Домой Картофель Виртуальный объемный звук. «Объемная» музыка: как VR-технологии передают звук. Определение направления на звуковой источник

Виртуальный объемный звук. «Объемная» музыка: как VR-технологии передают звук. Определение направления на звуковой источник

Новый Mercedes E-Class. Его называют самым умным автомобилем в мире. Машина буквально напичкана всевозможными техническими новинками: она сама выбирает нужную скорость, тормозит, держит полосу, даже перестраивается.
Система автоматического экстренного торможения способна остановить автомобиль даже тогда, когда столкновение кажется неизбежным.Короче говоря, этот автомобиль не даст попасть в неприятности на дороге. Если только сзади не едет «Москвич»...

В ходе очередного обновления своего бизнес-седана немецкий производитель сделал явный акцент на техническом наполнении, укомплектовав модель множеством продвинутых электронных помощников и систем активной безопасности. Предметное знакомство со всем доступным функционалом позволяет сделать вывод, что эпитет «умнейший», примененный представителями компании для характеристики автомобиля, имеет под собой вполне ощутимые основания.

Обновленный Мерседес Е-класса 2016-2017 года построен на модульной платформе MRA, дебютировавшей не так давно на модели C-Class. Эта база, являющаяся новейшей разработкой концерна, ляжет в основу ряда других представителей линейки бренда. Габаритные размеры немецкой новинки претерпели изменения. Так, длина седана увеличилась на 43 мм, составив в итоге 4923 мм, а колесная база возросла на 65 мм (до 2939 мм). Данных по ширине и высоте производитель не привел, однако согласно неофициальной информации эти кузовные параметры уменьшились на 2 и 6 мм соответственно.

Для автолюбителей, хорошо знакомых с модельным рядом Mercedes-Benz, внешний дизайн нового E-Class W213 не станет откровением. В оформлении экстерьера седана нашли применение решения, уже опробованные на четырехдверке S-Class и кроссовере GLC. Конечно, речь идет не о банальном копировании, а об определенном заимствовании некоторых элементов. Отдельного внимания заслуживает интеллектуальная передняя оптика Mercedes E-Class 2016-2017, обладающая оригинальной архитектурой световых элементов. Каждая из передних фар типа Multibeam располагает 84-мя светодиодами, выстроенными в три ряда и позволяющими очень точно воздействовать на генерируемый световой пучок. Благодаря этому, с одной стороны, исключается ослепление водителей встречных транспортных средств, с другой – все остальные участки дороги остаются хорошо освещенными.

Исполнение других элементов, формирующих носовую часть Mercedes E-Class, может отличаться с зависимости от линии дизайна, которых предусмотрено три: Exclusive, Avantgarde и AMG Line. Различия кроются в форме бампера, размере и конфигурации воздухозаборников, оформлении решетки радиатора. Например, эмблема компании в виде трехлучевой звезды может украшать собой фальшрадитор или же располагаться на крышке капота, имея при этом более скромные размеры. В последнем случае радиаторная решетка получает несколько иную конфигурацию с другой структурой перемычек и более солидным хромированным обрамлением. Осмотр новинки в профиль выявляет элегантный силуэт седана с длинным капотом, куполообразной крышей и аккуратной кормой. Боковины E-класса щеголяют оригинальными ребрами выштамповок и крупными вырезами колесных арок, дополняемыми стильными колесными дисками.

В зоне кормы Мерседес Е класса 2016-2017 обращают на себя внимание трехуровневые фонари, получившие название «Звёздная пыль». Их поверхность буквально усеяна миниатюрными выступами, при подсвечивании которых создается своеобразная иллюминация. Такие задние фары будут доступны только в качестве опции, стандартное же оснащение предусматривает оптику попроще. Наряду с дизайном инженеры Mercedes большое внимание уделили аэродинамическим характеристикам кузовных деталей. Результатом их усилий стало уменьшение коэффициента сопротивления встречным потокам с 0.25 до 0.23. Новый показатель является одним из лучших в классе. Стоит отметить, что немаловажную роль в достижении хорошей обтекаемости играют скрытые под решеткой радиатора и воздухозаборниками (в отдельных модификациях) активные заслонки.

Серьезно изменившись снаружи, новая «ешка» кардинально преобразилась и внутри. Причем обновленное внутреннее убранство седана может дать фору даже интерьеру старшего Mercedes S-Class. Первое, что следует здесь выделить, это появление цифровой панели, совместившей в одном блоке комбинацию приборов и основную мультимедийную систему. Два дисплея диагональю 12.3 дюйма каждый в тандеме смотрятся действительно здорово, образуя единое, приятное для глаза, информационное пространство. Управлять всем этим великолепием можно с помощью пары тачпадов, расположившихся на рулевом колесе. Альтернативным органом управления является сенсорная панель с джойстиком, которая традиционно занимает место на межпассажирском тоннеле.

Для приборной панели предусмотрено три варианта представления информации: Classic, Sport и Progressive. Первый имитирует классическую аналоговую компоновку с двумя циферблатами, второй – почти такую же конфигурацию, но в другой цветовой гамме, третий – самый экстравагантный вариант с одной круглой шкалой и дополнительными данными по обе стороны.На других особенностях салона подробно останавливаться не будем. Пассажиров здесь встретят высококачественные отделочные материалы (натуральная кожа, дерево, шпон), пара суперкомфортных передних кресел с опциональными функциями массажа, приятная светодиодная подсветка с 64 вариантами оттенков и возможностью регулировки яркости, роскошная акустика Burmester с 23 динамиками суммарной мощностью 1450 Ватт (в начальных комплектациях чуть менее продвинутая аудиосистема), подогрев центрального и дверных подлокотников. В общем, все на уровне того же S-класса, а в некоторых аспектах даже круче.

В плане оснащенности электронными системами помощи новый Mercedes-Benz E-Class 2016-2017 сделал еще один, а то и два шага вперед. Адаптивный круиз-контроль Drive Pilot способен сохранять дистанцию до впередиидущих транспортных средств на скорости до 210 км/ч, следить за линиями разметки, соблюдать скоростной режим в соответствии с дорожными знаками или ограничениями, внесенными в память навигационной системы. Функция Evasive Steering Assist помогает водителю сманеврировать при внезапном появлении пешехода, сохранив при этом управление над автомобилем. Адаптивный мониторинг «слепых» зон Blind Spot Assist контролирует боковой интервал, вмешиваясь в случае возникновения опасности столкновения. Автономная система парковки Remote Parking Pilot позволяет припарковать автомобиль в ограниченном пространстве без присутствия водителя за рулем. Управление осуществляется с помощью мобильного приложения через протокол Bluetooth, обеспечивающий контроль над машиной при нахождении гаджета в радиусе трех метров. Дополняют список помощников Active Lane-change Assistant, самостоятельно находящий «окно» для перестроения в соседнюю полосу, и система коммуникации Car-to-X, позволяющая обмениваться данными с другими автомобилями и дорожными службами. Представленные системы берут на себя изрядную часть функций, обычно возлагаемых на водителя, все вместе образуя упрощенную версию автопилота.

Со старта продаж обновленная модель Мерседеса будет предлагаться с двумя вариантами силовых установок: 2.0-литровым бензиновым мотором мощностью 184 л.с. (модификация Mercedes E200) и 2.0-литровым дизелем с отдачей 195 л.с. (Mercedes E220d). Оба четырехцилиндровых агрегата, генерирующих соответственно 300 и 400 Нм, будут работать в паре с автоматической трансмиссией 9G-Tronic, существенно экономящей топливо. Например, версия E 220d расходует в среднем около 3.9 литров на 100 км пути – впечатляющий для сегмента показатель.

Чуть позже гамма дизельных моторов пополнится 150-сильным агрегатом, которому отведена роль базового. Также к нему присоединится 3.0-литровый шестицилиндровый двигатель с отдачей 258 л.с. и крутящим моментом 620 Нм (модификация Mercedes E 350d). В линейку бензиновых моторов войдут 2.0-литровый 245-сильный и 3.0-литровый 333-сильный (E 400 4Matic) агрегаты.Обзаведется Mercedes-Benz E-Class 2016-2017 и гибридной модификацией. В состав силовой установки войдут четырехцилиндровый бензиновый двигатель и электромотор, совместно вырабатывающие до 279 л.с. мощности и до 600 Нм момента. Предполагается, что гибридный Mercedes E 350e будет потреблять не более 2.1 литра на 100 км, проходя на одной электротяге до 30 км. Задействовав оба силовых агрегата, седан разгонится до 100 км/ч за 6.2 секунды.

Подвеска обновленного авто и спереди, и сзади имеет многорычажную конфигурацию с тремя вариантами настроек. Версии Avantgarde и Sport отличаются от Comfort уменьшенным на 15 мм дорожным просветом. Также для нового Мерседес Е-класс доступна многокамерная пневмоподвеска, которая позволяет изменять жесткость и дорожный просвет.

По умолчанию Windows Sonic for Headphones отключена, но вы можете включить её для виртуального объемного звука. Эта опция доступна и на Xbox One.

Как включить Windows Sonic

Вы можете легко включить или отключить эту функцию с помощью значка звука в области уведомлений . Щелкните правой кнопкой мыши значок динамика, выберите пространственный звук и выберите Windows Sonic for Headphones , чтобы включить его. Выберите Выключить здесь же, чтобы отключить Windows Sonic.

Если Вы не видите здесь или на панели управления опции для включения пространственного звука, значит ваше звуковое устройство не поддерживает его. Например, эта опция будет недоступна при использовании встроенных динамиков ноутбука.

Вы также можете получить доступ к этой функции из Панели управления . Чтобы запустить его, перейдите на Панель управления Оборудование и звук Звук .

Дважды щелкните устройство воспроизведения, для которого требуется включить Windows Sonic , перейдите на вкладку Пространственный звук и выберите Windows Sonic for Headphones в раскрывающемся списке.

Вы также можете включить Dolby Atmos для наушников в том же выпадающем меню. Это аналогичная технология пространственного звука для наушников, но она использует технологию Dolby и требует покупки в приложения для разблокировки.

Вы также можете включить или отключить параметр на вкладке пространственный звук.

На консоли Xbox One этот параметр находится в меню Система Настройки Экран и звук Аудиовыход . Выберите Windows Sonic для наушников под Headset audio.

Что такое пространственный звук

Это такие же данные, которые получает Dolby Atmos, поэтому Windows Sonic обеспечивает полную поддержку Dolby Atmos в последних версиях Windows 10. В сочетании с приемником и акустической системой с поддержкой Dolby Atmos, Вы будете слышать звуки, словно они исходят из трехмерного пространства – как по вертикали, так и по горизонтали – для улучшения эффекта объемного звучания .

Так, например, если звук идет сверху и справа, относительно вашей позиции в кино, телешоу или видеоигре, потолочный динамик на правой стороне будет издавать этот звук громче и раньше.

Приложение Dolby Access из магазина Windows поможет вам настроить звук домашнего кинотеатра Dolby Atmos на ПК с Windows 10.

Как работает пространственный звук в наушниках

Пространственные данные будут полезны только в том случае, если у вас есть система Dolby Atmos, которая действительно может их использовать. Даже если у вас есть традиционная система объемного звучания 7.1, вы просто получаете нормальный объемный звук с восемью каналами аудио – семь динамиков плюс сабвуфер.

Однако, эти позиционные данные могут обеспечивать пространственный звук в любой паре наушников. Вам просто нужно включить либо «Windows Sonic для наушников», либо «Dolby Atmos для наушников». Оба работают аналогично, но версия Dolby использует технологию Dolby и требует покупки приложения, в то время как Windows Sonic использует только технологию Microsoft и поставляется бесплатно с Windows 10 и Xbox One.

Когда Вы включаете одну из этих функций, ваш ПК с ОС Windows (или Xbox One) будет смешивать звук с использованием позиционных данных, обеспечивая виртуальный пространственный звук . Итак, если вы играете в игру, и звук идёт сверху вашего персонажа и справа, звук будет смешиваться до того, как он будет отправлен в ваши наушники, чтобы вы услышали этот звук как сверху, так и справа.

Эти функции пространственного звука работают только с приложениями, которые предоставляют пространственные данные для Windows.

Как насчет виртуального объемного звука 7.1

При включении Windows Sonic для наушников функция Включить виртуальный объемный звук 7.1 на панели управления звуками также будет включена. На консоли Xbox One эта функция называется Использовать виртуальный объемный звук .

При включенном 7.1-канальном объемном звуке Windows будет использовать 7.1-канальное объемное звучание в видеоиграх или фильмах, а также смешать их со стереозвуком с учетом положения предметов перед отправкой в ​​наушники, то есть объемный звук 5.1 также будет работать.

Чтобы правильно использовать эту функцию, вам необходимо настроить игру или видеоплеер для вывода объемного звука 7.1, даже если вы используете наушники. Ваши наушники будут функционировать как виртуальное устройство объемного звучания 7.1.

Но, в отличие от настоящего объемного звука , вы по-прежнему используете стандартную пару стереонаушников с двумя динамиками – по одному для каждого уха. Тем не менее, виртуальный объемный звук обеспечивает более качественное позиционирование звуковых сигналов, которые особенно полезны при игре на ПК или Xbox.

Функция виртуального объемного звука работает со всеми приложениями, обеспечивающими звук 7.1. Многие игры и фильмы, которые не обеспечивают пространственный звук, имеют поддержку объемного звука 7.1, поэтому это совместимо со многими другими приложениями.

Современные системы домашних развлечений разрабатываются и создаются для того, чтобы вызвать у человека максимальный эмоциональный отклик, погрузить его в действие кинофильма, прослушиваемую музыку или компьютерную игру настолько, чтобы он на время забыл о реальности окружающего мира и полностью погрузился в реальность "виртуальную". Естественно, для достижения данной задачи необходимо, чтобы действие, происходящее на экране, вызывало у человека эмоциональный отклик, качество изображения также должно быть максимальным, приближенным к тем картинам, которые мы привыкли видеть в реальной жизни. Хорошо известно также и то, что значительная часть информации об окружающем мире (более 25%) приходится на звук. Качественное объемное звучание - залог того, что человек получит максимальный эмоциональный заряд от кинофильма или музыкального исполнения.

Традиционным решением задачи по созданию объемного звучания в комнате прослушивания является построение многоканальных систем, в которых звук передается фронтальными, центральным и тыловыми громкоговорителями. С их помощью можно добиться очень равномерной и правдоподобной звуковой панорамы, при которой эффекты будут окружать слушателя именно таким образом, как задумал звукорежиссер. Для того, чтобы повысить достоверность воспроизведения многие производители аудио техники предлагают идти по пути увеличения количества каналов (и соответственно громкоговорителей), строя уже не пяти-, а шести-, семи- и даже девятиканальные системы домашнего кинотеатра. Резоны производителей понятны. Построение многоканальных аудиосистем действительно является самым верным способом повысить достоверность воспроизведения. Кроме того, увеличение количества каналов, естественно, требует увеличения количества акустических систем, длины коммутационных проводов, применения более сложных и более дорогих усилителей, а, следовательно, позволяет увеличивать прибыль от продажи оборудования.

НЕ УВЕЛИЧИВАТЬ, А УМЕНЬШАТЬ!

Впрочем, находятся компании, которые идут по другому пути, предлагая не увеличивать, а наоборот уменьшать количество каналов воспроизведения. Они совершенно справедливо считают, что далеко не всем потребителям необходимы многоканальные аудиосистемы. Для кого-то это неприемлемо по экономическим соображениям, кто-то не может выделить под систему домашних развлечений специальную комнату, в которой можно было бы проложить все необходимые коммутационные провода и выделить место для установки тыловых громкоговорителей, у кого-то уже есть "нормальная" большая система домашнего кинотеатра, и он хочет построить дополнительную (резервную) систему в маленькой комнате - спальне, кабинете или детской комнате, в которой также хочется "малой кровью" получить объемное звучание.

Казалось бы, что получение объемного звука без использования тыловых громкоговорителей не возможно. Если сзади нет звукового источника, то и звуку там неоткуда взяться. Впрочем, очевидность данного утверждения можно поставить под сомнение одним простым утверждением. У человека всего лишь два уха, которые обеспечивают его всей необходимой информацией о расположении источника звукового сигнала, а это значит что для ее передачи по идее достаточно всего лишь двух громкоговорителей (наушников или акустических систем), воспроизводящих аудио сигнал, в котором эта информация содержится. Не следует забывать о том, что наш слух - это не просто какое-то абстрактное, ничем не объяснимое качество. Слух имеет свои механизмы, в том числе и механизмы локализации звуковых источников в пространстве, изучением которых не один десяток лет занимаются не самые глупые люди. Понимание этих механизмов в теории позволяет "обмануть" нашу слуховую систему путем введения в акустический сигнал, воспроизводимый фронтальными громкоговорителями, дополнительных частотных и фазовых составляющих. Кроме того, воспроизведение звука в большинстве случаев происходит не в чистом поле, а в помещении. Помещение имеет стены и потолок, которые отражают звуковые волны. Правильно рассчитав конструкцию акустических систем, можно добиться того, что отраженный звуковой сигнал будет приходить к слушателю сбоку и сзади - т.е. имитировать звучание тыловых громкоговорителей.

"Избавиться" же от центрального громкоговорителя не представляет особой сложности - достаточно лишь соответствующим образом "подмешать" его сигнал в звучание правого и левого фронтальных каналов и звук локализуется в пространстве посередине между ними.

Конечно, реализация этих методов на практике представляет собой значительные трудности, но попытки создания позиционированного трехмерного звука при помощи только фронтальных громкоговорителей ведутся уже давно и определенные результаты достигнуты. В том числе и в серийно выпускаемых домашних аудио-видео комплектах. Для того чтобы лучше понимать особенности их работы, давайте разберемся, как же устроен наш слух, каким образом он позволяет нам производить локализацию звуковых источников, т.е. определять направление и расстояние до них.

ЧЕЛОВЕЧЕСКИЙ СЛУХ

Основной особенностью нашего слуха, которая позволяет определить место расположения звукового источника в пространстве, является его бинауральное строение - т.е. тот неопровержимый факт, что человек имеет 2 приемника звуковой информации (уха). Звуковые сигналы, воспринимаемые нашими ушами, обрабатываются в периферической части слуховой системы, подвергаются спектрально-временному анализу, после чего информация поступает в соответствующие отделы головного мозга, где на основе сравнения сигналов, поступивших с каждого из слуховых каналов, делаются выводы о месте расположения звукового источника.
Человеческий слуховой аппарат представляет собой очень эффективное устройство, созданное природой. Удивительным является то обстоятельство, что для большинства звуковых сигналов мы можем определить месторасположение источника с очень высокой степенью достоверности. Конфигурация ушной раковины позволяет осуществлять пространственное декодирование поступающих сигналов и подавать на барабанную перепонку звуковой сигнал, в котором уже содержится информация о месторасположении источника в пространстве.

Очень интересным является то обстоятельство, что для определения места расположения звукового источника в пространстве слуховая система использует не один, а несколько механизмов, каждый из которых наиболее эффективен при решении определенной задачи.

Механизмы слухового восприятия принято делить на основные и вспомогательные. К основным механизмам обычно относят локализацию по разнице амплитуд приходящих сигналов, временной разнице, а также спектральным различиям звука в правом и левом слуховых каналах. К вспомогательным механизмам обычно относят отражения звука от туловища и плеч человека, анализ реверберационных эффектов, а также эффект психологического восприятия, приводящий слышимое расположение звукового источника в соответствие с его расположением, которое мы видим глазами.

СТРОЕНИЕ ЧЕЛОВЕЧЕСКОГО УХА. 1.Слуховой канал 2.Барабанная перепонка 3.Молот 4.Наковальня 5.Стремечко 6.Овальное окно 7.Евстахиева труба 8.Улитка 9.Слуховой нерв

ОСНОВНЫЕ МЕХАНИЗМЫ СЛУХОВОГО ВОСПРИЯТИЯ

Локализация по уровню интенсивности звукового сигнала

Этот механизм основан на том, что при излучении звука источником, расположенным под определенным углом к фронтальному направлению, уровень звукового давления на барабанные перепонки в разных ушах будет различным. Это связано с тем, что одно ухо будет находиться как бы "в тени", которую создает голова и туловище. Естественно разница в уровнях звукового давления на барабанные перепонки будет зависеть от угла расположения источника. Анализируя эту разницу наш мозг способен сделать вывод о направлении на источник звука. Данный механизм, основанный на разнице уровней интенсивности сигналов, поступающих к ушам, является достаточно эффективным, но лишь на звуковых частотах более 2000 Гц. Дело в том, что при длине звуковой волны, сравнимой с диаметром человеческой головы, дальнее от источника ухо перестает находиться в "акустической тени", что обусловлено явлением дифракции звуковой волны на поверхности головы.

Локализация по временной разнице звуковых сигналов

На более низких частотах в действие вступает механизм анализа фазового сдвига звуковых сигналов, приходящих к разным ушам. За счет "разнесенности" ушей в пространстве звуковой сигнал, приходящий от источника, расположенного под некоторым углом к фронтальному направлению, затрачивает различное время для достижения барабанных перепонок в разных ушах. Это приводит к появлению фазового сдвига в сигналах, пришедших от одного и того же источника к разным ушам. Данный фазовый сдвиг может быть проанализирован нашим мозгом и на основании этого анализа делается вывод о направлении на звуковой источник.

С повышением частоты (а соответственно, с уменьшением длины звуковой волны) фазовый сдвиг сигналов, пришедших от одного и того же источника к разным ушам, увеличивается, и как только он достигает значения близкого к половине длины звуковой волны, данный механизм локализации перестает работать, поскольку наш мозг не может однозначно определить отстает ли звуковой сигнал в одном из слуховых каналов от другого или наоборот опережает его. Естественно, чем больше угол между направлением на звуковой источник и плоскостью симметрии человеческой головы, тем больше фазовый сдвиг в пришедших к ушам сигналах. Соответственно с повышением частоты звука угол, в котором мы можем локализовать источник, пользуясь данным механизмом, уменьшается.

Конус неопределенности

Кроме того, данный метод локализации страдает еще одним ограничением. Представьте себе, что источник звука находится под углом 30 градусов к фронтальному направлению головы. При восприятии звукового сигнала мы получим определенный фазовый сдвиг в левом ухе относительно правого, и на основе анализа этого сдвига наш мозг сделает вывод о расположении источника. Рассмотрим теперь звуковой источник, расположенный под углом 30 градусов к направлению в котором "смотрит" затылок или (что то же самое) под углом 150 градусов к фронтальному направлению. Для этого источника фазовый сдвиг будет точно такой же, как и для первого. Если не ограничиваться только теми источниками, которые находятся на одном уровне с ушами, а рассмотреть также те, которые располагаются выше или ниже, то можно продолжить наши рассуждения и получить конус с вершиной, расположенной в слуховом канале. На основании этого конуса могут расположиться звуковые источники, для которых разность фаз в правом и левом ушах будет одинаковой. Этот эффект, мешающий точному и однозначному определению местоположения звуковых источников с помощью анализа разности фаз для правого и левого слуховых каналов, получил название "конуса неопределенности".

Для того чтобы устранить эту неопределенность человек пользуется третьим, пожалуй, наиболее эффективным механизмом пространственной локализации звука.

Локализация по спектральным различиям звуковых сигналов

Еще один механизм локализации звука человеком, который, кстати, является наиболее точным, относится к сложным звуковым сигналам и импульсам, и основывается на возможности анализа спектрального состава звука нашим мозгом. При излучении сложного звукового сигнала (т.е. такого сигнала, в спектре которого присутствуют различные частоты) источником, расположенным под определенным углом к плоскости симметрии головы, спектральный состав звука в правом и левом ушах будет различным. Это связано, во-первых, с экранирующим воздействием головы, которое проявляется сильнее на высоких частотах (поэтому в дальнем от излучателя ухе высокочастотных составляющих будет меньше). Кроме того, ушная раковина человека не зря имеет такую сложную форму - по сути, она является точно рассчитанным частотным фильтром, которым наделила нас природа.

Фильтрация звуков различной частоты ушной раковиной зависит от направления на источник. При изменении направления звуковой сигнал по-разному отражается от участков ушной раковины и соответственно происходит усиление и ослабление различных участков спектра принимаемого звукового сигнала. Анализ спектрального состава звукового сигнала, поступающего в слуховые каналы, является также основным механизмом при определении того, находится ли звуковой источник спереди или сзади. По вполне очевидным причинам, механизмы, основанные на оценке разницы интенсивности и фазового сдвига, о которых мы написали выше, в данном случае практически не работают. Ушная же раковина по-разному фильтрует сигналы, приходящие спереди и сзади, поэтому мы и можем сделать вывод об их месторасположении.

Сложный спектральный состав для простоты локализации

В целом, можно сказать, что наилучшим образом определяется местоположение звуковых источников, которые излучают сигнал со сложным спектральным составом. Чистые тона, которые, кстати, практически не встречаются в природе, поддаются локализации с большим трудом и разрешающая способность человеческого слуха при этом крайне невелика. Высокие частоты (свыше 8000 Гц) практически не поддаются локализации, точно так же невозможно определить и местоположение источников звука очень низкой частоты (менее 150 Гц) - не зря же производители рекомендуют размещать сабвуферы в домашнем кинотеатре в любом, наиболее удобном для вас месте комнаты прослушивания. Аккуратная спектральная обработка воспроизводимого сигнала является одной из приоритетных задач производителей систем пространственного звучания.
Важно понимать, что наш мозг - это не совсем вычислительная машина, которая, воспринимая импульсы, формируемые в слуховых каналах, производит вычисления по какому-то сложнейшему алгоритму. На самом деле мозг производит не вычисления, а скорее сравнения. Он сравнивает информацию, полученную от ушей, с той информацией, которая уже хранится в нашей памяти. Иными словами, механизм локализации источника основывается, прежде всего, на личном опыте человека. В нашей памяти хранится информация о том, как звучат те или иные источники в разных точках пространства. Когда мы слышим звук, то наш мозг сравнивает поступающую информацию с той, что хранится в памяти, выбирает наиболее подходящую и на основании этого делает вывод о расположении источника в пространстве.Е

ще один момент, на который хотелось бы обратить внимание, это то, что точность определения месторасположения звукового источника в пространстве существенно возрастает, когда источник не является неподвижным, а перемещается в пространстве. Это дает нашему мозгу дополнительную информацию, которую он может проанализировать. Если источник является неподвижным, то для его локализации человек подсознательно совершает микроперемещения головы (например, еле заметно поводит ей из стороны в сторону). Этих микроперемещений вполне достаточно, для того, чтобы мозг получил информацию, на порядок повышающую точность определения положения источника в пространстве.

ДОПОЛНИТЕЛЬНЫЕ МЕХАНИМЫ ПРОСТРАНСТВЕННОГО ВОСПРИЯТИЯ ЗВУКА

Отражение и экранирование звука плечами и туловищем

При описании процессов пространственной локализации звукового источника необходимо учитывать то, что наши уши находятся в непосредственной близости от плеч и туловища. Распространяющийся звук может отражаться от них или поглощаться, вследствие чего спектральные и временные характеристики звука будут меняться. Человеческий мозг анализирует эти изменения и на их основании делает дополнительные выводы о направлении на звуковой источник. Наибольшее значение данный эффект имеет при определении расположения источников, находящихся выше или ниже головы слушателя.

Реверберация

Как известно, при воспроизведении звука в помещении мы слышим не только прямой звуковой сигнал, но и сигналы, отраженные от стен. Эти сигналы являются результатом многократных переотражений и имеют достаточно сложную структуру. Эффект, при котором затухание звука происходит не сразу, а постепенно, за счет этих самых переотражений, носит название реверберации. Время, за которое уровень звука в помещении снижается на 60 дБ, носит название времени реверберации. Оно характеризует, как размеры помещения (в малых помещениях за единицу времени происходит большее количество переотражений, и звук затухает быстрее, чем в больших), так и отражающие свойства его поверхностей (стен, пола и потолка).

Спектральный состав отраженных сигналов в больших и малых помещениях также отличается, поэтому реверберация несет в себе информацию о размере помещения. Помимо размеров спектр реверберационного сигнала характеризует материалы, из которых изготовлены отражающие поверхности. Например, реверберация, в которой высок уровень высокочастотных составляющих, ассоциируется с комнатой с твердыми стенами, хорошо отражающими высокие частоты. Если же звук реверберации глухой, то слушатель приходит к выводу, что стены комнаты покрыты коврами, драпировками и прочими абсорберами высоких частот.

Помимо определения характеристик помещения, включение реверберационного сигнала в состав воспроизводимого звука полезно и для определения расстояния до звукового источника. Оценивая отношение уровня прямого звука к отраженному, мы можем сделать выводы о том, находится ли он близко (слабая реверберация) или далеко (сильная реверберация).Имитация реверберации в системах позиционированного объемного звука необходима для передачи пространственного контента. Она дает информацию о размере и характеристиках помещения, расстоянии до звукового источника и таким образом существенно добавляет реализма воспроизводимой записи.

Для имитации реверберационных эффектов зачастую используют геометрическую модель воспроизводимого звукового пространства. Эта модель учитывает позицию слушателя, звукового источника и отражающих поверхностей. Вводя коэффициенты отражения, геометрическая модель позволяет построить систему мнимых источников, уровень которых ослаблен в соответствии с этими коэффициентами и получить достаточно правдоподобную реверберационную картину, учитывающую ранние отражения звука от стен.

Особенности психоакустического восприятия

Создание 3-мерного позиционируемого звука с помощью 2 громкоговорителей является весьма сложной, практически невыполнимой на сегодняшний день задачей. Это утверждение было бы справедливо, если бы не одна важнейшая особенность нашего слуха. Дело в том, что при недостатке информации или же при поступлении такой информации, которая не соответствует той, что хранится у нас в памяти, человеческий мозг самостоятельно достраивает звуковую картину до той, которая укладывается в его представления о звуках, существующих в реальном мире. Иными словами, для того, чтобы "обмануть" наш мозг совершенно не обязательно в точности воссоздавать желаемый звуковой образ. Достаточно лишь "намекнуть" ему, чтобы он "извлек из памяти" ту 3-мерную картину, которая нам нужна. В качестве аналогии можно привести метод записи музыки в формате MP3. Всем известно, что в этих записях отсутствует множество информации, которая, казалось бы, просто необходима для адекватного восприятия музыки. Тем не менее, информации все же оказывается достаточно для более или менее достоверной передачи - недостающую звуковую информацию мозг достраивает самостоятельно.

Помимо этого, не следует забывать, что в домашнем кинотеатре кроме звука есть еще и изображение, т.е. наш мозг помимо звуковой получает еще и зрительную информацию. Это очень существенный момент, поскольку появление еще одного (кстати, основного) информационного канала позволяет существенно упростить процедуру "введения нашего мозга в заблуждение", а следовательно добиться пресловутого "эффекта присутствия" к которому мы собственно и стремимся, просматривая фильмы в домашнем кино.

КАКИЕ ЗАДАЧИ ДОЛЖНЫ РЕШАТЬ СИСТЕМЫ ОКРУЖАЮЩЕГО ЗВУКА?

Итак, наш слуховой аппарат использует различные механизмы для определения местоположения источника звука в пространстве. Поскольку все эти механизмы строятся на сравнении поступающих в головной мозг сигналов с теми, что "хранятся" у него в памяти, то, используя определенные алгоритмы обработки звука можно "обмануть" его и заставить поверить в то, что звуковой источник расположен там, где на самом деле его нет. Именно на этом и построены современные алгоритмы построения 3-мерного звукового пространства в компьютерных играх и, что более важно для нашего издания, домашних аудио-видео системах.

Прежде чем перейти к рассмотрению конкретных алгоритмов построения виртуального звукового окружения, мы рассмотрим основные задачи, которые этим системам приходится решать.

Определение направления на звуковой источник

Как уже упоминалось выше, для определения направления на источник звукового сигнала используются все три основных алгоритма пространственной локализации: - по амплитудной разнице сигналов в слуховых каналах, по фазовой задержке звука, пришедшего к правому и левому уху, а также по оценке спектрального состава звука, трансформированного ушной раковиной в зависимости от направления его распространения.

Вертикальная (высотная) локализация

Все, о чем мы говорили выше, относилось в первую очередь к локализации звукового источника в горизонтальной плоскости. Однако, как нам кажется, мы не раскроем особой тайны, если скажем, что человек может определять направление на звуковой источник не только в горизонтальной, но и в вертикальной плоскости. Механизм определения высоты источника имеет некоторые отличия от способов, описанных выше. Если при оценке угла в горизонтальной плоскости основополагающим инструментом является бинауральное свойство слуха (т.е. наличие двух приемников звукового сигнала - ушей), то определение высоты в основном моноауральное - используется в первую очередь строение ушной раковины. Как уже упоминалось, ушная раковина представляет собой своеобразный частотный фильтр с параметрами фильтрации, зависящими от направления на источник. В сложном звуковом сигнале определенные частоты усиливаются ушной раковиной, а другие наоборот ослабляются. При изменении высоты источника частотная характеристика сигнала поступающего в слуховой канал также будет меняться.

Определение расстояния до источника

Помимо того, что человек может определять направление на звуковой источник, свойства слуха позволяют ему оценивать и расстояние до него. Одним из механизмов определения расстояния является оценка интенсивности звукового сигнала. Например, при относительно небольших расстояниях увеличение расстояния до источника в 2 раза соответствует изменению уровня звукового давления на 6 дБ. Однако данный механизм не всегда оказывается работоспособным, поскольку уровень звука от слабого, но близко расположенного источника может быть таким же, как от мощного, но удаленного на значительное расстояние.

При малых расстояниях до источника в действие вступает механизм оценки изменения спектральных составляющих сложного сигнала, которое происходит в связи с искажением фронта звуковой волны головой и ушными раковинами.Одним из важнейших механизмов, позволяющих нам определять расстояние до источника в помещении, является сравнение прямых сигналов и отраженных от стен и потолка. Таким образом, эффект реверберации позволяет использовать один из наиболее точных механизмов локализации звукового источника в помещении.

Воспроизведение звука движущихся объектов

Для того чтобы правдоподобно передать звук от движущегося источника недостаточно только тех механизмов, которые были описаны выше. В соответствии с эффектом Доплера частота звука движущегося источника изменяется (звук становится более высоким при приближении объекта и более низким при его удалении). При прохождении объекта мимо позиции слушателя его звук резко меняет тональность.

Поглощение звука в воздухе

При передаче звучания удаленных объектов необходимо учитывать, что воздух поглощает высокие частоты значительно сильнее, чем низкие. Это означает, что чем дальше от вас находится виртуальный звуковой источник, тем более глухим должен быть его звук.

Огибание препятствий

Сюжеты кинофильмов зачастую подразумевают, что звук приходит к слушателю из-за препятствия, расположенного на пути к его источнику. Для того чтобы симулировать звук, доносящийся из-за препятствия, необходимо учитывать, что волны с малыми по сравнению с размерами препятствия длинами не смогут его обогнуть, и будут эффективно гаситься. Таким образом, высокочастотные составляющие звука источника, расположенного за препятствием, будут сильно ослаблены по сравнению с низкочастотными.

МЕТОДЫ ПОСТРОЕНИЯ СИСТЕМ ВИРТУАЛЬНОГО ЗВУКОВОГО ОКРУЖЕНИЯ

Бинауральное воспроизведение звука

Одним из методов построения 3-мерного звукового пространства с помощью 2 громкоговорителей являются так называемые бинауральные звуковые системы. Идея бинауральной записи и воспроизведения появилась достаточно давно, что, однако, не мешает нам рассмотреть ее более подробно.

Давайте предположим, что у нас есть возможность расположить два микрофона с абсолютно линейной амплитудно-частотной характеристикой непосредственно в слуховых каналах головы человека. В этом случае звуковые сигналы, воспринимаемые этими микрофонами будут содержать в себе всю информацию, необходимую для определения месторасположения звукового источника головным мозгом (об этом мы писали выше). Предположим, что нам удалось без изменений записать эти сигналы. Если затем подать их на головные телефоны (наушники) которые мы смогли бы поместить на место микрофонов, т.е. опять непосредственно в слуховые каналы, то воспринимаемый нами звук соответствовал бы первичному звуковому полю источника и также содержал бы всю необходимую информацию для локализации его источника в 3-мерном пространстве.

Эксперименты по созданию бинауральных звуковых систем проводились с помощью специального манекена, имитирующего человеческую голову, и продолжаются по сей день. Нужно отметить, что в этом направлении были достигнуты значительные успехи. Например, отмечено, что при бинауральной схеме звуковоспроизведения значительно повышается способность слушателя к локализации звуковых источников в 3-мерном пространстве, усиливается так называемый "эффект присутствия", который и является нашей целью в домашних развлекательных системах.
Однако, как легко догадаться, не все так гладко, иначе про обычную стереофонию и многоканальные системы домашнего кинотеатра мы бы уже давно забыли.

Во-первых, все люди разные и все они отличаются формой головы, тела, ушной раковины и т.д., поэтому записи, сделанные с использованием "искусственной головы" носят более чем усредненный характер, а этого порой бывает недостаточно для того, чтобы ввести в заблуждение наш мозг и создать иллюзию трехмерности.

Во-вторых, даже произведя идеальную запись сигнала непосредственно в ушных каналах "искусственной головы", мы не можем воспроизвести записанные сигналы непосредстевенно в слуховых каналах реального слушателя.

В-третьих, не существует аппаратуры, которая могла бы абсолютно точно записывать и воспроизводить звук (любая аппаратура вносит свои изменения, а в данном случае важны мельчайшие нюансы).

Наконец, многие просто не любят прослушивать музыку в наушниках, испытывая при этом значительный дискомфорт. Этот дискомфорт в частности связан еще и с тем, что при использовании качественных студийных или Hi-Fi наушников закрытого типа наши ушные раковины оказываются прижатыми к голове, а такое положение является для них неестественным, что приводит к снижению точности пространственного восприятия и быстрой утомляемости.
Широкому распространению бинауральных звуковых систем мешает также и то, что записи для них, очевидно, должны быть сделаны специальным образом (обычные стерео записи не подойдут, поскольку они не несут всей необходимой для пространственной локализации информации). Такие записи в принципе есть, но их крайне немного, да и стоят они достаточно дорого, поэтому их следует рассматривать скорее как демонстрационный материал, нежели реальную возможность для использования в системах домашнего развлечения.

Функции HRTF

Идея записи и воспроизведения 3-мерного звука с помощью бинауральных систем получила свое развитие с появлением и совершенствованием процессоров звуковой обработки. Действительно звуковой сигнал, поступающий в слуховые каналы человека, получается за счет определенной трансформации (по частоте, фазе и уровню) сигнала излучаемого источником звука. Функции, по которым производится данная трансформация, получили название HRTF (Head Related Transfer Function или Передаточная Функция Головы). Стоит ли говорить, что эти функции слишком сложны для того, чтобы их можно было получить обычными вычислительными методами. Как правило, эти функции получают экспериментальным путем, измеряя параметры звукового сигнала с использованием описанных выше манекенов.

Проведение многочисленных экспериментов позволило разработчикам пространственных звуковых систем создать обширные базы данных, использование которых в современных звуковых процессорах позволяет добиться впечатляющих результатов. Действительно, если звуковой процессор, занимающийся обработкой сигнала, обладает достаточным быстродействием для расчета звуковых характеристик с использованием HRTF в реальном времени, то система, в которой он работает, сможет создавать 3-мерное звучание без использования специальных бинауральных записей и головных телефонов в слуховых каналах. Кстати, библиотека HRTF фильтров создается в результате лабораторных измерений, производимых с использованием манекена, носящего гордое название KEMAR (Knowles Electronics Manikin for Auditory Research) или с помощью специального "цифрового уха".

Алгоритм Crosstalk Cancelation

Современные процессоры позволяют обходиться вообще без наушников, а использовать обычные акустические системы, используя так называемый алгоритм Crosstalk Cancellation. Суть этого алгоритма в следующем. Предположим, что мы используем сигнал, обработанный звуковым процессором с использованием функций HRTF на обычные акустические системы. Предположим также, что используемые в процессоре функции позволяют учесть тот факт, что звуковые сигналы излучаются не наушниками, а удаленными от слушателя громкоговорителями. Однако даже при этом мы не сможем просто так получить желаемый результат. Дело в том, что наушники без проблем позволяют подвести сигнал, предназначенный для правого уха именно к этому уху и только к нему, левое ухо его слышать не будет. То же самое можно проделать с сигналом, предназначенным для левого уха. В случае использования обычных громкоговорителей это, к сожалению, невозможно. Сигнал, излучаемый левым громкоговорителем, будет восприниматься обоими ушами - и левым и правым, и наоборот.

Предположим, что при помощи 2 акустических систем необходимо спозиционировать виртуальный звуковой источник, находящийся в определенной точке слева от слушателя. Если запись звука этого источника производилась двумя микрофонами, разнесенными на расстояние эквивалентное расстоянию между ушами, то вполне вероятна ситуация, когда правое ухо вначале услышит кросстолк-сигнал с левого громкоговорителя и лишь затем полезный сигнал с правого. В силу эффекта Хааса (или иначе эффекта предшествования) полезный сигнал правой колонки в этом случае будет полностью проигнорирован. Эффект Хааса, кстати, заключается в том, что при обработке пакета аудио информации, состоящего из отдельных звуковых импульсов, слегка разделенных во времени, наш мозг использует только первый импульс для вычисления направления на источник, приписывая всем последующим те же самые пространственные координаты.

В рассмотренной выше ситуации слушателю будет казаться, что звучит только левая (т.е. ближайшая к записанному виртуальному источнику) колонка. Пространственной звуковой панорамы в этом случае получить не удастся.Для того чтобы устранить негативное влияние кросстолк сигнала в том или ином канале на восприятие аудио информации был разработан алгоритм Crosstalk Cancellation, который подразумевает "подмешивание" в левый громкоговоритель сигнала, предназначенного для правого громкоговорителя, но с определенной задержкой во времени. Эта задержка подбирается таким образом, чтобы звук, пришедший к правому уху от левого громкоговорителя, оказался в противофазе с "подмешанным" сигналом от правого громкоговорителя. При этом они нейтрализуют друг друга, и левое ухо будет воспринимать только сигнал с левой колонки, а правое - только с правой.

Даже в теории, как видите, все получается достаточно непросто, на практике же построение 3-D звука с помощью двух акустических систем является архисложной задачей. В частности, все расчеты, о которых мы написали выше, можно произвести только для конкретной области прослушивания, которая называется Sweet Spot (дословно - "сладкое пятно"). Как только слушатель покинет пределы этой области, алгоритм Crosstalk Cancellation естественно перестанет работать, поскольку требуемые сигналы перестанут приходить в противофазе. Естественно, очень многое зависит и от характеристик самого звуковоспроизводящего тракта и в первую очередь от акустических систем.

Большинство производителей все же пока ограничивается использованием упрощенных алгоритмов построения 3-D звука с применением усредненных (подходящих для большинства людей) функций HRTF. К сожалению, в результате, создаваемая звуковая картина также получается весьма усредненной либо же не получается вовсе.

Системы, работающие по принципу отражения от стен

Для того, чтобы создать эффект виртуального звукового окружения вовсе не обязательно производить сложную процессорную обработку аудиосигнала. Можно воспользоваться тем обстоятельством, что аудиосистемы в большинстве своем работают в закрытых комнатах, в которых есть отражающие звук поверхности - стены, пол и потолок. Именно этот принцип использует, к примеру, английская компания KEF, выпустившая систему громкоговорителей, состоящих из традиционного для этой компании модуля UniQ, обеспечивающего звучание фронтальных и центрального каналов, а также плоских звуковых панелей NXT, расположенных по бокам акустических систем и излучающих звук тыловых каналов. При корректном расположении акустических систем относительно места прослушивания и стен помещения звук тыловых каналов, отраженный от стен помещения придет к слушателю не спереди, а сбоку, обеспечив таким образом правдоподобное окружение.

Системы использующие только процессорную обработку

В принципе, к системам, использующим процессорную обработку для создания эффекта виртуального окружения, можно отнести практически любой современный AV-ресивер. Почти все эти аппараты имеют тот или иной алгоритм для имитации тыловых эффектов при помощи только двух громкоговорителей. Интересное решение предложила немецкая компания Audica, производящая стильные дизайнерские акустические системы. К примеру, в одном из наших тестов приняла участие 2-канальная система виртуального окружения, однако в ней были использованы не 2 фронтальных громкоговорителя, а фронтальный и тыловой. Эти акустические системы располагаются горизонтально (наподобие АС центрального канала в обычных 5-канальных театральных системах) и имеют возможность подключения сразу нескольких каналов (правого, левого и центрального для фронтальной АС и левого и правого тыла для задней колонки). При этом каждый канал звуковоспроизведения использует свой собственный набор динамических головок, заключенных в едином корпусе. Данные АС требуют подключения к обычному AV-ресиверу, и как показал дальнейший тест их желательно использовать с теми или иными алгоритмами расширения звукового пространства.

Системы с особой конфигурацией динамиков и процессорной обработкой

Как мы уже упоминали разработка и применение комплекса функций HRTF для системы, воспроизводящей звук через обычные громкоговорители, является очень сложной задачей. В связи с этим многие производители идут на определенный компромисс, проводя обработку звука по упрощенному алгоритму, но зато используя специальную конфигурацию установки динамиков в громкоговоритель.

Например, компания Polk Audio предложила горизонтальный громкоговоритель Surround Bar, в котором основной сигнал виртуального тыла подается на один комплект динамиков, а корректирующий сигнал для устранения кросстолк-эффекта - на другой комплект динамиков, отстоящих от основных на расстояние, примерно равное расстоянию между человеческими ушами.

Компания Aleks Digital Technology предложила использовать комплект, состоящий из горизонтальной АС с тремя комплектами фронтальных динамиков и двумя боковыми, расположенными на торцах колонки. Эффект виртуального окружения достигается за счет аналоговой обработки аудиосигнала, которая манипулируя фазовыми сдвигами позволяет подать необходимый сигнал на тот или иной комплект динамических головок.

Очень интересное решение предложила датская компания Final Sound, известная производством электростатических громкоговорителей самого высокого уровня. В системе Final звук, подвергаясь процессорной обработке, подается на 2 фронтальные электростатические системы. Как известно, электростаты имеют биполярную характеристику направленности. Подавая на них дополнительный сигнал с фазовой задержкой, можно получить практически однородное звуковое пространство, окружающее слушателя в любой точке комнаты прослушивания.

Японская компания Yamaha, известная своими многочисленными достижениями в области цифровой обработки звука, продолжает развивать направление звуковых проекторов, которые стали весьма успешным коммерческим продуктом в ряде стран мира. Идея звукового проектора заключается в размещении большого количества динамических головок в одной плоскости громкоговорителя. Каждый из динамиков имеет собственный усилитель и управляется цифровым процессором, который может производить фазовые манипуляции.

Совсем недавно можно было наблюдать, как в мир коммерческих и домашних кинотеатров пришло стереокино, а сейчас на очереди уже стоит видео сверхвысокого разрешения 4K. От изображения не отстает и звук: в домашний кинотеатр пришло 3D Audio, полное звуковое окружение зрителя — не только в горизонтальной плоскости, но и в третьем измерении. В английском языке для этого применяется термин immersive, «погружающий».

Глас божий и другие аудиоканалы

Формат Auro-3D был представлен в мае 2006 года бельгийской компанией Galaxy Studios. Первым массовым фильмом, записанным в данном формате, стала лента Red Tails («Красные хвосты»), снятая в 2012 году Джорджем Лукасом. Принципиальное отличие Auro-3D от преобладавших на тот момент форматов Dolby Surround EX и DTS заключалось в том, что кроме традиционных каналов 7.1, расположенных в одной плоскости, разработчики предложили использовать третье измерение — то есть разместить акустические системы (АС) не просто вокруг слушателя, но и сверху, вторым «слоем», под углом в 30 градусов к фронтальным акустическим системам и каналам окружающего звучания.

Дальнейшее усовершенствование формата привело к появлению еще одного «слоя» — над головами слушателей, который символично назвали voice of god («глас божий»). Максимальное количество каналов (не стоит путать с количеством акустических систем) при этом достигло 13.1, то есть фактически стало в два раза больше, чем в применяемых тогда форматах 7.1 и 6.1. Внедрение верхних каналов позволило более точно передать ряд событий в звуковой дорожке фильма, таких как пролеты объектов над зрителями (шум вертолета или реактивного истребителя), атмосферные эффекты (завывание ветра, раскаты грома).


Если потолок расположен слишком низко, акустика будет слишком близко к зрителю. В этом случае Dolby рекомендует использовать специальные акустические системы, работающие «на отражение» от потолка — по утверждению компании, результат будет более качественным.

Объектный подход

Старейший игрок на рынке кинотеатрального звука, компания Dolby Laboratories, использует в своем новом формате Dolby Atmos два «слоя» акустических систем. Первый располагается вокруг слушателя по классической схеме, а второй на потолке — попарно слева и справа. Но самое главное — принципиально новый подход к микшированию саундтреков. Вместо привычного поканального сведения в студии используется метод «объектной» записи. Режиссер работает со звуковыми файлами, указывая место в трехмерном пространстве, откуда эти звуки должны воспроизводиться, когда и с какой громкостью. К примеру, если необходимо воспроизвести шум движущейся машины, то режиссер указывает время появления, уровень громкости, траекторию движения, место и время прекращения звучания «объекта».

Более того, из студии в кинозал звук попадает не в виде записанных дорожек, а как набор звуковых файлов. Эта информация обрабатывается процессором, который в реальном времени каждый раз просчитывает саундтрек фильма с учетом количества АС в зале, их типа и расположения. Благодаря точной калибровке нет привязки к какому-то «типовому» количеству каналов, и можно использовать в разных залах разное количество АС (каждый зал калибруется и настраивается индивидуально) — процессор сам просчитает, как и куда нужно отправить звук для получения оптимальной звуковой панорамы. Максимальное количество одновременно обрабатываемых звуковых «объектов» составляет 128, а количество одновременно поддерживаемых независимых АС — до 64.


Формат Dolby Atmos не привязан к конкретному количеству аудиоканалов. Звуковая картина формируется процессором в реальном времени из «объектов» и по «программе», составленной звукорежиссером фильма. При этом процессор учитывает точное расположение акустических систем, их тип и количество — все это заранее прописывается в настройках при калибровке каждого конкретного зала. Правда, как такой подход реализовать в домашнем кинотеатре, пока не совсем понятно.

Профессионалы и любители

Вслед за появлением в коммерческих кинозалах оба формата трехмерного звука начали завоевание домашнего рынка. Auro-3D стартовал чуть раньше, несколько производителей домашней электроники представили первые процессоры и ресивер с поддержкой формата еще в начале 2014 года. Dolby Laboratories не заставила себя долго ждать, и в середине сентября прошлого года представила весьма доступные решения на базе недорогих ресиверов. Кроме того, в начале 2015 года еще один крупный игрок, американская компания DTS, анонсировала свой формат трехмерного звучания — DTS: X (о котором известно пока только то, что он, как и Dolby Atmos, является объект-но-ориентированным и будет поддержан многими производителями бытовой электроники).

Между тем, коммерческое и домашнее кино в некоторых аспектах имеют серьезные отличия. Бобины с кинопленкой ушли в далекое прошлое, и в кинопрокате в настоящее время практически повсеместно используются цифровые копии фильмов. Саундтрек к фильму «выходит» из сервера в виде потока цифрового аудио с высоким битрейтом и практически без сжатия. Серверы, на которых хранятся фильмы, могут передавать до 16 цифровых каналов таких данных параллельно.


Самый популярный носитель для домашнего кино — Blu-ray диск. Как правило, он содержит саундтрек, записанный в одном из двух самых популярных форматов — DTS HD Master Audio или Dolby True HD. Встречаются и диски, записанные с использованием старых кодеков DTS и Dolby Digital со звуком 2.1 (лево-право и LFE). Если дорожка к фильму изначально была записана в студии в формате 5.1 или 7.1, перенести ее на диск довольно просто, отличие лишь в дополнительной компрессии данных, связанной с ограниченной емкостью цифрового носителя. А как же будут адаптироваться новые форматы Auro-3D и Dolby Atmos при переносе их из профессионального кино в домашний кинозал?

Путь домой

Для Auro-3D перенос будет практически «бесшовным». Если фильм изначально записан в студии в формате 13.1 или 11.1, ровно с таким же количеством каналов он и будет переноситься на диски Blu-ray. Для обратной совместимости в Auro-3D используется специальный алгоритм, который умеет «дописывать» верхние каналы в кодек DTS HD MA, официально поддерживающий максимум 7.1 каналов — например, в левый канал инкапсулируется информация для верхнего левого канала, в центральный — для верхнего центрального и т. д. Если в ресивере или процессоре есть поддержка декодирования кодека Auro-3D, то он «вынет» вложенную информацию и подаст ее на соответствующие каналы. Если нет — просто декодирует данные как обычную дорожку 7.1, пропустив «лишнюю» информацию. Таким образом, диск с фильмом в формате Auro-3D в любом случае будет корректно прочитан любым современным плеером и распознан любым из процессоров или ресиверов, поддерживающих DTS HD MA. А если процессор или ресивер обладает встроенным декодером Auro-3D, то на выходе можно получить саундтрек из 9.1, 11.1 или даже 13.1 каналов. Существует и возможность «апмиксинга» (upmixing) — процессор, умеющий работать с Auro-3D, может пересчитать даже обычную двухканальную стереозапись, скажем, в 13.1.


В Auro-3D используется трехслойное расположение акустических систем и более традиционный подход с многоканальной записью звука. Это обеспечивает отличную обратную совместимость стандарта с текущими форматами и переносимость на домашние системы.

Ситуация с Dolby Atmos в домашнем кинотеатре намного более сложная: процессор в реальном времени обсчитывает довольно большой поток данных и выдает звук на соответствующие акустические каналы (с учетом того, сколько их в конкретной инсталляции). На текущий момент спецификациями Dolby Atmos для домашнего применения предлагается использовать конфигурации АС от 5.1.2 до 7.1.4, где первая цифра — это количество «обычных» каналов: левый-центр-правый-боковые-тылы, вторая — это канал низкочастотных эффектов, а третья — так называемые «верхние» каналы (overhead). При этом единственный процессор для коммерческого применения (Dolby CP850) стоит более миллиона рублей, а стоимость домашних ресиверов с поддержкой Atmos начинается всего от 30−40 тысяч. Тем не менее даже для самых доступных по цене домашних ресиверов заявлены и декодирование, и поддержка «апмиксинга», хотя как именно это сделано, не совсем понятно.

Еще один не очень ясный момент заключается в том, что для правильного обсчета звукового поля необходимо знать точное местоположение всех акустических систем. В коммерческом кинотеатре этот вопрос решается калибровкой аппаратуры, а вот в домашних ресиверах, насколько известно, такой возможности не предусмотрено. Как в таком случае решается вопрос о получении дома полноценного звучания Atmos «как в кино», пока неясно. Правда, формат пока еще не обрел окончательные черты. Несколько производителей процессоров премиум-класса даже отложили выпуск обновлений с поддержкой Dolby Atmos из-за изменений в алгоритме обработки сигнала, вносимых, по их словам, разработчиками Dolby. Так что можно предположить, что в последующих обновлениях Dolby может внести коррективы в процесс обработки звука и/или калибровки системы под конкретное расположение акустических систем.


Вопросы совместимости

Поскольку Auro-3D использует традиционный метод поканального сведения, а Dolby и DTS — объектно-ориентированный монтаж звука, переконвертировать один формат в другой невозможно. Кроме того, построить домашний кинотеатр, умеющий правильно работать со всеми форматами, тоже непросто. Проблема совместимости заключается в различных требованиях к установке акустических систем. В Dolby Atmos используется два «слоя» акустики, а в Auro-3D — три. Можно было бы предположить, что саундтрек Dolby Atmos может быть воспроизведен через часть АС для проигрывания Auro-3D, но вряд ли это будет корректно. Требования для расположения АС весьма жесткие у обоих форматов, а учитывая чувствительность к точному позиционированию для получения плавных переходов, это может стать проблемой для проектировщиков и инсталляторов домашних кинозалов (информации по расположению акустики DTS: X пока нет).


Перспективы

Несмотря на все неясности описания Dolby Atmos, нужно признать, что этот формат имеет больший потенциал, чем Auro-3D. Во‑первых, объектно-ориентированный подход к записи однозначно более перспективен, чем традиционный поканальный. Во вторых, поддержка Dolby Atmos в массовых моделях AV-ресиверов таких фирм, как Yamaha, Pioneer, Onkyo, Integra, Denon, доступна «в базе», в то время как лицензию на Auro3D придется покупать как опциональное программное обновление за $199, что ощутимо для бюджетных моделей.

В более дорогом сегменте процессоров для построения домашних кинозалов о поддержке всех форматов 3D Audio заявили и такие производители, как Trinnov Audio и Datasat Digital, работающие в том числе и на коммерческом кинорынке. Их опыт может весьма благотворно сказаться на реализации Dolby Atmos для домашнего кинотеатра: например, Trinnov для калибровки своих процессоров использует уникальный трехмерный микрофон, позволяющий точно определить место каждой АС в пространстве и применять эти данные для дополнительной коррекции звукового поля.

Редакция благодарит журнал avreport.ru за помощь в подготовке статьи.

Новое на сайте

>

Самое популярное