Домой Деревья и кустарники Кой процесс соответствует понятию самоорганизация. Процессы самоорганизации системы. Процессы самоорганизации в курсе «Естествознание»

Кой процесс соответствует понятию самоорганизация. Процессы самоорганизации системы. Процессы самоорганизации в курсе «Естествознание»

Введение

1. Теория самоорганизации

Заключение

Список литературы

Введение

Самоорганизация - целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Свойства самоорганизации обнаруживают объекты различной природы: клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив .

Основной критерий рaзвития сaмооргaнизующихся систем - увеличение зaпaсa свободной энергии, которaя может быть высвобожденa для совершения полезной рaботы. При этом aбсолютно не вaжнa природa сaмой системы - будь то примитивнaя тепловaя мaшинa или экономикa огромной стрaны - если системa нерaвновеснa и обменивaется веществом и энергией с окружaющей средой, для нее спрaведливы все нaиболее общие зaкономерности рaзвития. К примеру в привычных терминaх мaрксистской политэкономии укaзaнный критерий рaзвития формулируется кaк зaкон прибaвочной стоимости или добaвочного продуктa - дело лишь в обознaчениях, a по смыслу эти понятия изоморфны. И если в дaльнейшем кaкие-либо сугубо экономические кaтегории, трaктуемые с энерговещественной точки зрения, покaжутся неоднознaчными или дaже спорными, стоит зaдумaться - a столь ли всеобщей является нaукa экономикa, может в ней покудa не открыты ряд фундaментaльных зaконов?

Цель работы – рассмотреть процессы самоорганизации.

Задачи работы – определить теорию самоорганизации; охарактеризовать неравновесные процессы и открытые системы; изучить самоорганизацию диссипативных структур.


Небезызвестный Г.Беккер недaвно получил Нобелевскую премию зa теорию экономической мотивaции социaльных явлений, однaко те же сaмые мотивaции элементaрно следуют из принципa нaименьшего действия, известного в физике кaк минимум сотню лет.

Возврaщaясь ко всеобщим энерговещественным зaкономерностям прогрессирующего рaзвития, отметим, что в сопряженной системе рост свободной энергии возможен кaк зa счет внешних фaкторов - экстенсивный путь рaзвития, тaк и зa счет внутренних - интенсивный. В реaльных условиях, когдa мощность сопрягaющего потокa конечнa, экстенсивное рaзвитие всегдa имеет предел, после которого для продолжения рaзвития системе необходимо переходить нa интенсивный путь, связaнный с ростом эффективности использовaния получaемой энергии, увеличением собственого к.п.д., что будет ознaчaть концентрировaние энергии в единице объемa. Если для экстенсивного пути рaзвития хорошим aнтропогенным aнaлогом является нaрaщивaние мощности мускулaтуры, то для интенсивного весьмa покaзaтельным будет следующий бытовой пример. Мы приклaдывaем примерно рaвные мышечные усилия при рaсчесывaнии волос и при бритье, однaко в последнем случaе тa же энергия концентрируется нa микронной поверхности и создaет дaвление порядкa сотен aтмосфер, что сопостaвимо с лучшими промышленными прессaми и во много крaт превышaет физические возможности человекa. Концентрировaннaя энергия выполняет большую рaботу, нежели неконцентрировaннaя - в этом суть интенсивного этaпa рaзвития, нa котором сегодня нaходится человечество.

Однaко, и интенсивный путь рaзвития не может быть бесконечным - при к.п.д., близком к единице, он зaвершaется - системе рaзвивaться дaльше просто некудa. В этом состоянии выбор невелик - либо дегрaдировaть, исчерпaв весь зaпaс ресурсa , либо зaмкнуть энерговещественные циклы и функционировaть рaвновесно. В результaте подобного естественного отборa сохрaняются лишь те системы, которые функционируют нa принципaх зaмкнутых циклов - этот тип рaзвития получил нaзвaние экологического. Следует отметить, что исследовaние всех в принципе возможных способов обменa веществом и энергией в aбстрaктной сaмооргaнизующейся системе привело к структуре, с точностью до мелких детaлей совпaдaющей со структурой экосистем, определенной в экологии эмпирически. Это является дополнительным подтверждением необходимости переориентaции техносферы нa биологические принципы функционировaния, свойственные именно экологическому типу рaзвития.

Выводы очевидны. Первый зaключaется в неизбежности переходa любой рaзвивaющейся мaтериaльной системы от экстенсивного пути рaзвития к интенсивному, a зaтем и экологическому. Сегодня по всем признaкaм мы нaходимся нa этaпе переходa к интенсивной модели, и несмотря нa все рaзговоры о постиндустриaльной эпохе, пройдет еще немaло времени до того моментa, когдa человечество зaмкнет циклы. Второй вывод отдaет нaлетом фaтaльности - с энерговещественной точки зрения любое рaзвитие огрaничено. Дaже если удaстся решить проблему термоядерного синтезa, то aссимиляционнaя способность среды все-рaвно не позволит человечеству рaзвивaться беспредельно и венцом его рaзвития по-прежнему будут зaмкнутые энерговещественные циклы.

Ознaчaет ли это конец истории? Безусловно нет, и здесь будет уместнa следующaя эволюционнaя aнaлогия. При формировaнии биосферы вся солнечнaя энергия внaчaле шлa нa увеличение биомaссы. Когдa же циклы зaмкнулись и биомaссa плaнеты стaбилизировaлaсь, стaло можно вести речь о том, что вся поступaющaя энергия прaктически целиком преврaщaлaсь в информaцию - рaзнообрaзие биоты, способов ее существовaния, первичных нaвыков, позже - непосредственно в человеческие знaния. То есть суть экологического пути рaзвития - опосредовaнaя трaнсформaция энергии в информaцию, знaния. Прогресс и дaльнейшее рaзвитие безусловно будут, но в принципиaльно иной – интеллектуальной сфере. Переход к этому этaпу рaзвития ознaменуется мaсштaбным мировым кризисом, ниспровергaющим сложившуюся систему мaтериaльных ценностей и утверждaющим в кaчестве основной ценности внутренний мир человекa, его индивидуaльный и коллективный рaзум. Все мaтериaльное, о чем тaк печется современный человек, будет игрaть вспомогaтельную роль, кaкую выполняет, нaпример, электричество для компьютерa, нa первый плaн выйдет информaция, знaния, смысл .

2. Неравновесные процессы и открытые системы

Кристаллы - упорядоченные равновесные структуры. В природе существуют и иные упорядоченные структуры, которые возникают в диссипативных системах. Диссипативная система является подсистемой больших неравновесных термодинамических систем.

Циркуляционные потоки в атмосфере и океанах Земли - под действием солнечного излучения - самоорганизация на Земле.


2. Ячейки Бенара - самоорганизация в физических явлениях

3. Химическая реакция Белоусова-Жаботинского - самоорганизация в химии

Под воздействием BrO3-, H+ в растворе происходят реакции:

Ce3+-> Сe4+ - окисление, цвет раствора голубой.

Сe4+ -> Сe3+ - восстановление, цвет раствора красный. Таким образом, имеется автоколебательный процесс изменения концентрации четырехвалентного церия с одновременным варьированием цвета

На поверхности раствора появляются поверхностные волны (химические спиральные волны)

4. Динамика популяций хищников и их жертв - самоорганизация в биологии.

Неравновесные процессы с возникновением в системах упорядоченных структур - диссипативных структур. Самоорганизация не связана с особым классом веществ, но она существует лишь в специальных системах, удовлетворяющих условиям:

а) открытые системы, т.е. открытые для притока энергии (вещества) извне;

б) макроскопические системы, т.е. системы описываются нелинейными уравнениями.

Следует также отметить, что диссипативные структуры являются устойчивыми образованиями, и их устойчивость определяется устойчивостью внешнего источника энергии .

3. Самоорганизация диссипативных структур

Самоорганизующимися процессами называют процессы, при которых возникают более сложные и более совершенные структуры. Это определение позволяет выделить самоорганизацию как один из возможных путей эволюции и отнести этот процесс к условиям, далеким от термодинамического равновесия. Эволюция может приводить и к деградации. Так, в закрытых системах, когда движущая сила процесса - стремление системы к минимуму свободной энергии, достигаемое равновесное состояние является наиболее хаотическим состоянием среды. Если же эволюция системы контролируется минимумом производства энтропии (неравновесные условия), происходит самоорганизация динамических структур, названных диссипативными. К диссипативным структурам относятся пространственные, временные или пространственно-временные структуры, которые могут возникать вдали от равновесия в нелинейной области, если параметры системы превышают критические значения. Диссипативные структуры могут перейти в состояние термодинамического равновесия только путем скачка (в результате неравновесного фазового перехода). Основные их свойства следующие:

они образуются в открытых системах, далеких от термодинамического равновесия, в результате флуктуации до макроскопического уровня;

их самоорганизация происходит в результате экспорта энтропии;

возникновение пространственного или временного порядка аналогично фазовому переходу;

переход в упорядоченное состояние диссипативной системы происходит в результате неустойчивости предыдущего неупорядоченного состояния при критическом значении некоторого параметра, отвечающем точке бифуркации;

в точке бифуркации невозможно предсказать, в каком направлении будет развиваться система, станет ли состояние хаотическим или она перейдет на новый, более высокий уровень упорядоченности.

Таким образом, диссипативные структуры - это высокоупорядоченные самоорганизующиеся образования в системах, далеких от равновесия, обладающие определенной формой и характерными пространственно-временными размерами, они устойчивы относительно малых возмущений. Важнейшие характеристики диссипативных структур - время жизни, область локализации и фрактальная размерность. Диссипативные структуры отличаются от равновесных тем, что для своего существования они требуют постоянного притока энергии извне, так как по определению, их самоорганизация связана с обменом энергией и веществом с окружающей средой.

Под диссипативной системой понимают систему, полная механическая энергия которой при движении убывает, переходя в другие формы, например в тепло. Соответственно диссипация энергии есть переход части энергии упорядоченного процесса в энергию неупорядоченного процесса, а в конечном итоге - в теплоту.

Процесс перехода "устойчивость-неустойчивость-устойчивость" следующий. Первоначально устойчивая диссипативная структура, достигая в процессе эволюции системы порога неустойчивости, начинает осциллировать, а возникающие в ней флуктуации приводят к самоорганизации новой, более устойчивой на данном иерархическом уровне диссипативной структуры.

Одним из типичных примеров самоорганизации диссипативных структур является переход ламинарного течения жидкости в турбулентное. До недавнего времени он отождествлялся с переходом к хаосу.

Таким образом, гидродинамическая неустойчивость при переходе ламинарного течения в турбулентное связана с образованием динамических диссипативных структур в виде вихрей .


Разработкой теории самоорганизации занимаются несколько научных дисциплин:

1. Термодинамика неравновесных (открытых) систем.

2. Синергетика.

Образование упорядоченных структур, происходящие не за счет действия внешних сил (факторов), а в результате внутренней перестройки системы, называется самоорганизацией. Самоорганизация - фундаментальное понятие, указывающее на развитие в направлении от менее сложных объектов к более сложным и упорядоченным формам организации вещества.

В каждом конкретном случае самоорганизация проявляется по-разному, это зависит от сложности и природы изучаемой системы.

Процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду.

Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникшей ранее в результате процесса организации.


1. Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2004.

2. Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2006.

3. Моисеев Н. Экология М.: Молодая гвардия, 1988.

4. Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984.

5. Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966.


Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2006. С. 122.

Моисеев Н. Экология М.: Молодая гвардия, 1988. С. 141.

Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966. С. 104-105.

Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2004

Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984. С. 180.

Рассмотренные выше организационные процессы, ведущие к преобразованию систем, могут осуществляться в двух формах: 1) целенаправленной сознательной деятельности человека - организации и 2) самоорганизации.

Выделяются три типа процессов самоорганизации:

· процессы, благодаря которым происходит самозарождение организационной формы, т. е. возникновение качественно нового целостного формирования из некоторой совокупности объектов определенного уровня;

· процессы, поддерживающие определенный уровень организационной формы при изменении внешних и внутренних условий ее функционирования;

· процессы совершенствования и саморазвития организационной формы, которые способны накапливать и использовать прошлый опыт.

Интенсивно проблема самоорганизации стала разрабатываться в кибернетике, в частности, в работах Н. Винера, Дж. фон Неймана, У. Эшби и др., где неразрывно связывалась со свойством управления и акцент делался на проблеме организации. Нетрудно убедиться, что самоорганизация здесь явно или неявно предполагает наличие либо внешнего агента (человека-организатора), либо цели, которая задается самоорганизующейся системе опять-таки человеком.

Однако только в синергетике разработка проблемы самоорганизации вносит новый вклад в развитие теории организации, рассматривая вопрос об организации вне связи с управлением и акцентируя внимание больше на проблеме связи понятий организации и самоорганизации, порядка и беспорядка, энтропии и информации.

Эта точка зрения, на наш взгляд, более продуктивна, так как раскрывая содержание понятия «самоорганизация», мы тем самым автоматически обогащаем понятие «организация». Организацию можно понять и определить через самоорганизацию, но не в коей мере не наоборот. Вполне возможно, что многочисленные попытки построения общей теории организации до сих пор остаются тщетными, в том числе из-за недостаточного внимания, проявляемого к изучению феномена самоорганизации. Синергетика ставит перед собой задачу не только изучения данного феномена и задачу максимизации (минимизации) синергетических эффектов, но и управления процессами самоорганизации. Существующий термин «управляемое развитие» должен быть заменен термином «направляемое развитие».

Существует точка зрения, согласно которой в формировании организационных форм роль внешней среды доминирует, т. е. само возникновение материальных структур почти полностью определяется внешними факторами, поэтому рассматривать самоорганизацию лишь как чисто внутреннее свойство системы было бы в принципе неверно: самоорганизация невозможна без внешней среды.

Самоорганизация не является каким-то локальным процессом, протекающим независимо от внешней среды. Наряду с фактом очевидной связи со всей внешней пространственно-временной средой самоорганизация материальных систем зависит от предыдущей истории. Но хотя самоорганизация и зависит от типа внешней среды, от истории развития и возможных форм ее реализации, хотя внешние условия играют важную роль в выборе поведения материальных систем, невозможно объяснить последнее исходя только из внешних факторов как определяющих детерминантов.

Раскрытие принципов самоорганизации существенно зависит от понимания и адекватного определения понятия самоорганизации. Как следует из литературных источников, самоорганизация - это понятие для обозначения процесса структурообразования в результате действия внутренних детерминантов при специфических внешних условиях. Причем причиной возникновения структур являются внутренние детерминанты, внутренние свойства системы, внешние же условия (факторы) - всего лишь повод.

Таким образом, многие авторы при определении понятия самоорганизации совершенно верно указывают в качестве определяющих внутренние причины, однако при этом игнорируют (или опускают как нечто несущественное) факт открытости системы для внешних инициирующих воздействий. Вместе с тем некоторые философы отдают предпочтение внешним детерминантам, т. е. считают, что роль внешней среды доминирует. В предложенном определении понятия самоорганизации, как нетрудно увидеть, наблюдается сближение двух точек зрения, но именно такой подход к пониманию самоорганизации является наиболее перспективным.

Самоорганизация в синергетическом понимании - это процесс спонтанного образования высокоупорядоченных по времени и (или) в пространстве устойчивых структур в гетерогенных открытых неравновесных динамических системах любой природы вследствие внутрисистемных закономерностей при индуцировании внешними воздействиями.

Понятие самоорганизации тесно связано с более фундаментальными понятиями порядка и беспорядка.

Проблема порядок-беспорядок привлекает внимание исследователей самых различных областей современной науки. Эти понятия впервые возникшие в физике, используются для изучения широкого круга явлений не только в естественных, технических, но и в общественных науках, что говорит о необходимости последовательно развивать и уточнять представление о порядке и беспорядке в структуре материи.

Понятия «порядок» и «беспорядок» наряду с понятием самоорганизации являются ключевыми в синергетике, исследующей не только процессы образования устойчивых макроскопических структур в сложных неравновесных открытых динамических системах любой природы как во времени, так и в пространстве, но и обратное явление - переход от упорядоченного состояния к хаосу. Самоорганизация и хаос или, в более общем смысле, порядок и беспорядок - это основные структурные характеристики материи .

Системный подход к исследованию организации в современном его толковании тесно связан с самоуправляемыми процессами систем. Социально-экономические системы в большинстве случаев неравновесны, что спонтанно обеспечивает развитие эффекта самоорганизации человеческого фактора и соответственно самоуправления.

Самоорганизация - это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Процессы самоорганизации могут иметь место только в системах, обладающих высоким уровнем сложности и большим количеством элементов, связи между которыми имеют не жесткий, а вероятностный характер. Свойства самоорганизации обнаруживают объекты различной природы: клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив и т.д. Процессы самоорганизации выражаются в перестройке существующих и образовании новых связей между элементами системы. Отличительная особенность процессов самоорганизации - их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы, протекающие при взаимодействии системы с окружающей средой, в той или иной мере автономны, относительно независимы от среды.

Различают три типа процессов самоорганизации.

Первый - это самозарождение организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями.

Второй тип - процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий ее функционирования.

Третий тип процессов самоорганизации связан с развитием систем, которые способны накапливать и использовать прошлый опыт.

Организационная наука, использующая системную методологию, предполагает изучение и учет опыта организационной деятельности в различных типах организации - экономических, государственных, военных и т.п.

Рассмотрение организации как системы позволяет существенно обогатить и разнообразить методологический инструментарий исследования организационных отношений.

Пользуясь этим методом, можно посмотреть на одну и ту же организацию одновременно с трех сторон:

  • o организация создается как инструмент решения общественных задач, средство достижения целей. С этой точки зрения на первый план выступают организационные цели и функции, эффективность результатов, мотивы и стимулы персонала и т.д.;
  • o организация складывается как человеческая общность, специфическая социальная среда. С такой позиции организация выглядит как совокупность социальных групп, статусов, норм, отношений лидерства, сплоченности - конфликтности и т.д.;
  • o организация может быть рассмотрена в качестве безличной структуры связей и норм. Предметом анализа организации в этом смысле выступают ее организационные связи, построенные иерархически, а также ее связи с внешней средой. Основные проблемы здесь - равновесие, самоуправление, разделение труда, управляемость и т.д.

Разумеется, все эти свойства организации имеют лишь относительную самостоятельность, между ними нет резких граней, они постоянно переходят одно в другое. Более того, любые элементы, процессы и проблемы организации должны быть рассмотрены в каждом из этих трех измерений, так как они выступают здесь в различных качествах. Например, индивид в организации есть одновременно работник, личность и элемент системы. Организационное подразделение есть функциональная единица, малая группа и подсистема.

Очевидно, что перечисленные роли организации задают ей неодинаковые, во многом противоречивые ориентации. Однако пока организация нормально функционирует, она остается в равновесии. Это равновесие между ролями организации подвижно за счет постоянных смещений в сторону одной из них, причем новое равновесие достигается через изменения, развитие организации как целого, как системы. Именно противоречивое соотношение этих ориентации и составляет суть и основу организационных проблем.

Самоорганизация в самом общем понимании означает самодвижение, самоструктурирование, самодетерминацию (самовозникно- вение) природных, естественных систем и процессов. Обычно в качестве примера, иллюстрирующего предложенную схему самоорганизации, приводят процесс кристаллизации. «На входе» - хаотично распределенные в жидкости атомы, «на выходе» - кристалл, т.е. система объединенных связями атомов, образующих однозначную стабильную структуру. Процесс формирования системы-кристалла происходит с абсолютным выполнением условия без рулевого (без управления) - его структура определяется исключительно свойствами элементов-атомов, а процесс кристаллизации начинается спонтанно и проходит без какого-либо внешнего формообразующего вмешательства при определенных благоприятных условиях. Самоорганизацию кристаллов можно рассматривать как частный случай самопроизвольного образования систем из атомов химических элементов, т.е. все химические реакции, в результате которых образуются молекулы (структурированные системы атомов), можно рассматривать как примеры чистой самоорганизации.

Самоорганизация материальных систем в XXI в. становится одной из центральных проблем науки, решение которой берет на себя научная дисциплина - синергетика. Закономерности явлений самоорганизации, открываемые синергетикой, распространяются на все материальные системы.

Г. Хакен и И. Пригожин делают акцент прежде всего на процессуальное™ материальных систем. Все процессы, протекающие в различных материальных системах, как уже говорилось, могут быть разделены на циклические и хаотические. Основными характеристиками циклических процессов являются равновесность и линейность; главными характеристиками хаотических процессов, в которых проявляется способность к самоорганизации и возникновению диссипативных, т.е. спонтанно возникающих, структур, - неравновес- ность и нелинейность. Природные процессы принципиально неравновесны и нелинейны; именно такие процессы синергетика рассматривает в качестве предмета своего изучения.

Постулирование универсальности неравновесных и нелинейных процессов позволяет ей претендовать на статус общеметодологической дисциплины, сопоставимой с теорией систем и кибернетикой .

Возникновение синергетики знаменует начало новой научной революции, поскольку она не просто вводит новую систему понятий, но меняет стратегию научного познания, способствует выработке принципиально новой научной картины мира и ведет к новой интерпретации многих фундаментальных принципов познания. Суть предлагаемых изменений в стратегии научного познания, по мнению основателей новой науки, заключается в следующем. Традиционная наука в изучении мира делала акцент на замкнутых системах, обращая особое внимание на устойчивость, порядок, однородность. Синергетический подход акцентирует внимание ученых на открытых системах, неупорядоченности, неустойчивости, неравновесности, нелинейных отношениях.

По мнению И. Пригожина, синергетический взгляд на мир ведет к революционным изменениям в нашем понимании случайности и необходимости, необратимости природных процессов, позволяет дать принципиально новое истолкование энтропии (меры беспорядка) и радикально меняет наше представление о времени.

Если предполагается, что именно неравновесность является естественным состоянием всех процессов действительности, то естественным оказывается и стремление к самоорганизации как свойству, характерному для неравновесных процессов .

Можно утверждать, что именно синергетика в настоящее время является наиболее общей теорией самоорганизации. Она формулирует общие принципы самоорганизации, действительные для всех структурных уровней.

Проблемность позиции прошлых лет состоит в том, что мы хотели, чтобы ПС вела себя так, как живая система, но продолжали обращаться с ней, как с машиной. Настало время менять организационные представления. Организация отныне - это живая, действующая система. Все живые системы имеют такое свойство, как самоорганизация, т.е. свойство поддержания себя и совершенствования в необходимом порядке, они могут осмысленно измениться, они строят и перестраивают себя в адаптивные модели и структуры без дополнительно вводимых планов и какого-либо вмешательства. Самоорганизующиеся системы обладают способностью к непрерывному реагированию на перемены, что желал бы для себя каждый руководитель. В таких системах перемены являются движущей силой, а не угрозой. Экспериментирование выступает как норма.

Изучением систем, состоящих из большого числа частей, взаимодействующих между собой тем или иным способом, занимались и продолжают заниматься многие науки. Одни из них предпочитают делить систему на подсистемы, чтобы, изучая отдельные части, пытаться строить более или менее правдоподобные гипотезы о структуре или функционировании системы как целого. Другие изучают систему как единое целое, предавая забвению тонко настроенное взаимодействие частей. И тот, и другой подходы обладают своими преимуществами и недостатками.

Синергетика наводит мост через пропасть, отделяющую первый редукционистский подход от второго холистического. К тому же в синергетике, своего рода соединительном звене между этими двумя экстремистскими подходами, рассмотрение происходит на промежуточном уровне, и макроскопические проявления процессов, происходящих на микроскопическом уровне, возникают «сами собой», вследствие самоорганизации, без руководящей и направляющей «руки», действующей извне системы. Это обстоятельство имеет настолько существенное значение, что синергетику не зря определяют как науку о самоорганизации.

Редукционистский подход - это упрощение, сведение сложного к более простому, обозримому, понимаемому, более доступному для анализа, с основным акцентом на деталях (частях системы), сопряженное с необходимостью обработки, зачастую непосильной для наблюдателя, даже вооруженного сверхсовременной вычислительной техникой, объема информации о подсистемах, их структуре, функционировании и взаимодействии. Поэтому при этом подходе осуществляется сжатие информации до разумных пределов различными способами. Вместо большого числа факторов, от которых зависит состояние системы (так называемых компонент вектора состояния), синергетика рассматривает немногочисленные параметры порядка, от которых зависят компоненты вектора состояния системы и которые, в свою очередь, влияют на параметры порядка.

В переходе от компонент вектора состояния к немногочисленным параметрам порядка заключен смысл одного из основополагающих принципов синергетики - так называемого принципа подчинения (компонент вектора состояния параметрам порядка). Обратная зависимость параметров порядка от компонент вектора состояния приводит к возникновению того, что принято называть круговой причинностью.

Существование циклической и хаотической форм динамического развития социально-экономических систем представляет собой тот механизм, при помощи которого происходит его самоорганизация и организация.

Синергетика занимается исследованием процессов самоорганизации в системах разной природы, динамикой взаимопереходов через границу «порядок-хаос».

В соответствии с базовыми положениями синергетики ее отличительной особенностью является стихийная самоорганизация, а истинный смысл возникающих при этом кооперативных процессов заключен во внутренних причинах во многом непредсказуемой самоорганизации систем. Это причинный способ самоорганизации , открытие которого позволило Г. Хакену, И. Пригожину и представителям их школ добиться выдающихся результатов в исследовании кооперативных явлений в системах различной природы.

Однако помимо причинного в нелинейных системах следует различать и целевой (направленный) способ самоорганизации.

Самоорганизация - способность тех или иных систем к саморазвитию, самозарождению, с использованием при этом не только и не столько притока энергии, информации, вещества извне, сколько возможностей, заложенных внутри системы, т.е. своего внутреннего потенциала.

Система называется самоорганизующейся, если она без специфического воздействия извне обретает какую-либо пространственную, временную или функциональную структуру. Под специфическим воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизации система испытывает неспецифическое воздействие .

Сказанное можно дополнить следующим определением: «Самоорганизация - целенаправленный процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы».

Рассмотрим содержание развернутого определения самоорганизации:

  • объектами исследования являются открытые системы, характеризуемые интенсивным обменом веществом и энергией между подсистемами и между системой с ее окружением;
  • внешняя среда - совокупность составляющих ее (среду) объектов, находящихся в динамике. Взаимодействие исследуемых объектов в среде характеризуется как контактное взаимодействие;
  • различаются процессы организации и самоорганизации. Общим признаком для них является возрастание порядка вследствие протекания процессов. Организация в отличие от самоорганизации может характеризоваться, например, образованием однородных стабильных статических структур;
  • результатом самоорганизации становится возникновение, взаимодействие, а также взаимоСОдействие (например, кооперация) и, возможно, регенерация (восстановление, возрождение) динамических объектов (подсистем), более сложных в информационном смысле, чем элементы (объекты) среды, из которых они возникают;
  • направленность процессов самоорганизации обусловлена внутренними свойствами объектов (подсистем) в их индивидуальном и коллективном проявлении, а также воздействиями со стороны среды, в которой находится система;
  • поведение элементов (подсистем) и системы в целом существенным образом характеризуется спонтанностью - акты поведения не являются строго детерминированными;
  • процессы самоорганизации происходят в среде наряду с другими процессами, в частности противоположной направленности, и могут в отдельные фазы существования системы как преобладать над последними (прогресс), так и уступать им (регресс). При этом система в целом может иметь устойчивую тенденцию или претерпевать колебания к эволюции либо деградации и распаду. Самоорганизация может иметь в своей основе процесс преобразования или распада структуры, возникший ранее в результате процесса организации. Например, при переходе к командной форме организации труда старые структуры распадаются. Приведенное развернутое определение является необходимым шагом на пути к конкретизации содержания, которое относится к синергетике, и выработке критериев для создания самоорганизующейся среды.

Мы живем в мире, по сути, самоорганизованном, что очень четко просматривается во время катастроф, когда люди и ресурсы организуются для скоординированной и целевой работы без предварительного планирования. Такое произвольное поведение позволяет быстро и эффективно оказывать помощь на месте происшествия задолго до появления официальных служб по оказанию помощи.

Вхождение сложной системы в режим порядка - это уникальная способность живой системы строить, перестраивать и совершенствоваться. Чтобы этот процесс был постоянным и эффективным, отдельные индивиды должны обладать информацией о состоянии объекта, которая позволяет им согласовать свою работу с этой информацией. Так члены группы налаживают взаимодействие между собой. Каждый определяет свое поведение на основании полученной информации от наблюдения за ближними и на основании знания конечной цели. Из подобных элементарных условий возникает работающее общество. В этом случае самоорганизация образуется по принципу от частного взаимодействия к глобальному.

Ничто не является запланированным, непредсказуемые формы поведения возникают из взаимонаблюдения. Стаи птиц, косяки рыб, рой насекомых, пробки на дорогах - все это выглядит хорошо синхронизированным и высокоупорядоченным. Эти потоки не управляются никем, но здесь действуют несколько определенных правил, которые управляют согласованной реакцией. В этих примерах самоорганизации в природе многое нас поражает.

Могут ли социально-экономические системы быть более самоор- ганизованными? Каковы условия для самоорганизации?

Сложные системы возникают из элементарных условий. Элементарная часть (человек, предметы и средства труда) входит в состав более крупной подсистемы. Поэтому сложные организации могут основываться на изначальной простоте.

В дальнейшем организации принимают различные формы, но все они берут начало от примитивных условий. Объединение элементарных частей приводит к усложнению систем, к их развитию. Совокупность взаимосвязанных элементарных частей со временем приобретает форму, структуру. Информация фиксируется, перерабатывается, передается. Из этой бесхитростной динамики появляются разнообразные по своей структуре организации.

Способность системы к организационным изменениям определяется как освоение фирмой новых идей и моделей поведения. В этом случае организационные изменения вносят в систему беспорядок, хаос. Не внеся в организацию беспорядок, нельзя заставить живую систему меняться.

Основу явлений самоорганизации составляют процессы формирования порядка и хаоса. И порядок, и хаос формируются как результат проявления законов самоорганизации.

Самоорганизация является ключевым понятием для понимания сущности синергетики. Синергетику и определяют как науку о самоорганизации или, более развернуто, о самопроизвольном возникновении и самоподдержании упорядоченных временных и пространственных структур в открытых нелинейных системах различной природы. Таким образом, синергетика - теория самоорганизующихся динамических, открытых, нелинейных систем.

На основе многочисленных исследований были сформулированы условия самоорганизации систем (табл. 3.2):

Таблица 3.2

Самоорганизация систем в природе и обществе

Признаки

Самоорганизация

Способность систем к саморазвитию, самозарождению с использованием при этом не только и не столько притока энергии, информации, вещества извне, сколько возможностей, заложенных внутри системы, т.е. своего внутреннего потенциала

Механизм самоорганизации

Существование циклической и хаотической форм динамического развития социально-экономических систем представляет собой тот механизм, при помощи которого происходит его самоорганизация и организация

Условия самоорганизации

  • Открытость систем (открытая система постоянно осуществляет ввод и вывод вещества, энергии и информации в среду);
  • нелинейность системы, (переход системы из одного устойчивого состояния в другое);
  • неравновесность и необратимость процесса развития систем (неоднородность свойств и характеристик в частях системы, неравновесные системы необратимы);
  • продолжительная длительность процесса эволюции системы (результаты деятельности системы проявляются через такие критерии, как производство, рынок, деньги, только в течение длительного времени);
  • целенаправленная организация, согласованное действие элементов системы, адаптированное на воздействие внешней среды

Основа самоорганизации

Процессы формирования порядка и хаоса

открытость систем. Открытой называют систему, которая постоянно осуществляет ввод и вывод вещества, энергии и информации в среду. При этом надо учитывать, что открытость - понятие относительное и что «абсолютную открытость», как и «абсолютную закрытость», трудно себе представить. Поэтому всегда, когда речь идет об открытости или закрытости любой системы, подразумевается определенная преобладающая тенденция, а если бы появилась возможность существования абсолютно открытой системы, то она утеряла бы свою целостность.

Условие открытости для самоорганизации системы является необходимым, но недостаточным;

нелинейность систем. Синергетика изучает нелинейные процессы. Это означает, что возможен переход системы из одного устойчивого состояния в другое.

Итак, самоорганизующаяся система способна сама регулировать, поддерживать, изменять свое состояние благодаря открытости и нелинейности;

  • неравновесность и необратимость процесса эволюции и развития систем, который протекает с изменениями энтропии. Объясняется это тем, что равновесный процесс протекает медленно через весьма близкие друг другу равновесные состояния, что не способствует эволюции системы, так как энтропия остается неизменной. В неравновесных процессах система проходит через неравновесные состояния, характеризующиеся неоднородностью свойств и характеристик в частях системы. Неравновесные процессы необратимы;
  • продолжительность процесса эволюции системы. Это условие самоорганизации обусловлено тем, что результаты деятельности системы, например коллектива предприятия, проявляются через такие критерии, как производство, рынок, деньги, только в течение длительного времени.
  • целенаправленная организация, согласованное действие элементов системы, адаптированное на воздействие внешней среды.

Случайные отклонения параметров развития от их среднего значения (флуктуации) накапливаются и постепенно приводят систему в неустойчивое состояние. Открытость, неравновесность, необратимость и нелинейность систем может привести к разрушению прежней структуры (дезорганизации) и созданию нового спонтанного пространственно-временного порядка (самоорганизации).

Самоорганизующиеся системы обладают способностью оптимальным образом изменять свои параметрические характеристики, структуру функциональных отношений в целом в соответствии с изменяющимися внешними условиями и так, чтобы энтропия системы или уменьшалась, или оставалась неизменной, либо, в худшем случае, росла медленно. Они совершенствуют функциональные отношения между составляющими их частями, другими системами и внешней средой.

В самоорганизующихся социально-экономических системах процесс развития спонтанно направлен на повышение производительности труда и качества продукции, на повышение результативности производства при одновременном снижении уровня расходования энергии и вещества.

Динамика самоорганизующихся систем на длительную перспективу труднопредсказуема. Однако в их развитии, как бы ни менялись условия, функциональные процессы всегда направлены на самосохранение, самовоспроизведение, улучшение режима развития, уменьшение энтропии.

Для самоорганизующихся систем на любой наперед заданный момент времени уровень их организованности, упорядоченности повышается при заданных условиях развития.

Самоорганизующиеся системы развиваются за счет действия двух типов потоков вещества, энергии и информации противоположной созидательной направленности: поток вещества и энергии, формирующий систему, всегда порождает поток обратного действия. Более того, системы не могут нормально развиваться в отсутствие дезорганизующего потока. Их диалектическое противоречивое единство и обусловливает формирование и развитие саморегулирующихся целостностей. Этим же единством определяется формирование новых путей развития системы как результата взаимодействия этих разнонаправленных потоков.

Предпринимательские структуры, осуществляющие деятельность путем самоорганизации, саморегулирования проявляют большую стойкость, выживаемость и рентабельность, чем организации, регулируемые извне.

Частная фирма по своей природе является саморегулируемой системой. Наличие автоматически действующего механизма саморегулирования на уровне каждой фирмы составляет основу механизма саморегулирования экономики в целом. Государственное же регулирование лишь дополняет его. При этом если к системам, способным к саморегуляции, постоянно применять административно-командные методы - это приведет к потере потенциала и невозможности эффективного развития.

Если в организации царит однородность, равновесие, покой, то там нет подлинного развития. Длительное пребывание организации в таком состоянии ведет к дезорганизации и разрушению.

Чем больше у системы степеней свободы, тем более она способна к самоорганизации, самоусложнению и саморазвитию, повышению уровня упорядоченности и эффективности ее функционирования. В этом выражается значение формулы «порядок через хаос».

В любой ПС существует определенная доля непредсказуемости, доля энтропии. В процессе самоорганизации происходит непрерывное разрушение существующих структур (станочного парка, кадрового состава, применяемых материалов, выпускаемой продукции и т.п.), что приводит к возникновению новых. Темпы процесса разрушения старых структур имеют тенденцию к ускорению. Первичным в этом процессе является ускорение темпов обновления номенклатуры выпускаемой продукции. Многие предприятия за несколько лет полностью обновляют свой портфель заказов. Высокие темпы обновления номенклатуры выпускаемой продукции требуют адаптации других структурных образований в еще более ускоренном, опережающем темпе. Это требование относится, например, к структуре станочного парка, применяемым материалам, квалификации кадров и др.

Процесс эволюции состоит как в совершенствовании новых структур, так и (в большей степени) в замене стабильных структур более стабильными, т.е. более приспособленными к изменившимся условиям.

Появление новых структур - следствие стохастического начала. Закрепление новых структур происходит вследствие их конкуренции, т.е. отбора. Таким образом, поддержание стабильности экономической системы происходит не столько из-за стабильности элементов системы, сколько из-за выбывания менее совершенных элементов и их замещения новыми, возникшими в процессе самоорганизации. Замена одних элементов системы другими, более приспособленными к изменяющейся обстановке, происходит непрерывно.

Среди этих новых форм организации появляются более сложные, которые требуют для своего описания больших объемов информации: рост разнообразия сопровождается и ростом сложности.

Процесс самоорганизации, несмотря на его стихийность, обладает направленностью: растут разнообразие форм организации, сложность структур, объем информации, с помощью которой они могут быть описаны. Рынок выступает в качестве сложнейшей иерархически организованной системы непрерывных отбраковок старых и замещений новыми, непрерывно рождающимися структурами.

Таким образом, в последние годы наряду с организацией и управлением все большую роль и значение приобретает самоорганизация, точнее, взаимодействие ее механизма с механизмами организации и управления.

Различают три типа процессов самоорганизации:

1)процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями (например, генезис многоклеточных организмов из одноклеточных);

2)процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий ее функционирования (здесь исследуются главным образом гомеостатические механизмы, в частности, механизмы, действующие по принципу отрицательной обратной связи);

3)процессы, связанные с совершенствованием и саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт.

Специальное исследование проблем самоорганизации впервые было начато в кибернетике. Термин «самоорганизующая система» ввел английский кибернетик У.Р. Эшби в 1947 г. Широкое изучение самоорганизации началось в конце 50-х гг. XX в. в целях отыскания новых принципов построения технических устройств, способных моделировать различные стороны интеллектуальной деятельности человека. Исследование проблем самоорганизации стало одним из основных путей проникновения идей и методов кибернетики, теории информации, теории систем, биологического и системного познания.

В 70-е гг. XX в. начала активно развиваться теория сложных самоорганизующихся систем. Результаты исследований в области нелинейного (порядка выше второго) математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании – синергетики. Как и кибернетика, синергетика – это некоторый междисциплинарный подход. В отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения.

Мир нелинейных самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем «нелинейный мир» сложнее моделировать. Как правило, для приближенного решения большинства возникающих нелинейных уравнений требуется сочетание современных аналитических методов с вычислительными экспериментами. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.д.

Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики – существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций. Такие закономерности существуют. Это открытость, нелинейность, диссипативность.

Конец работы -

Эта тема принадлежит разделу:

Концепции современного естествознания

Государственное образовательное учреждение.. Высшего профессионального образования.. Тольяттинский государственный университет сервиса ТГУС..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Естественно-научная и гуманитарная культура. Научый метод
Под культурой в самом широком смысле принято понимать все то, что создано человечеством в ходе его исторического развития.Иначе говоря, культура – это совокупность созданных

Научный метод
Исследование феномена история науки непременно приводит к конкретным личностям – ученым, сделавшими открытия, изобретения, являющиеся «посредниками» в инновационной среде развития ц

Концепции строения материи и развития материального мира
Как известно, первый период становления естествознания относится к VII–IV вв. до н.э. и связан с греческой натурфилософией. В течение этого периода вырабатываются общие точки зрения

Корпускулярно-волновой дуализм
По-иному шла история развития представлений о природе света и оптических явлениях. Напомним, что Аристотель считал, что свет – это движение волн, распространяющихся в некоторой непр

Порядок и беспорядок в природе, детерминированный хаос
Обращая внимание на существующий порядок в природе, мы часто в качестве примера указываем на кристаллы, в кристаллической решетке которых строго чередуются ионы вещества (например,

Структурные уровни организации материи
В настоящее время принято единую Природу для удобства делить на три структурных уровня – микро-, макро- и мегамир. Естест­венными, хотя отчасти и субъективными, признаками деления я

Микромир
Атомная физика.Еще древние греки Левкипп и Демокрит выдвинули гениальную догадку, что вещество состоит из мельчайших частиц – атомов. Научные основы атомно-молекулярно

Макромир
От микромира к макромиру.Теория строения атома дала химии ключ к познанию сущности химических реакций и механизма образований химических соединений – более слож

Мегамир
Объектами мегамира являются тела космического масштаба – кометы, метеориты, астероиды (малые планеты), планеты, планетные пстемы, Солнечная система, звезды (нейтронные, белые и желт

Пространство и время
Пространство и время – категории, обозначающие основные фундаментальные формы существования материи. Пространство выражает порядок существования отдельных объектов, время – порядок см

Единство и многообразие свойств пространства и времени
Поскольку пространство и время неотделимы от материи, правильнее было бы говорить о пространственно-временных свойствах и отношениях материальных систем. Но при позна­нии пространства и времени уче

Принцип причинности
Классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние

Стрела времени
На существование парадокса времени было обращено внимание почти одновременно с естественнонаучной и философской точек зрения в конце XIX века. В работах философа Анри Бергсона вр

Пространство и время в греческой натурфилософии
Наиболее видные представители античного естествознания – Демокрит и Аристотель – высказали следующие суждения о пространстве и времени. Демокрит считал, что все природное многообразие сост

Пространство и время в специальной теории относительности (СТО)
В специальной теории относительности А. Эйнштейна выявилась взаимозависимость пространственных и временных характеристик объектов, а также их зависимость от скорости движения относительно определен

Пространство и время в общей теории относительности (ОТО)
Еще более сложную связь, по сравнению с СТО, между пространством и временем, с одной стороны, и движением и материей (массой вещества) – с другой, была установлена А. Эйнштейном в рамках созданной

Пространство и время в физике микромира
Еще более углубились представления о пространстве и времени в связи с изучением микромира квантовой механикой и квантовой теорией поля, выявившими тесную связь структуры пространства-времени с мате

Современные взгляды на пространство и время
Ранее мы выяснили, какие из свойств пространства и времени являются универсальными (всеобщими), а какие – специфическими (их всеобщность не доказана). Отнесение к специфическим хара

Специальная теория относительности
После создания электродинамики, доказавшей существование в природе еще одного вида материи – электромагнитного поля, которое математически описывается системой уравнений Максвелла,

Общая теория относительности
В СТО законы формулируются для инерциальных систем, движущихся с постоянной скоростью. В ОТО рассматриваются любые системы отсчета, в том числе и движущиеся с ускорением. Таким обра


2.6.1. Симметрия: понятие, формы и свойства Понятие симметрии. Как известно, в физике имеется целый ряд законов сохранения, например закон сохранения

Принципы симметрии и законы сохранения
Что такое симметрия? Слово это греческое и переводится как «соразмерность, пропорциональность, одинаковость в расположении частей». Часто проводятся параллели: симметрия и уравновеш

Диалектика симметрии и асимметрии
С давних времен симметрия форм, наблюдаемых в природе, производила на человека сильное впечатление. Он видел в симметрии порядок, гармонию, совершенство, вносимые всемогущим творцом

Концепции близкодействия и дальнодействия
Дальнодействие. После открытия закона всемирного тяготения И. Ньютоном, а затем закона Кулона, описывающего взаимодействие элек­трических заряженных тел, возник вопрос, почему

Фундаментальные типы взаимодействий
Согласно концепции близкодействия все взаимодействия между юлами (помимо прямого контакта между ними) осуществляются с помощью тех или иных полей (например, взаимодействие в теории

Дополнительности
Мы часто говорим о том или ином состоянии материи. Например, мы выделяем несколько агрегатных состояний вещества: твердое, жидкое, газообразное, плазма. Говорим о состояниях электромагнитного поля,

Принцип неопределенности
Используемые в квантовой механике волновые функции для описания микрочастиц дают возможность установить вероятность нахождения микрочастиц в том или ином месте пространства в соотве

Принцип дополнительности
Для описания микрообъектов Н. Бор сформулировал принципиальное положение квантовой механики – принцип дополнительности, который наиболее четко изложил в следующей форме:

Принцип суперпозиции
В физике при изучении линейных систем широко используется принцип суперпозиции. Принцип суперпозиции: общий результат воздействия на систему многих факторов равен сумме рез

Динамические и статистические закономерности в природе
Рассмотрим два типа физических явлений: механическое движе­ние тел и тепловые процессы. В первом случае движение тел подчиняется законам Ньютона, законам классической механики. Зако

Формы энергии
Энергия (от греч.– действие, деятельность) – общая ко­личественная мера движения и взаимодействия всех видов материи, Понятие «энергия» связывает воедино все явления природы.

Закон сохранения энергии для механических процессов
Одним из наиболее фундаментальных законов природы является закон сохранения энергии, согласно которому важнейшая физическая величина – энергия – сохраняется в изолированной системе.

Всеобщий закон сохранения и превращения энергии
Изучение процесса превращения теплоты в работу и обратно и установление механического эквивалента теплоты сыграло основную роль в открытии всеобщего закона сохранения и превращения

Закон сохранения энергии в термодинамике
Закон сохранения энергии сыграл решающую роль в создании новой научной теории – термодинамики. Опираясь на этот закон, был сделан ряд открытий в области электродинамики.

Понятие энтропии
Понятие энтропии исторически возникло при рассмотрении и изучении тепловых процессов и создании термодинамики. К мо­менту зарождения термодинамики в естествознании господствовала ме

Основные космологические теории эволюции Вселенной
Учение о мегамире как едином целом и всей охваченной астроно­мическими наблюдениями области Вселенной (Метагалактике) называется космологией. Вывод

Химические концепции описания природы
Химия – наука о веществах и процессах их превращения, сопровождающие изменением состава и структуры. Основанием химии выступает проблема получе

Развитие учения о составе вещества
Демокрит иЭпикурсчитали, что все тела состоят из атомов различной величины и формы, чем и объясняли различие тел. Аристотельи Эмпедоклвидимое разнообразие те

Развитие учения о структуре молекул
При взаимодействии атомов между ними может возникнуть химическая связь, приводящая к образованию многоатомной системы – молекулы, молекулярного иона или кристалла. Химическая связь

Энергетика химических процессов и систем
Химические реакции– взаимодействие между атомами и молекулами, приводящее к образованию новых веществ, отличных от исходных по химическому составу или строению. Химическ

Реакционная способность веществ
Химическая кинетика – раздел химии, изучающий закономерности протекания физико-химических процессов во времени и механизмы взаимодействия на атомно-молекуляр

Химическое равновесие. Принцип Ле Шателье
Многие химические реакции протекают таким образом, что исходные вещества целиком превращаются в продукты реакции или, как говорят, реакция идет до конца. Так, например, бертолетова соль при нагрева

Развитие представлений об эволюционной химии
Эволюционная химия рассматривает вопросы эволюционного развития и совершенствования химической формы материи, в том числе в процессах ее самоорганизации до перехода в биологическую

Внутреннее строение и история образования Земли
Земля, как и другие планеты, возникла из солнечного вещества. Документальными свидетелями допланетной стадии развития вещества и ранних этапов существования Земли служат соотношения

Внутреннее строение Земли
Главными методами изучения внутренних частей нашей планеты являются, в первую очередь, геофизические наблюдения за скоростью распространения сейсмических волн, образующихся при взрывах или землетря

История геологического строения Земли
Историю геологического строения Земли принято изображать в виде последовательно появляющихся друг за другом стадий или фаз. Отсчет геологического времени ведется от начала процесса

Современные концепции развития геосферных оболочек
4.2.1. Концепция глобальной геологической эволюции Земли Разработка концепции глобальной эволюции Земли позволила представить развитие геосферных об

История формирования геосферных оболочек
Рассмотрим в свете концепции глобальной эволюции Земли историю формирования основных геосферных оболочек. Этапы развития Земли с позиций концепции глобальной геоэво

Понятие литосферы
Литосфера – внешняя твердая оболочка Земли, которая включает всю земную кору и часть верхней мантии. Это особый слой толщиной порядка 100 км. Нижняя гр

Экологический функции литосферы
Обычно выделяют четыре экологические функции литосферы: ресурсную, геодинамическую, геофизическую и геохимическую. Ресурсная функция литосферы определя

Литосфера как абиотическая среда
В литосфере происходит множество процессов (сдвиги, сели, обвалы, эрозии и др.), имеющих целый ряд неблагоприятных экологических последствий в определенных регионах планеты, а иногд

Особенности биологического уровня организации материи
Биология (от греч. «биос» – жизнь, «логос» – учение) – наука о живой природе. Биология изучает живые организмы – вирусы, бактерии, грибы, животных и растения. В

Уровни организации живой материи
Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерар­хии живого. Выделяют следующие уровни органи

Свойства живых систем
М. В. Волькенштейном предложено следующее определение жизни: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, пос

Химический состав, строение и воспроизведение клеток
Из 112 химических элементов Периодической системы Д.И. Менделеева в состав организмов входит более половины. Химические элементы входят в состав клеток в виде ионов или компонентов молекул неоргани

Биосфера и ее структура
Термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюсс для обозначения оболочки Земли, населяемой живыми организмами. В 20-х гг. прошлого века в трудах В.И. Вер

Функции живого вещества биосферы
Живое вещество обеспечивает биогеохимический круговорот веществ и превращение энергии в биосфере. Выделяют сле­дующие основные геохимические функции живого вещества: 1.Энергетич

Круговорот веществ в биосфере
Основой самоподдержания жизни на Земле являются биогеохимические круговороты. Все химические элементы, используемые в процессах жизнедеятельности организмов, совершают постоянные перемещения

Основные эволюционные учения
На протяжении многих веков господствовали представления о Божественном происхождении природы, о том, что виды организмов были созданы в их нынешних формах, после чего они же не изме

Микро- и макроэволюция. Факторы эволюции
Эволюционный процесс разделяют на два этапа: - микроэволюцию – возникновение новых видов; - макроэволюцию – эволюци

Направления эволюционного процесса
С момента возникновения жизни развитие живой природы шло от простого к сложному, от низкоорганизованных форм к более высоко организованным и имело прогрессивный характер. А.

Основные правила эволюции
Правило необратимости эволюции (правило Л. Долло): эволюционный процесс необратим, возврат к прежнему эволюционному состоянии, ранее осуществленному в ряду поколений предков, н

Происхождение жизни на Земле
Существует несколько гипотез о происхождении жизни на Земле. Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира приде

Механизм возникновения жизни
Возраст Земли со­ставляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад. В 1924 г. русский академик А.И. Опарин

Начальные этапы развития жизни на Земле
Как полагают, первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты, они питались синтезированными абиогенно ор

Основные этапы развития биосферы
Эон Эра Период Возраст (начало), млн. лет Органический мир

Система органического мира Земли
Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымира­ния. Биологическое

Надцарство Эукариоты
Эукариоты– од­ноклеточные или многоклеточные организмы, имеющие оформленное ядро и различные органоиды. ЦАРСТВО ГРИБЫ – подцарство Слизевики

Структура и функционирование экологических систем
Экологические факторы – это отдельные элементы среды обитания, которые воздействуют на организмы. Каждая из сред обитания отличается особенностями воздей

Концепции устойчивого развития
Появление на Земле около 40 тыс. лет назад человека разумного Вернадский рассматривал как естественную часть биосферы, а деятельность его – как важнейший геологический фактор. С поя

Наследственной информации
Генетика – наука, изучающая наследственность и изменчивость живых организмов. Наследственность заключается в способности организмов передавать осо

Основные генетические процессы. Биосинтез белка
Функциональные возможности генетического материала (способность сохраняться и воспроизводиться при смене клеточных поколений, реализовываться в онтогенезе и в ряде случаев изменятьс

Основные законы генетики
Первый закон Менделя (закон единообразия): при скрещивании гомозиготных особей, все гибриды первого поколения едино­образны. Например, при скрещивании ра

Наследственная и ненаследственная изменчивость
Различия между видами и различия между особями внутри вида наблюдаются благодаря всеобщему свойству живого – изменчивости. Выделяют ненаследственную и

Как факторы дальнейшей эволюции
Генетическая (генная)инженерия – совокупность методов конструирования лабораторным путем (in vitro) генетических структур и насле

Антропогенез
Человек – это целостное единство биологического (организменого), психического и социального уровней, которые формируются из природного и социального, наследственного и прижизненно п

Физиологические особенности человека
Физиология изучает функции живого организма, отдельных органов, систем органов, а также механизм регуляции этих функций. Человек представляет собой сложную саморегулирующую

Основные закономерности роста человека
Кривая роста человека, рост в пренатальном и постнатальном периодах, абсолютный рост, скорость роста. Пренатальный рост, общая характеристика пренатального роста, из­менение скорости роста от оплод

Здоровье человека
По определению Всемирной организации здравоохранения (ВОЗ), здоровье человека –это состояние полного физического, душевного и социального благополучия. Здоро

Группировка факторов риска и их значение для здоровья
Группы факторов риска Факторы риска Значение для здоровья, % (для России) Биологические факторы

Эмоции. Творчество
Эмоции представляют собой реакции животных и человека на воздействие внешних и внутренних раздражителей, имеющие ярко выраженную субъективную окраску и охватывающие все виды чу

Работоспособность
Работоспособность – это способность к выполнению работы. С физиологической точки зрения работоспособность определяет возможности организма при выполнении работы, к поддержанию структуры и энергозап

Принципы мудрого отношения к жизни
Физические нагрузки успокаивают и помогают переносить душевные травмы. Умственное перенапряжение, неудачи, неуверенности, бесцельное существование – самые вредоносные стрессоры. Среди всех работ, с

Противоречия современной цивилизации
Сто пятьдесят лет тому назад в биосфере сложилось определенное равновесие. Человек использовал относительно небольшую часть ресурсов природы, перерабатывал ее для обеспечения своих

Понятие биоэтики и ее принципы
Для того чтобы предупредить развитие такого пессимистического сценария эволюции биосферы, в последние годы набирает силу новая наука –биоэтика, находящаяся на стыке биологии

Медицинская биоэтика
Одной из очень важных проблем биоэтики является также проблема «человек–медицина». Она включает, например, такие вопросы, как целесообразность поддержания жизни смертельно больного

Принципы поведения животных
Биоэтику следует рассматривать как естественное обоснование человеческой морали. Когда мы, люди, говорим «мы все люди и ничего человеческое нам не чуждо» на самом деле наше поведение похоже

Биосфера и космические циклы
Биосфера – живая открытая система. Она обменивается энергией и веществом с внешним миром. В данном случае внешний мир – это безбрежное космическое пространство. Извне на Зе

Биосфера и ноосфера
Факторы эволюции и этапы развития биосферы.Эволюция биосферы на протяжении большей части ее истории осуществлялась под влиянием двух главных факторов: 1) естественных

Современное естествознание и экология
Экология вызывает в настоящее время особый интерес как в различных естественно-научных дисциплинах, так и в гуманитарном знании. Интегрирующее направление в этой науке связано с исс

Экологическая философия
Задача современной экологической науки – искать такие способы воздействия на окружающую среду, которые помогли бы предотвратить катастрофические последствия и практическое использов

Планетарное мышление
Когда наступает время для определенной идеи, системы взглядов, то они начинают проявляться самыми различными способами, в широком многообразии форм и видов. Об этом явлении часто го

Ноосфера
Под ноосферой понимается сфера разума, но разработано это понятие еще совершенно недостаточно. Однако точка зрения, согласно которой ноосфера представляет собой одно из природных ра


В последние годы работами ряда авторов, и, прежде всего, И. Пригожина и П. Гленсдорфа, была развита термодинамика сильно неравновесных систем, в которых связь между термодинамически

Пространственные диссипативные структуры
Простейшим примером пространственныx структур являются ячейки Бенара, обнаруженные им в 1900 г. Если горизонтальный слой жидкости сильно подогреть снизу, то между нижней и верхней п

Временные диссипативные структуры
Примером временной диссипативной структуры является химическая система, в которой протекает так называемая реакция Белоусова–Жаботинского. Если система отклонилась от

Химическая основа морфогенеза
В 1952 г. вышла работа А. Тьюринга «О химической основе морфогенеза». Морфогенезом называется возникновение и развитие сложной структуры живого

Самоорганизация в живой природе
Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы. Если в нек

Самоорганизация в неравновесных системах
Рассмотрим простую симметричную бифуркацию, приведенную на рис. 5. Выясним, как возникает самоорганизация и какие процессы происходят, когда ее порог оказывается превзойденным.

Принципы универсального эволюционизма
Принцип универсального эволюционизма одна из доминирующих современных концепций в науке. Сформировавшийся вначале как результат обобщения естественно-научных знаний, он стал постепе

Самоорганизация в микромире. Формирование элементного состава вещества материи
На основе достижений ядерной физики в первой половине прошлого века удалось понять механизм образования химических элементов в природе. В 1946–1948 гг. американский физик Д. Гамов р

Химическая эволюция на молекулярном уровне
До возникновения жизни на Земле в течение длительного времени, продолжавшегося около двух миллиардов лет, происходил химическая эволюция неживой (косной материи). В связи с существованием

Самоорганизация в живой и неживой природе
На основе данных археологии, палеонтологии и антропологии Ч. Дарвин, как известно, доказал, что все многообразие живых организмов сформировалось в процессе длительной эволюции из бо

Самоорганизация Вселенной
Еще менее ста лет назад в науке господствовала точка зрения об однородной, стационарной, бесконечной во времени и в пространстве Вселенной. Однако после создания А. Эйнштейном общей теории относите

Концепции эволюционного естествознания
Краткий анализ процессов, протекающих в микро-, макро- и мегамире, позволяет говорить о том, что на всех уровнях организации материи доминирующими являются эволюционные процессы. Эт

Структурность и целостность в природе. Фундаментальность понятия целостности
Важнейшим атрибутами природы является структурность и целостность. Они выражают упорядоченность ее существования и те конкретные формы, в которых она проявляется. Структура п

Принципы целостности современного естествознания
Следует отметить, что в настоящее время бурно развивается философия науки, которая существенно отличается от естествознания и по своим целям, и по методам исследования. Философия на

Самоорганизация в природе в терминах параметров порядка
Система может быть определена как комплекс взаимодействующих элементов (определение Берталанфи). Систему можно определить как любую совокупность переменных, которую

Методология постижения открытого нелинейного мира
XXIвек характеризуется бурным экспоненциальным ростом научных знаний. Человечество знает и умеет значительно больше, чем может осмысленно использовать. Это породило серьезную про­бл

Основные черты современного естествознания
Выделим несколько характерных черт современного естествознания. 1. Развитие естествознания в XVII-XVIII вв. и вплоть до конца XIX в. происходило под подавляющим превосходст

И синергетическая среда в постижении природы
Синергетический подход к познанию, точнее к постижению Природы, расставляет точки над и в том смысле, что становится более понятным, что знания не приобретают как вещь, ими овладева

Принципы нелинейного образа мира
Первая научная картина мира была построена И. Ньютоном, несмотря на внутреннюю парадоксальность, она оказа­лась удивительно плодотворной, на долгие годы, предопределив самодвижение

От автоколебаний к самоорганизации
Для пояснения поведения открытых систем и их постижения удобным является использование аппарата нелинейных колебательных систем, разработанного в радиоэлектронике и связи, на фазовы

Формирование инновационной культуры
Инновационная культура – это знания, умения и опыт целенаправленной подготовки, комплексного внедрения и всестороннего освоения новшеств в различных областях человеческой жиз

Глоссарий
Абиогенный – абиогенная эволюция, абиогенное вещество – неживого, небиологического происхождения. Абиогенез – самопроизвольное зарождение жизни, в

Новое на сайте

>

Самое популярное