. Параметр Line Regulation указан как диапазон от 3 до 40 Вольт.
На некоторых схемах приложений LM317 «работает» при напряжении вход-выход аж в два вольта.
На самом деле, диапазон эффективного регулирования равен 7 — 40 Вольт.

4. Все схемы получения на выходе LM317 регулируемого напряжения, начиная с ноля вольт, — практически не работоспособны.

5. Способ защиты от короткого замыкания LM317 на практике иногда применяется.
Он прост, но не является лучшим. В ряде случаев запуск регулятора будет вообще невозможен.

7. В LM317 реализован ущербный принцип регулирования выходного напряжения,-
по цепи Положительной обратной связи. Надо бы хуже, да некуда.

8. Ограничение на минимальный ток нагрузки свидетельствует о плохой схемотехнике LM317 и явно ограничивает варианты ее использования.

Суммируя все недостатки LM317 можно дать рекомендации:

а) Для стабилизации постоянных «типовых» напряжений 5, 6, 9, 12, 15, 18, 24 В целесообразно использовать трех-выводные стабилизаторы серии 78xx, а не LM317.

б) Для построения действительно эффективных стабилизаторов напряжения следует использовать микросхемы типа LP2950, LP2951, способных работать при напряжении вход-выход менее 400 милливольт.
В сочетании с мощными транзисторами при необходимости.
Эти же микросхемы эффективно работают и в качестве стабилизаторов тока.

в) В большинстве случаев операционный усилитель, стабилитрон и мощный транзистор (особенно полевой) дадут гораздо лучшие параметры, чем LM317.
И уж точно — лучшую регулировку, а также и широчайший диапазон по типам и номиналам резисторов и конденсаторов.

г). И, не доверяйте слепо Datasheets.
Любые микросхемы делаются и, что характерно, продаются людьми …

Микросхема уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На основе этой микросхемы можно собрать регулируемый блок питания на LM317, стабилизатор тока, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, для LM317 схема включения работает сразу, настройки не требуется.

Микросхемы ЛМ317 и LM317T datasheet полностью одинаковые, отличаются только корпусом. Никаких отличий или разницы нет, совсем нет.

Так же написал обзоры и datasheet других популярных ИМС , . C хорошими иллюстрациями, понятными и простыми схемами.


  • 1. Характеристики
  • 2. Аналоги
  • 3. Типовые схемы включения
  • 4. Калькуляторы
  • 5. Схемы включения
  • 6. Радиоконструкторы
  • 7. Datasheet, даташит

Характеристики

Основное назначение это стабилизация положительного напряжения. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Так же популярна LM317T, с ней не встречался, поэтому пришлось долго искать правильный даташит на неё. Оказалось, что они полностью идентичны по параметрам, букв «T» в конце маркировки обозначает корпус TO-220 на 1,5 Ампер.

Скачать даташиты:

  1. полный ;

Характеристики

Даже при наличии интегрированных систем защиты не следует эксплуатировать на пределе возможностей. Если выйдет из строя, неизвестно сколько Вольт будет на выходе, можно будет спалить дорогостоящую нагрузку.

Приведу основные электрические характеристики из LM317 datasheet на русском. Не все знают технические термины на английском.

В даташите указана огромная сфера применения, проще написать где она не используется.

Аналоги

Микросхем которые имеют практически такой же функционал много, отечественных и зарубежных. Добавлю в список более мощные аналоги, чтобы избежать включения нескольких параллельно. Самый известный LM317 аналог, это отечественная КР142ЕН12.

  1. LM117 LM217 – расширенный диапазон рабочих температур от -55° до +150°;
  2. LM338, LM138, LM350 — аналоги на 5А, 5А и 3А соответственно;
  3. LM317HV, LM117HV — напряжение на выходе до 60V, если вам не достаточно стандартных 40V.

Полные аналоги:

  • GL317;
  • SG317;
  • UPC317;
  • ECG1900.

Типовые схемы включения

Регулятор 1,25 — 20 Вольт с регулируемым током

Калькуляторы

..

Для максимального облегчения расчётов на основе LM317T разработано множество программ LM317 калькуляторов и онлайн калькуляторов. Указав исходные параметры сразу можно просчитать несколько вариантов и увидеть характеристики требуемых радиодеталей.

Программа для расчета источников напряжения и тока с учётом LM317 характеристик LM317T . Расчёт схем включения мощных преобразователей с использованием транзисторов, TL431, M5237. Так же ИМС 7805, 7809, 7812.

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.


Радиоконструкторы

Для начинающих радиолюбителей могу порекомендовать радиоконструкторы от китайцев на Aliexpress. Такой конструктор оптимальный способ собрать устройство по схеме включения, не надо изготавливать плату и подбирать детали. Любой конструктор можно доработать по своему усмотрению, главное чтобы плата была. Стоимость конструктора от 100 руб с доставкой, готовый модуль в сборе от 50 руб.

Datasheet, даташит

Микросхема очень популярная, выпускает множеством производителей, включая китайских. Мои коллегам попадались ЛМ317 с плохими параметрами, которые не тянут заявленный ток. Покупали у китайцев, которые любят всё подделывать и копировать, при этом ухудшая характеристики.

Новое на сайте

>

Самое популярное