Домой Полезные советы Грамматическая стилистика склонение фамилий. Петру черных для ксении седых. Склоняется ли мужская фамилия, заканчивающаяся на «й»

Грамматическая стилистика склонение фамилий. Петру черных для ксении седых. Склоняется ли мужская фамилия, заканчивающаяся на «й»

Впервые словосочетания и способу связи словосочетаний начинают изучать в 4-х классах, но более подробно их рассматривают только в 5-ом. Чаще всего дети путаются в типах подчинительной связи. Для того чтобы разобраться в типах словосочетаний, необходимо подробно рассмотреть каждый из них и разобрать примеры.

Словосочетанием называют соединение из 2-х или более слов. Эти слова связаны между собой по смыслу, а также грамматически. Особенность всех словосочетаний в том, что они включают в себя главное и зависимое слова. Способы связи словосочетаний - самая затруднительная тема для школьников в 5-ом классе. Однако, ее очень важно изучить потому, что она понадобится ученикам на протяжении всей последующей учебы в школе.

Всего лингвисты и филологи выделяют 3 способа связи главного и зависимого слов в словосочетаниях: согласование, примыкание, а также управление. Способы подчинительной связи в словосочетании легко и очень часто путают. Для того чтобы уметь определять к какому типу подчинительной связи относится словосочетание, необходимо в них разобраться и подробно рассмотреть все примеры.

Тип связи согласование

Способ связи согласование в словосочетании встречается довольно часто. Согласование - это такой при котором зависимое слово согласуется с главным в падеже, числе и роде. Это значит, что оба слова являются изменяемыми, но при всем этом изменяются одинаково. Словосочетание с типом согласование может состоять из существительного, которое обычно играет роль главного слова, согласующегося с прилагательным или порядковым числительным, причастием, местоимением.

Примеры словосочетаний со связью согласование

Рассматривая способы связи словосочетаний, необходимо приводить и подробно разбирать все примеры, для того, чтобы хорошо усвоить материал. Все примеры нужно списывать в тетрадь, делать тщательный разбор, работать с карандашом. Только в этом случае материал будет хорошо усвоен и крепко запомнится. Первым делом, чтобы понять на практике, что такое согласование, необходимо разобрать словосочетания со связью. Примеры:

  • Существительное + прилагательное:

Красивый дом (дом какой? красивый). "Дом" - это главное слово, так как от него задается вопрос "какой?". "Красивый" - это зависимое слово в словосочетании.

Лягушка зеленая (лягушка какая? зеленая). "Лягушка" - это главное слово, так как от него задается вопрос к зависимому.

  • Существительное + порядковое числительное:

Пятый этаж (этаж какой? пятый). Оба слова согласованы в числе, роде, а также падеже. Зависимым словом является порядковое числительное "пятый", так как к нему задается вопрос от главного.

С сотым покупателем (с покупателем каким? сотым). Главным словом является "покупатель", от него задается вопрос к порядковому числительному "сотый".

  • Существительное + причастие:

Разбросанные вещи (вещи какие? разбросанные). Зависимым словом здесь будет являться причастие "разбросанные", так как к нему задается вопрос от главного.

Листва опавшая (листва какая? опавшая). Главным словом является "листва", потому что от него задается вопрос.

  • Существительное + местоимение:

С вашей мамой (с мамой чьей? вашей). И зависимое, и главное слова согласованы между собой в роде, числе и падеже. Главным словом будет являться существительное, потому что от него задается вопрос к местоимению.

Такой мужчина (мужчина какой? такой). Главным словом будет являться "мужчина", потому что именно от него задается вопрос к зависимому.

  • Местоимение + существительное (причастие или субстантивированное прилагательное):

С кем-то веселым (с кем-то каким? веселым). Главным словом будет являться местоимение, так как от него задается вопрос к зависимому.

В чем-то красивом (в чем-то каком? красивом). Главным словом является местоимение, потому что вопрос к зависимому прилагательному задается от него.

  • Существительное (субстантивированное прилагательное) + прилагательное:

Белая ванная (ванная какая? белая). Главным словом будет являться потому что от него задается вопрос. Прилагательное "белая"- зависимым.

Загорелый отдыхающий (отдыхающий какой? загорелый). "Отдыхающий" будет являться главным словом, так как вопрос исходит от него, а "загорелый" - зависимым.

Тип связи управление

Способы связи словосочетаний, как известно, бывают трех типов. Управление - это еще один способ связи. Чаще всего именно с ним возникают путаница и проблемы у школьников. Для того чтобы их не было, необходимо рассмотреть этот тип связи несколько подробней.

Способ связи в словосочетании управление - это такой при котором зависимое слово употребляется в том падеже, которого требует главное слово (только косвенные падежи, то есть все, кроме именительного). В управлении у детей чаще возникают проблемы, потому что бывает трудно различить управление среди других типов. Этому типу связи стоит уделить особое внимание и поработать над ним более усердно. Нужно запомнить, что все типы связи словосочетаний требуют большой практики и запоминания теории.

Примеры словосочетаний со связью управление

Рассмотрим примеры словосочетаний, построенных на связи управление:

  • В связи словосочетаний "управление", чаще всего главное слово является глаголом, а зависимое слово - существительным:

Посмотреть киноленту (посмотреть что? киноленту). Главным словом является глагол "посмотреть". От него задается вопрос "что?" к существительному "киноленту". Нельзя сказать "посмотреть кинолента", потому что это будет речевой ошибкой. В этом словосочетании зависимое слово употребляется в падеже, которое требует от него главное.

Бегу в джинсах (бегу в чем? в джинсах). Глагол "бегу" является главным словом, а "в джинсах" - зависимым.

  • Словосочетания со связью управление могут состоять и из прилагательного и местоимения:

Согласен с ним (согласен с кем? с ним). От краткого прилагательного "согласен" задается вопрос к местоимению, это значит, что оно главное.

Уверен в ней (уверен в ком? в ней). Краткое прилагательное является главным словом, а местоимение, к которому задается вопрос, зависимым.

  • Способы связи словосочетаний могут осуществляться так, что главным словом будет прилагательное, а зависимым существительное.

Красный от мороза (красный от чего? от мороза). Прилагательное "красный" является главным в этом словосочетании, а существительное "мороза" - зависимым.

Злой на дочь (злой на кого? на дочь). Слово "дочь" является зависимым, потому что к нему задают вопрос от зависимого.

  • Два существительных также могут являться составляющими словосочетания:

Враг народу (враг кому? народу). Существительное "враг" является главным, так как от него задается вопрос к зависимому "народу".

Ложка из серебра (ложка из чего? из серебра). Существительное "ложка" является главным, а слово "серебра" - зависимым.

  • Числительное может быть главным в словосочетании, а существительное - зависимым.

Три капли (три чего? капли). "Три" - это главное слово, а "капли" - зависимое.

Двенадцать месяцев (двенадцать чего? месяцев). Числительное является главным словом, а существительное зависимым.

  • Наречие бывает главным словом в словосочетании со связью управление, а существительное - зависимым:

Слева от дома (слева от чего? от дома).

Вниз по улице (вниз по чему? по улице).

  • Встречаются словосочетания, где главным словом является деепричастие, а зависимым - существительное:

Следя за ними (следя за кем? за ними). Деепричастие является главным словом, потому что вопрос к зависимому исходит от него.

Обращаясь к статье (обращаясь к чему? к статье). Существительное в дательном падеже в данном словосочетании является зависимым словом, потому что к нему задается вопрос от деепричастия "обращаясь".

Тип связи примыкание

Способ связи в словосочетании примыкание - это завершающая ступень изучения типов связи словосочетания. В словосочетании со связью примыкание оба слова, и зависимое, и главное, присоединяются друг к другу лишь только по смыслу. Главное слово является неизменяемым.

Примеры словосочетаний со связью примыкание

Для того чтобы понять, как осуществляется связь примыкание, необходимо подробно разобрать всевозможные примеры:

  • + инфинитив глагола:

Возможность остаться (возможность что сделать? остаться). Известно, что связь примыкание осуществляется только по смыслу. Существительное "возможность" является главным словом, тогда как "остаться" является зависимым, потому что к нему задается вопрос.

Другие примеры: решение встретить, желание уйти, наука мыслить, стремление учиться. Во всех словосочетаниях главным словом будет существительное, а зависимым - инфинитив.

Позволил поцеловать (позволил что? поцеловать). Оба члена словосочетания являются глаголами. Главным словом будет глагол "позволил", а зависимым - инфинитив "поцеловать".

Другие примеры: любит гулять, пришел посмеяться, хочет придти, решил прочитать. Во всех данных примерах зависимым словом будет инфинитив, а главным - глагол.

Должен уйти (должен что сделать? уйти). Главным словом является краткое прилагательное "должен", а зависимым, к которому задается вопрос, инфинитив.

Другие примеры: направо свернуть, рад видеть, готов ответить. Во всех приведенных примерах главным словом будет являться краткое прилагательное, а зависимым - инфинитив.

  • Существительное + наречие:

Поворот направо (поворот куда? направо). Главным словом является существительное "поворот", а зависимым наречие "направо".

Виды словосочетаний по главному слову

Пройдя способы подчинительной связи в словосочетании, переходят к изучению темы видов словосочетаний по главному слову. Всего выделяют 3 группы словосочетаний по главному слову.

Именные словосочетания

Именные словосочетания - это такие словосочетания, в которых главным словом является существительное, местоимение, прилагательное или числительное. Примеры именных словосочетаний: розовый слон (главное слово - существительное), пять капель (главное слово - числительное), рад стараться (главное слово - краткое прилагательное), ей хорошо (главное слово - местоимение).

Глагольные словосочетания

Глагольные словосочетания - это такие словосочетания, в которых главным словом, как правило, является уйти далеко, говорить ложь, зайти повидаться, идти радостно (главные слова в данных словосочетаниях являются глаголами).

Наречные словосочетания

Наречными словосочетаниями являются такие словосочетания, в которых главным словом является наречие. Примеры наречных словосочетаний: всегда хорошо, совершенно секретно, далеко от России (главные слова в данных словосочетаниях являются наречиями).

Типы связи словосочетаний легко запомнить, если часто практиковаться, а также выучить необходимую теорию.

    определение химической связи;

    типы химических связей;

    метод валентных связей;

    основные характеристики ковалентной связи;

    механизмы образования ковалентной связи;

    комплексные соединения;

    метод молекулярных орбиталей;

    межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ

Химической связью называют взаимодействие между атомами, приводящее к образованию молекул или ионов и прочному удерживанию атомов друг около друга.

Химическая связь имеет электронную природу, т. е. осуществляется за счёт взаимодействия валентных электронов. В зависимости от распределения валентных электронов в молекуле, различают следующие виды связей: ионная, ковалентная, металлическая и др. Ионную связь можно рассматривать как предельный случай ковалентной связи между атомами, резко отличающимися по природе.

ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ

Ионная связь.

Основные положения современной теории ионной связи.

    Ионная связь образуется при взаимодействии элементов, резко отличающихся друг от друга по свойствам, т. е. между металлами и неметаллами.

    Образование химической связи объясняется стремлением атомов к достижению устойчивой восьмиэлектронной внешней оболочки (s 2 p 6).

Ca: 1s 2 2s 2 p 6 3s 2 p 6 4s 2

Ca 2+ : 1s 2 2s 2 p 6 3s 2 p 6

Cl: 1s 2 2s 2 p 6 3s 2 p 5

Cl – : 1s 2 2s 2 p 6 3s 2 p 6

    Образовавшиеся разноименно заряженные ионы удерживаются друг около друга за счёт электростатического притяжения.

    Ионная связь не направленная.

    Чисто ионной связи не существует. Так как энергия ионизации больше энергии сродства к электрону, то полного перехода электронов не происходит даже в случае пары атомов с большой разницей электроотрицательностей. Поэтому можно говорить о доле ионности связи. Наибольшая ионность связи имеет место во фторидах и хлоридах s-элементов. Так, в кристаллах RbCl, KCl, NaCl и NaF она равна 99, 98, 90 и 97% соответственно.

Ковалентная связь.

Основные положения современной теории ковалентной связи.

    Ковалентная связь образуется между элементами, сходными по свойствам, то есть, неметаллами.

    Каждый элемент предоставляет для образования связей 1 электрон, причём спины электронов должны быть антипараллельными.

    Если ковалентная связь образована атомами одного и того же элемента, то эта связь не полярная, т. е. общая электронная пара не смещена ни к одному из атомов. Если же ковалентная связь образована двумя разными атомам, то общая электронная пара смещена к наиболее электроотрицательному атому, это полярная ковалентная связь .

    При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в результате, в пространстве между атомами возникает зона повышенной электронной плотности, притягивающая к себе положительно заряженные ядра взаимодействующих атомов, и удерживающая их друг около друга. Вследствие этого снижается энергия системы (рис. 14). Однако при очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи , l св), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи – Е св.

Рис. 14. Зависимость энергии систем из двух атомов водорода с параллельными (1) и антипараллельными (2) спинами от расстояния между ядрами (Е – энергия системы, Е св – энергия связи, r – расстояние между ядрами, l – длина связи).

Для описания ковалентной связи используют 2 метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО).

Единой теории химической связи не существует, условно химическую связь делят на ковалентную (универсальный вид связи), ионную(частный случай ковалентной связи), металлическую и водородную.

Ковалентная связь

Образование ковалентной связи возможно по трем механизмам: обменному, донорно-акцепторному и дативному (Льюиса).

Согласно обменному механизму образование ковалентной связи происходит за счет обобществления общих электронных пар. При этом каждый атом стремится приобрести оболочку инертного газа, т.е. получить завершенный внешний энергетический уровень. Образование химической связи по обменному типу изображают с использованием формул Льюиса, в которых каждый валентный электрон атома изображают точками (рис. 1).

Рис. 1 Образование ковалентной связи в молекуле HCl по обменному механизму

С развитием теории строения атома и квантовой механики образование ковалентной связи представляют, как перекрывание электронных орбиталей (рис. 2).

Рис. 2. Образование ковалентной связи за счет перекрывания электронных облаков

Чем больше перекрывание атомных орбиталей, тем прочнее связь, меньше длина связи и больше ее энергия. Ковалентная связь может образовываться за счет перекрывания разных орбиталей. В результате перекрывания s-s, s-p орбиталей, а также d-d, p-p, d-p орбиталей боковыми лопастями происходит образование – связи. Перпендикулярно линии, связывающей ядра 2-х атомов образуется – связь. Одна – и одна – связь способны образовывать кратную (двойную) ковалентную связь, характерную для органических веществ класса алкенов, алкадиенов и др. Одна – и две – связи образуют кратную (тройную) ковалентную связь, характерную для органических веществ класса алкинов (ацетиленов).

Образование ковалентной связи по донорно-акцепторному механизму рассмотрим на примере катиона аммония:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Атом азота имеет свободную неподеленную пару электронов (электроны не участвующие в образовании химических связей внутри молекулы), а катион водорода свободную орбиталь, поэтому они являются донором и акцептором электронов, соответственно.

Дативный механизм образования ковалентной связи рассмотрим на примере молекулы хлора.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Атом хлора имеет и свободную неподеленную пару электронов и вакантные орбитали, следовательно, может проявлять свойства и донора и акцептора. Поэтому при образовании молекулы хлора, один атом хлора выступает в роли донора, а другой – акцептора.

Главными характеристиками ковалентной связи являются: насыщаемость (насыщенные связи образуются тогда, когда атом присоединяет к себе столько электронов, сколько ему позволяют его валентные возможности; ненасыщенные связи образуются, когда число присоединенных электронов меньше валентных возможностей атома); направленность (эта величина связана с геометрий молекулы и понятием «валентного угла» — угла между связями).

Ионная связь

Соединений с чистой ионной связью не бывает, хотя под этим понимают такое химически связанное состояние атомов, в котором устойчивое электронное окружение атома создается при полном переходе общей электронной плотности к атому более электроотрицательного элемента. Ионная связь возможна только между атомами электроотрицательных и электроположительных элементов, находящихся в состоянии разноименно заряженных ионов – катионов и анионов.

ОПРЕДЕЛЕНИЕ

Ионом называют электрически заряженные частицы, образуемые путем отрыва или присоединения электрона к атому.

При передаче электрона атомы металлов и неметаллов стремятся сформировать вокруг своего ядра устойчивую конфигурацию электронной оболочки. Атом неметалла создает вокруг своего ядра оболочку последующего инертного газа, а атом металла – предыдущего инертного газа (рис. 3).

Рис. 3. Образование ионной связи на примере молекулы хлорида натрия

Молекулы, в которых в чистом виде существует ионная связь встречаются в парообразном состоянии вещества. Ионная связь очень прочная, в связи с этим вещества с этой связью имеют высокую температуру плавления. В отличии от ковалентной для ионной связи не характерны направленность и насыщаемость, поскольку электрическое поле, создаваемое ионами, действует одинаково на все ионы за счет сферической симметрии.

Металлическая связью

Металлическая связь реализуется только в металлах – это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании связи участвуют только валентные электроны атомов металла, принадлежащие всему его объему. В металлах от атомов постоянно отрываются электроны, которые перемещаются по всей массе металла. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые стремятся принять к себе движущиеся электроны. Этот непрерывный процесс формирует внутри металла так называемый «электронный газ», который прочно связывает между собой все атомы металла (рис. 4).

Металлическая связь прочная, поэтому для металлов характерна высокая температура плавления, а наличие «электронного газа» придают металлам ковкость и пластичность.

Водородная связь

Водородная связь – это специфическое межмолекулярное взаимодействие, т.к. ее возникновение и прочность зависят от химической природы вещества. Она образуется между молекулами, в которых атом водорода связан с атомом, обладающим высокой электроотрицательностью (O, N, S). Возникновение водородной связи зависит от двух причин, во-первых, атом водорода, связанный с электроотрицательным атомом не имеет электронов и может легко внедряться в электронные облака других атомов, а, во-вторых, обладая валентной s-орбиталью, атом водорода способен принимать неподеленную пару электронов электроотрицательного атома и образовывать с ним связь по донорно акцепторному механизму.

170009 0

Каждый атом обладает некоторым числом электронов.

Вступая в химические реакции, атомы отдают, приобретают, либо обобществляют электроны, достигая наиболее устойчивой электронной конфигурации. Наиболее устойчивой оказывается конфигурация с наиболее низкой энергией (как в атомах благородных газов). Эта закономерность называется "правилом октета" (рис. 1).

Рис. 1.

Это правило применимо ко всем типам связей . Электронные связи между атомами позволяют им формировать устойчивые структуры, от простейших кристаллов до сложных биомолекул, образующих, в конечном счете, живые системы. Они отличаются от кристаллов непрерывным обменом веществ. При этом многие химические реакции протекают по механизмам электронного переноса , которые играют важнейшую роль в энергетических процессах в организме.

Химическая связь - это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую их комбинацию .

Природа химической связи универсальна: это электростатическая сила притяжения между отрицательно заряженными электронами и положительно заряженными ядрами, определяемая конфигурацией электронов внешней оболочки атомов. Способность атома образовывать химические связи называется валентностью , или степенью окисления . С валентностью связано понятие о валентных электронах - электронах, образующих химические связи, то есть находящихся на наиболее высокоэнергетических орбиталях. Соответственно, внешнюю оболочку атома, содержащую эти орбитали, называют валентной оболочкой . В настоящее время недостаточно указать наличие химической связи, а необходимо уточнить ее тип: ионная, ковалентная, диполь-дипольная, металлическая.

Первый тип связи - ионная связь

В соответствии с электронной теорией валентности Льюиса и Косселя, атомы могут достичь устойчивой электронной конфигурации двумя способами: во-первых, теряя электроны, превращаясь в катионы , во-вторых, приобретая их, превращаясь в анионы . В результате электронного переноса благодаря электростатической силе притяжения между ионами с зарядами противоположного знака образуется химическая связь, названная Косселем «электровалентной » (теперь ее называют ионной ).

В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп - соответственно, халькогенов и галогенов ). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.

Рис. 2.

Рис. 3. Ионная связь в молекуле поваренной соли (NaCl)

Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях .

Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов . Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается.

Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ‑ ОН-групп, в частности, триэтиламин N(С 2 Н 5) 3) ; растворимые основания называют щелочами .

Водные растворы кислот вступают в характерные реакции:

а) с оксидами металлов - с образованием соли и воды;

б) с металлами - с образованием соли и водорода;

в) с карбонатами - с образованием соли, СO 2 и Н 2 O .

Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН ‑ . Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание - вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:

Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

1) NH 4 + и NH 3

2) HCl и Сl

Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте - сильное сопряженное основание.

Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака - кислотой.

1) СН 3 СООН + Н 2 O Н 3 O + + СН 3 СОО ‑ . Здесь молекула уксусной кислоты донирует протон молекуле воды;

2) NH 3 + Н 2 O NH 4 + + ОН ‑ . Здесь молекула аммиака акцептирует протон от молекулы воды.

Таким образом, вода может образовывать две сопряженные пары:

1) Н 2 O (кислота) и ОН ‑ (сопряженное основание)

2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

В первом случае вода донирует протон, а во втором - акцептирует его.

Такое свойство называется амфипротонностью . Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными . В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

Таким образом, характерное свойство ионной связи - полное перемещение нары связывающих электронов к одному из ядер. Это означает, что между ионами существует область, где электронная плотность почти нулевая.

Второй тип связи - ковалентная связь

Атомы могут образовывать устойчивые электронные конфигурации путем обобществления электронов.

Такая связь образуется, когда пара электронов обобществляется по одному от каждого атома. В таком случае обобществленные электроны связи распределены между атомами поровну. Примерами ковалентной связи можно назвать гомоядерные двухатомные молекулы Н 2 , N 2 , F 2 . Этот же тип связи имеется у аллотропов O 2 и озона O 3 и у многоатомной молекулы S 8 , а также у гетероядерных молекул хлороводорода НСl , углекислого газа СO 2 , метана СH 4 , этанола С 2 Н 5 ОН , гексафторида серы SF 6 , ацетилена С 2 Н 2 . У всех этих молекул электроны одинаково общие, а их связи насыщенные и направлены одинаково (рис. 4).

Для биологов важно, что у двойной и тройной связей ковалентные радиусы атомов по сравнению с одинарной связью уменьшены.

Рис. 4. Ковалентная связь в молекуле Сl 2 .

Ионный и ковалентный типы связей - это два предельных случая множества существующих типов химических связей, причем на практике большинство связей промежуточные.

Соединения двух элементов, расположенных в противоположных концах одного или разных периодов системы Менделеева, преимущественно образуют ионные связи. По мере сближения элементов в пределах периода ионный характер их соединений уменьшается, а ковалентный - увеличивается. Например, галогениды и оксиды элементов левой части периодической таблицы образуют преимущественно ионные связи (NaCl, AgBr, BaSO 4 , CaCO 3 , KNO 3 , CaO, NaOH ), а такие же соединения элементов правой части таблицы - ковалентные (Н 2 O, СO 2 , NH 3 , NO 2 , СН 4 , фенол C 6 H 5 OH , глюкоза С 6 H 12 О 6 , этанол С 2 Н 5 ОН ).

Ковалентная связь, в свою очередь, имеет еще одну модификацию.

У многоатомных ионов и в сложных биологических молекулах оба электрона могут происходить только из одного атома. Он называется донором электронной пары. Атом, обобществляющий с донором эту пару электронов, называется акцептором электронной пары. Такая разновидность ковалентной связи названа координационной (донорно-акцепторной , или дативной ) связью (рис. 5). Этот тип связи наиболее важен для биологии и медицины, поскольку химия наиболее важных для метаболизма d-элементов в значительной степени описывается координационными связями.

Pиc. 5.

Как правило, в комплексном соединении атом металла выступает акцептором электронной пары; наоборот, при ионных и ковалентных связях атом металла является донором электрона.

Суть ковалентной связи и ее разновидности - координационной связи - можно прояснить с помощью еще одной теории кислот и оснований, предложенной ГН. Льюисом. Он несколько расширил смысловое понятие терминов «кислота» и «основание» по теории Бренстеда-Лоури. Теория Льюиса объясняет природу образования комплексных ионов и участие веществ в реакциях нуклеофильного замещения, то есть в образовании КС.

Согласно Льюису, кислота - это вещество, способное образовывать ковалентную связь путем акцептирования электронной пары от основания. Льюисовым основанием названо вещество, обладающее неподеленной электронной парой, которое, донируя электроны, образует ковалентную связь с Льюисовой кислотой.

То есть теория Льюиса расширяет круг кислотно-основных реакций также на реакции, в которых протоны не участвуют вовсе. Причем сам протон, по этой теории, также является кислотой, поскольку способен акцептировать электронную пару.

Следовательно, согласно этой теории, катионы являются Льюисовыми кислотами, а анионы - Льюисовыми основаниями. Примером могут служить следующие реакции:

Выше отмечено, что подразделение веществ на ионные и ковалентные относительное, поскольку полного перехода электрона от атомов металла к акцепторным атомам в ковалентных молекулах не происходит. В соединениях с ионной связью каждый ион находится в электрическом поле ионов противоположного знака, поэтому они взаимно поляризуются, а их оболочки деформируются.

Поляризуемость определяется электронной структурой, зарядом и размерами иона; у анионов она выше, чем у катионов. Наибольшая поляризуемость среди катионов - у катионов большего заряда и меньшего размера, например, у Hg 2+ , Cd 2+ , Pb 2+ , Аl 3+ , Тl 3+ . Сильным поляризующим действием обладает Н + . Поскольку влияние поляризации ионов двустороннее, она значительно изменяет свойства образуемых ими соединений.

Третий тип связи - диполь-дипольная связь

Кроме перечисленных типов связи, различают еще диполь-дипольные межмолекулярные взаимодействия, называемые также вандерваалъсовыми .

Сила этих взаимодействий зависит от природы молекул.

Выделяют взаимодействия трех типов: постоянный диполь - постоянный диполь (диполь-дипольное притяжение); постоянный диполь - индуцированный диполь (индукционное притяжение); мгновенный диполь - индуцированный диполь (дисперсионное притяжение, или лондоновские силы; рис. 6).

Рис. 6.

Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3 , SO 2 , Н 2 O, C 6 H 5 Cl ), причем сила связи составляет 1-2 дебая (1Д = 3,338 × 10 ‑30 кулон-метра - Кл × м).

В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро - протон - оголяется и перестает экранироваться электронами.

Поэтому атом превращается в крупный диполь.

Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы - внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 7).

Рис.7.

Водородная и вандерваальсовая связи значительно слабее, чем ионная, ковалентная и координационная. Энергия межмолекулярных связей указана в табл. 1.

Таблица 1. Энергия межмолекулярных сил

Примечание : Степень межмолекулярных взаимодействий отражают показатели энтальпии плавления и испарения (кипения). Ионным соединениям требуется для разделения ионов значительно больше энергии, чем для разделения молекул. Энтальпии плавления ионных соединений значительно выше, чем молекулярных соединений.

Четвертый тип связи - металлическая связь

Наконец, имеется еще один тип межмолекулярных связей - металлический : связь положительных ионов решетки металлов со свободными электронами. В биологических объектах этот тип связи не встречается.

Из краткого обзора типов связей выясняется одна деталь: важным параметром атома или иона металла - донора электронов, а также атома - акцептоpa электронов является его размер .

Не вдаваясь в детали, отметим, что ковалентные радиусы атомов, ионные радиусы металлов и вандерваальсовы радиусы взаимодействующих молекул увеличиваются по мере возрастания их порядкового номера в группах периодической системы. При этом значения радиусов ионов - наименьшие, а вандерваальсовых радиусов - наибольшие. Как правило, при движении вниз по группе радиусы всех элементов увеличиваются, причем как ковалентные, так и вандерваальсовы.

Наибольшее значение для биологов и медиков имеют координационные (донорно-акцепторные ) связи, рассматриваемые координационной химией.

Медицинская бионеорганика. Г.К. Барашков

Новое на сайте

>

Самое популярное