Домой Овощи Механизмы онтогенеза. Генетический контроль развития млекопитающих

Механизмы онтогенеза. Генетический контроль развития млекопитающих

Развитие организмов базируется на генетической программе (заложенной в хромосомном аппарате зиготы) и происходит в конкретных условиях среды, а разных этапах онтогенеза активность генов зависит как от внутренних, так и от внешних факторов.

В результате эмбриональной стадии онтогенеза образуется организм претерпевающий в дальнейших этапах онтогенеза изменения.(рост, развитие)

Запомнить: Влияние алкоголя и никотина на хромосомный аппарат половых клеток.

1) новорожденный (1-21 дня);

2) младенческий возраст (21 дней – 1 год);

3) раннее детство (1–3 года);

4) дошкольный период (4–7 лет);

5) младший школьный возраст (8-12 лет для мальчиков, 8-11 лет для девочек);

6) препубертатный период (12–15 лет);

7) подростковый возраст (15-18 лет);

8)юношеский период (18-21 год)

9) зрелый возраст:

I период (22–35 лет для мужчин, 22–35 лет для женщин);

II период (36–60 лет для мужчин, 36–55 лет для женщин);

10) пожилой возраст (61–74 года для мужчин, 56–74 года для женщин);

11) старческий возраст (75–90 лет);

12) долгожители (90 лет и выше).

1) Акселерация у детей начиная со 2-й половины 20века

2) В эмбрион периоде.

Зародыш млекопитающих, в том числе и человеква, очень чувствителен к воздействию неблагоприятных факторов внешней среды. На его развитие влияют вещества, которые он получает с кровью матери.(например: 1 выкуренная сигарета уменьшает снабжение O2 в 10 раз; печень плода не спавляется с выведение яд.вещ. и поэтому накапливается в тканях; алкоголь сильно влияет на ЦНС)

факторы внешней среды (температура, свет, давление, гравитация, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические факторы) излучения, ультразвука, вибрации, электромагнитного поля

3) социальные факторы.

4)например, регуляцию метаморфоза у амфибий, в ходе которого в организме происходит множество разнообразных изменений. Одни органы (личинки головастика) разрушаются, другие (органы взрослой лягушки) усиленно растут и развиваются. Все эти изменения происходят под влиянием гормона щитовидной железы. Личинки амфибий, лишенные щитовидной железы, не претерпевают метаморфоза (однако у оперированных личинок его можно вызвать, если ввести им гормон).

Особенно наглядна роль гормонов на многочисленных примерах нарушений в деятельности желез внутренней секреции у человека, хорошо известных медикам. Так, при избыточном образовании гормона роста могут развиваться гиганты двух- и даже трехметровой высоты. В случае же недостаточной секреции этого гормона люди становятся карликами (рост - от 60 до 140 см).


39. Генетическая регуляция разви­тия, особенности молекулярно-генетических процессов на разных этапах онтогенеза (генетическая детерминированность развития, дифференци­альная активность генов, влияние ооплазматической сегрегации, Т-локус, гены полового созревания, старения).

Очевидно, что генетический контроль развития существует, так как набор генов, получаемый организмом при оплодотворении, обеспечивает развитие из зиготы особи конкретного биологического вида (видоспецифичность онтогенеза ).

Детерминация – совокупность факторов, обусловливающих закономерный характер формообразовательных процессов, или же воздействие одной части зародыша на другие его части побуждающие эти последние к прохождению в подходящих условиях фрагмента пути своего нормального развития.

Генетические основы клеточной дифференцировки объясняет гипотеза дифференциальной активности генов.
Согласно ей различия в спектре белков, образуемых дифференцируемыми клетками, отражают различия в наборе активных генов. В клетках любого направления специализации выделяют как бы 3 группы активных генов:
- контролирующие фундаментальные процессы жизнедеятельности клеток и активные во всех живых клетках
- обусловливающие сходные черты клеток одной ткани
- контролирующие черты специфичные для клеток конкретного типа

Сегрегация ооплазматическая - возникновение локальных различий в свойствах ооплазмы, осуществляющееся в периоды роста и созревания ооцита, а также в оплодотворённом яйце. С. - основа для последующей дифференцировки зародыша: в процессе дробления яйца участки ооплазмы, различающиеся по своим свойствам, попадают в разные бластомеры; взаимодействие с ними одинаковых по своим потенциям ядер дробления приводит к дифференциальной активации генома. У разных животных С. наступает не одновременно и бывает выражена в разной степени.


Теории онтогенеза Онтогенез – это совокупность взаимосвязанных и хронологически детерминированных событий, закономерно совершающихся в процессе осуществления организмом жизненного цикла. На каждом этапе индивидуального развития происходит реализация наследственной информации в тесном взаимодействии с окружающей средой.


Эмбриональный период Оплодотворение – процесс слияния половых клеток, в результате образуется зигота Фазы оплодотворения: - Сближение сперматозоида - Сближение сперматозоида с яйцеклеткой с яйцеклеткой - Активация яйцеклетки - Сингамия Яйцеклетка перед оплодотворением Оплодотворяемая яйцеклетка Яйцеклетка и сперматозоиды моллюска Оболочки яйцеклетки: 1. Блестящая 2. Зернистая 3. Соединительно тканная (наружная)








Эмбриональный период процесс образования двух- и трехслойного зародыша (гаструла)



Эмбриональный период Гисто- и органогенез Эктодерма Нервная система Эпидермис и его производные: сальные и потовые железы, ногти, волосы, рога, копыта Слизистая передней и задней кишки, слизистая органов дыхания Энтодерма Эпителий средней кишки, пищеварительные железы Хорда Органы дыхания


Эмбриональный период Мезодерма Сомиты (сегменты) 44 дерматом миотом спланхнотом склеротом нефрогонотом Дерма – собственно кожа мускулатура Хрящи, костный скелет мускулатура сердца, эпителий гонад, корковое вещество надпочечников Органы выделения, кровеносная, лимфатическая системы


Эмбриональное развитие человека Дробление зиготы человека – неравномерное, асинхронное 1- эмбриобласт 2 – трофобласт 3 - бластоцель А – два бластомера Б - Три бластомера В – четыре бластомера – вторые сутки Г – морула- третьи сутки Д – разрез морулы- Е – ранняя бластоциста- четвёртые сутки Ж – поздняя бластоциста- пятые сутки Начало имплантации – шестые, седьмые сутки













Гены, регулирующие ход онтогенеза Хроногены – контролируют время наступления событий. Самые ранние из хроно генов – гены с материнским эффектом. Образуются в яйцеклетке. Некоторые из них транскрибируются и создается большое количество иРНК, которая начинает транслироваться сразу после оплодотворения. В 1985 году были открыты гены, контролирующие ход онтогенеза Регулируют все процессы дробления до гаструляции


Гены, регулирующие ход онтогенеза На стадии гаструляции начинают действовать гены пространственной организации – это собственные гены организма, контролирующие формообразовательные процессы. Они подразделяются на гены: Сегментации - отвечают за образование сегментов. Действуют до стадии поздней гаструлы. Компартментализации – отвечают за дифференцировку сегментов и образование компартиментов Гомеозисные гены – обеспечивают нормальное образование структур и расположение их в нужном месте.






Гомеозисные гены (HOM) Обеспечивают развитие органов и тканей в определенном месте Обеспечивают развитие органов и тканей в определенном месте В структуре гомеозисных генов обнаружены участки, так называемые ГОМЕОБОКСЫ. Они контролируют работу других генов. Гомеобоксы кодируют последовательность аминокислот, которая называется ГОМЕОДОМЕН



















Детерминация - Возникновение качественных различий между частями развивающегося зародыша, которые предопределяют дальнейшую судьбу этих частей. Детерминация предшествует дифференцировке и морфогенезу. Тканево-органный уровень регуляции Механизм:


Эмбриональная регуляция - Процесс восстановления нормального развития целого зародыша или зачатка после его естественного или искусственного нарушения путем: 1. Удаления части материала 2. Добавления избыточного материала 3. Перемешивание с помощь центрифугирования или сдавления. Опыты Тарковски и Минц


Г. Дриш (1891)- явление эмбриональной регуляции Онтогенез есть целостный процесс, а НЕ простая сумма однозначных причинно- следственных звеньев! Потенции – максимальные возможности элементов зародыша, которые могли бы осуществиться. В норме реализуется одно из них, а остальные могут быть выявлены в эксперименте. Тотипотентность –широкие потенции. Способность одной клетки создать целый организм.


Рекомендованная литература - Обязательная - Обязательная 1.Биология: учебник: в 2 кн/ ред. В.Н. Ярыгина.- М.: Высш.шк., Биология: учебник: в 2 кн/ ред. В.Н. Ярыгина.- М.: Высш.шк., Дополнительная - Дополнительная 1. Биология: учебник /ред. Н.В. Чебышев.- М.: ГОУ ВУНМЦ МЗ РФ, Биология: учебник /ред. Н.В. Чебышев.- М.: ГОУ ВУНМЦ МЗ РФ, Биология: медицинская биология, генетика и паразитология: учебник/ А.П. Пехов.- М.: ГЭОТАР – Медиа, Биология: медицинская биология, генетика и паразитология: учебник/ А.П. Пехов.- М.: ГЭОТАР – Медиа, Электронные ресурсы -Электронные ресурсы ИБС КрасГМУ ИБС КрасГМУ БД МеdArt БД МеdArt БД Ebsco БД Ebsco

Биология развития изучает способы генетического контроля индивидуального развития и особенности реализации генетической программы в фенотип в зависимости от условий. Под условиями понимаются различные внутриуровневые и межуровневые процессы и взаимодействия – внутриклеточные, межклеточные, тканевые, внутриорганные, организменные, популяционные, экологические.

Очень важными являются исследования конкретных онтогенетических механизмов роста и морфогенеза. К ним относятся процессы пролиферации (размножения) клеток, миграции (перемещения) клеток, сортировки клеток, их запрограммированной гибели , дифференцировки клеток, контактных взаимодействий клеток (индукция и компетенция), дистантного взаимодействия клеток, тканей и органов (гуморальные и нервные механизмы интеграции). Все эти процессы носят избирательный характер, т.е. протекают в определенных пространственно-временных рамках с определенной интенсивностью, подчиняясь принципу целостности развивающегося организма. Поэтому одной из задач биологии развития является выяснение степени и конкретных путей контроля со стороны генома и одновременно уровня автономности различных процессов в ходе онтогенеза.

Большую роль в процессах онтогенеза играет деление клеток, поскольку:

– благодаря делению из зиготы, которая соответствует одноклеточной стадии развития, возникает многоклеточный организм;

– пролиферация клеток, происходящая после стадии дробления, обеспечивает рост организма;


– избирательному размножению клеток принадлежит заметная роль в обеспечении морфогенетических процессов.

В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Исследования показали, что количество циклов клеточных делений в ходе онтогенеза генетически предопределено . Однако известна мутация, которая изменяет размеры организма за счет одного дополнительного клеточного деления. Эта мутация описана у Drosophila melanogaster, она наследуется по рецессивному сцепленному с полом типу. У таких мутантов развитие протекает нормально на протяжении всего эмбрионального периода. Но в тот момент, когда нормальные особи окукливаются и начинают метаморфоз, особи-мутанты продолжают оставаться в личиночном состоянии еще дополнительно 2–5 суток. За это время у них происходит 1–2 дополнительных деления в имагинальных дисках, от количества клеток которых зависит размер будущей взрослой особи. Затем мутанты образуют куколку вдвое крупнее обычной. После метаморфоза несколько удлиненной по времени стадии куколки на свет появляется морфологически нормальная взрослая особь удвоенного размера.

Описан ряд мутаций у мышей, вызывающих снижение пролиферативной активности и следующие за этим фенотипические эффекты – микрофтальмия (уменьшение размеров глазных яблок), отставание роста и атрофия некоторых внутренних органов из-за мутаций, затрагивающих центральную нервную систему.

Таким образом, деление клеток является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.

Миграция клеток имеет очень большое значение, начиная с процесса гаструляции и далее в процессах морфогенеза. Нарушение миграции клеток в ходе эмбриогенеза приводит к недоразвитию органов или к их гетеротопиям , изменениям нормальной локализации. Все это представляет собой врожденные пороки развития. Например, нарушение миграции нейробластов приводит к возникновению островков серого вещества в белом веществе, при этом клетки утрачивают способность к дифференцировке. Более выраженные изменения миграции приводят к микрогирии и полигирии (большое число мелких и аномально расположенных извилин больших полушарий), либо к макрогирии (утолщение основных извилин), или же к агирии (гладкий мозг, отсутствие извилин и борозд больших полушарий). Все эти изменения сопровождаются нарушением цитоархитектоники и послойного строения коры, гетеротопиями нервных клеток в белом веществе. Подобные пороки отмечены и в мозжечке.

Для миграции клеток очень важны их способность к амебоидному движению и свойства клеточных мембран. Все это генетически детерминировано, следовательно, и сама миграция клеток находится под генетическим контролем, с одной стороны, и влияниями окружающих клеток и тканей – с другой.

В процессе эмбриогенеза клетки не только активно перемещаются, но и «узнают» друг друга, т.е. образуют скопления и пласты только с определенными клетками. Значительные координированные перемещения клеток характерны для периода гаструляции. Смысл этих перемещений заключается в образовании обособленных друг от друга зародышевых листков с совершенно определенным взаимным расположением. Клетки как бы сортируются в зависимости от свойств, т.е. избирательно . Необходимым условием сортировки являются степень подвижности клеток и особенности их мембран.

Агрегация клеток зародышевых листков с себе подобными объясняется способностью к избирательному слипанию (адгезии ) клеток одного типа между собой. Одновременно это является проявлением ранней дифференцировки клеток на стадии гаструлы.

Избирательная сортировка клеток возможна за счет того, что контакты между подобными клетками сильнее, чем между чужеродными клетками из-за различий в поверхностном заряде их мембран. Установлено, что поверхностный заряд клеток мезодермы ниже, чем клеток экто- и энтодермы, поэтому клетки мезодермы легче деформируются и втягиваются в бластопор в начале гаструляции. Есть также мнение, что контактные взаимодействия между одинаковыми клетками основываются на антигенных свойствах их мембран.

Избирательная адгезия клеток определенного зародышевого листка друг с другом является необходимым условием нормального развития организма. Примером потери клетками способности к избирательной сортировке и слипанию является их беспорядочное поведение в злокачественной опухоли. По-видимому, в обеспечении сортировки клеток важное место принадлежит генетическим механизмам.

Дифференцировка клеток – это постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного зачатка. Этот процесс сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловленные самим ходом эмбриогенеза, обнаруживаются в период гаструляции.

Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называется гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это свидетельствует о координированности и интегрированности эмбрионального развития.

В настоящее время общепринятой считается точка зрения на дифференцировку клеток в процессе онтогенеза как на результат последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Таким образом, впервые прозвучала идея о дифференциальной экспрессии генов как основном механизме цитодифференцировки. Уровни регуляции дифференциальной экспрессии генов соответствуют этапам реализации информации в направлении ген → полипептид → признак и включают не только внутриклеточные процессы, но и тканевые и организменные.

Эмбриональная индукция – это взаимодействие частей развивающегося зародыша, при котором один участок зародыша влияет на судьбу другого участка. В настоящее время установлено, что первичным эмбриональным индуктором является хордомезодермальный зачаток в спинной губе бластопора. Но явления индукции многочисленны и разнообразны. Кроме первичной индукции, различают вторичные и третичные , которые могут происходить на более поздних, чем гаструляция, этапах развития. Все эти индукции представляют собой каскадные взаимодействия , потому что индукция многих структур зависит от предшествующих индукционных событий. Например, глазной бокал возникает только после развития передней части головного мозга, хрусталик – после формирования бокала, а роговица – после образования хрусталика.

Индукция носит не только каскадный, но и переплетающийся характер, т.е. в индукции той или иной структуры может участвовать не одна, а несколько тканей. Например, глазной бокал служит главным, но не единственным индуктором хрусталика.

Различают два вида индукции. Гетерономная индукция – когда один кусочек зародыша индуцирует иной орган (хордомезодерма индуцирует появление нервной трубки и всего зародыша в целом). Гомономная индукция – индуктор побуждает окружающий материал к развитию в том же направлении, что и он сам. Например, область нефротома, пересаженная другому зародышу, способствует развитию окружающего материала в сторону формирования головной почки, а прибавление в культуру фибробластов сердца маленького кусочка хряща влечет за собой процесс образования хряща.

Для того чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора. Установлена химическая природа индукторов – это могут быть белки, нуклеопротеиды, стероиды и даже неорганические вещества. Но специфичность ответа прямо не связана с химическими свойствами индуктора.

Таким образом, генетический контроль онтогенеза очевиден, однако в процессе развития зародыш и его части обладают способностью к саморазвитию, регулируемому самой целостной развивающейся системой и не запрограммированному в генотипе зиготы.

2. Ведущая роль ядра в регуляции формообразования

Реализация наследственной информации в онтогенезе многоступенчатый процесс. Он включает в себя различные уровни регуляции – клеточный, тканевый, организменный. На каждом этапе развития организма функционирует большое количество генов. Каждый из них контролирует ход той или иной биохимической реакции и через нее принимает участие в осуществлении формообразовательных процессов. Локализация генов в хромосомах ядер определяетведущую роль ядра в регуляции формообразования. Однако по этому поводу длительное время происходили дискуссии, в особенности между эмбриологами и генетиками. Первые отводили основную роль цитоплазме, вторые – ядру. Затем был найден компромиссный вариант, согласно которому ядро отвечает за видоспецифические признаки организмов, а цитоплазма – за более общие признаки.

Правота генетиков была продемонстрирована лишь в 30-е годы ХХ века в опытах физиолога растений Г.Хеммерлинга. Он обнаружил, что у одноклеточной водоросли АсеtаЬulаriа форма шляпки (зонтика) – органа размножения, развивающегося на верхушке стебля, зависит только от ядра. Так, если у водоросли одного вида – АсеtаЬulаriа mediterranea удалить содержащий ядро ризоид и срастить со стебельком ризоид с ядром другого вида – А. wettsteini или А. crenulata, то образуется шляпка, свойственная А. wettsteini или А.crenulata , и наоборот (рис. 15).

В 50-е годы ХХ в. Б.Л.Астауров использовал для доказательства ведущей роли ядра в развитии животных разную чувствительность ядра и цитоплазмы к действию радиации – ядро во много раз чувствительнее к облучению, чем цитоплазма. Исследования проводились на яйцах тутового шелкопряда. Яйца, лишенные женского ядерного аппарата (путем облучения высокой дозой рентгеновских лучей), при оплодотворении необлученной спермой образуют ядро дробления посредством слияния ядер двух спермиев. Соответствующие особи всегда самцы и их легко узнают при помощи генетической маркировки. Если, используя эту методику, соединить цитоплазму яиц одного вида с ядром яиц другого вида тутового шелкопряда, отличающимся по многим морфологическим, физиологическим признакам и поведению, то оказывается, что развивающийся организм целиком и полностью подобен отцовскому, т.е. соответствует информации, содержащейся в ядре.

Аналогичные исследования проводились и с позвоночными животными. Первым этот вопрос исследовал французский эмбриолог К.Гальен-младший. Он использовал метод трансплантации ядер в яйцеклетки амфибий, который, как считают, разработан американскими эмбриологами Бриггсом и Кингом в 50-е годы прошлого столетия и позднее усовершенствован английским ученым Джоном Гердоном. В действительности этот метод был разработан еще в 40-е годы ХХ в. русским ученым, основоположником отечественной экспериментальной эмбриологии Георгием Викторовичем Лопашовым. Суть метода заключается в том, что собственное ядро яйцеклетки удаляется и чужеродное ядро–донор впрыскивается в яйцеклетку.

Именно путем межвидовых пересадок ядер Гальен получил ядерно-цитоплазматические гибриды с разной конституцией. Начиная со стадии ранней гаструлы, у них обнаруживались тяжелые нарушения развития. Однако небольшое число таких гибридов (около 2%) достигает взрослого состояния. Все особи по своим признакам подобны представителям того вида, от которого взято трансплантированное ядро.

Таким образом, можно утверждать, чтоспецифические особенности индивидуального развития контролируются клеточным ядром .

Ядро, несущее наследственный материал, в котором записана программа индивидуального развития, характеризуется следующими особенностями:

– играет ведущую роль в регуляции формообразовательных процессов.

– осуществляет эту роль посредством ядерно-цитоплазматических взаимоотношений, т.е. разная цитоплазма индуцирует разные функциональные состояния находящегося в клетке ядра.

– в ходе регуляции индивидуального развития проявляет периодичность морфогенетической активности.



Рис. 15. Эксперименты Хеммерлинга, доказывающие выработку ядром ацетобулярии вещества, необходимого для регенерации шляпки (Л.И.Корочкин,1999)

ГОУ ВПО «Сургутский государственный университет ХМАО-Югры»

Методическая разработка

лабораторного занятия № 11 для студентов I -курса.

Тема занятия: « Регуляция онтогенеза ».

Выполнил (а) студент (ка) I курса

Медицинского института

31- _____ группы

Ф. И.О._________________________

_________________________

Сургут, 2010 г.

Цель занятия : Изучить основные механизмы регуляции онтогенеза, критические периоды онтогенеза человека; влияние вредных факторов на плод и механизмы образования пороков развития.

Вопросы для самоподготовки студентов:

1. Регуляционный и мозаичный тип развития, их отличия.

2. В чем сущность дифференцировки клеток?

3. Как происходит регуляция ранних стадий эмбрионального развития; когда начинает функционировать геном зародыша?

4. В чем заключается действие генов в раннем развитии?

5. Как изменяется генетическая потенция ядер клеток в процессе развития?

6. Как осуществляется генетическая регуляция дифференци­ровки?

7. Чем отличается взаимодействие клеток в период дробления, гаструляции, органогенеза?

8. Какое значение имеет контакт бластомеров, к чему приво­дит их разъединение?

9. Возможно ли развитие зародыша млекопитающих из смеси клеток двух-трех зародышей?

10. Каковы основные формы взаимодействия клеток в периоды органогенеза?

11. В чем сущность эмбриональной индукции, ее виды?

12. Каковы химическая структура индукторов и механизм их действия?

13. Какое значение имеет нервная система в регуляции онтоге­неза?

14. В чем сущность гуморальной регуляции онтогенеза, виды регуляторов.

15. Каковы механизмы гормональной регуляции в онтогенезе?

16. Какое значение в эмбриогенезе имеют морфогенетические поля?

17. Каковы возможные пути действия факторов среды, вызы­вающие нарушение эмбриогенеза?

18. Почему эмбриопатии характеризуются более глубокими нарушениями, чем фетопатии?

19. Как осуществляется взаимосвязь материнского организма и плода, каковы последствия ее нарушения?

20. В чем разница между наследственными и ненаследственны­ми врожденными заболеваниями?

21. Что такое фенокопии?

22. Нарушения каких процессов в онтогенезе приводят к поро­кам развития?

23. Что такое критические периоды эмбриогенеза?

24. Что такое тератогены; их классификация, механизм действия?

Задание для студентов.

Работа 1. Регуляция развития плацентарных млекопитающих.

Перепишите табл. 1.

Таблица 1

Периоды онтогенеза

Виды регуляции

генетическая

контактное взаимодействие клеток

эмбриональ­ная индукция

морфо генети­ческие поля

нервная

гормональная (гормоны зародыша)

факторы среды

Прогенез

Эмбриогенез:

Зигота

Зародыш на ста­дии дробления

Бластула

Гаструла

Зародыш на ста­дии органогенеза Зародыш в плод­ный период

Постэмбриональный период

Геном матери

Работа 2. Генетическая регуляция развития организма.

Гены регулируют и контролируют развитие организма на всех этапах онтогенеза (рис. 1).

Рис. 1. Генетический контроль развития млекопитающих [Коню­хов Б. В., 1976].

В овогенезе в цитоплазме яйцеклетки синтезируются и от­кладываются материнские РНК, которые несут информацию о белках и контролируют развитие зародыша от зиготы до стадии бластулы. Гены зародыша начинают функционировать у позво­ночных на разных стадиях дробления (например, у человека на стадии двух бластомеров), и продукты их деятельности начина­ют регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы у позвоночных развитие организма регулируется только продуктами деятельности соб­ственных генов зародыша.

Регуляция экспрессии генов в процессе развития организ­мов осуществляется на всех этапах синтеза белка, как по типу индукции, так и по типу репрессии, причем контроль на уровне транскрипции определяет время функционирования и характер транскрипции данного гена.

Разберите некоторые модели генетической регуляции на уровне транскрипции (рис. 2). Зарисуйте модель 1.

Рис. 2. Генетическая регуляция на уровне транскрипции.

а - модель 1: каскадная эмбриональная индукция; б - модель 2: репрессия ко­нечным продуктом; в - модель 3: регуляция экспрессии генов несколькими генами-регуляторами; г - модель 4: регуляция нескольких групп структурных генов одним геном.

Обозначьте:

С – сенсорный ген;

И – ген-интегратор;

П – промотор;

СГ – структурные гены;

O – индуктор;

Δ – репрессор.

Модель 1. Каскадная эмбриональная индукция (рис. 2, а).

Индуктор 1 взаимодействует с сенсорным геном (С), акти­вируя ген-интегратор (И), продукт деятельности которого дей­ствует через промотор (П) на структурные гены (СГ1, СГ2 и СГ3). В свою очередь продукт деятельности СГ3 является ин­дуктором 2 для структурных генов СГ4, СГ5 и т. д.

Модель 2. Репрессия конечным продуктом (рис. 2, б).

Продукты активности структурных генов в свою очередь ре­прессируют деятельность гена, контролирующего синтез ин­дуктора 1.

Модель 3. Регуляция экспрессии генов несколькими гена­ми-регуляторами (рис. 2, в).

Структурные гены активируются или репрессируются про­дуктами действия нескольких генов.

Модель 4. Регуляция нескольких групп структурных генов одним геном (рис. 2, г).

Индукция или репрессия нескольких структурных генов продуктом деятельности одного гена. Этой моделью можно объяснить плейотропное действие генов, влияние половых гормонов и т. д.

Работа 3. Политенные хромосомы.

В создании тканеспецифических продуктов участвует лишь небольшая часть генома. Места активного синтеза мРНК - пу­фы - хорошо видны в политенных (гигантских) хромосомах и представляют собой расплетенные участки хромосом, образую­щие менее компактную структуру.

а. Изучите микропрепарат под микроскопом при большом увеличении и зарисуйте. Обозначьте: 1 - эухроматин, 2 - гетерохроматин, 3 - пуф.

б. Изучите по рис. 3 участок политенной хромосомы, пре­терпевающий пуфинг (по Grossbach, 1973, из Гилберт С., 1994). Зарисуйте рис. 3, г.

Рис. 3. Процесс пуфинга.

а-г - стадии образования пуфа;

Рис. 3. Процесс пуфинга (Продолжение)

д - пуфинг в политенных хромосомах в динамике.

Работа 4. Регуляционная способность ядер. Клонирование.

В онтогенезе при дифференцировке клеток происходит избирательная экспрессия разных частей генома и ограничение генетических потенций у дифференцированных клеток. Одна­ко в ядрах соматических клеток сохраняются все гены, и в соот­ветствующих условиях они могут реактивироваться и обеспе­чить развитие нормального зародыша. Клонирование - это развитие нового организма, являющегося точной генетической копией родительской особи. У видов, размножающихся поло­вым путем, клонирование происходит при пересадке ядер из соматической клетки в энуклеированную яйцеклетку. Молодая особь при клонировании является точной копией организма-донора ядер соматических клеток. В настоящее время получе­ны путем клонирования животные разных классов, в том числе и млекопитающие. Оказалось, что в процессе, развития генетические потенции ядер соматических клеток снижаются, и чем старше донор соматических ядер, тем ниже процент развития клонированных особей. Кроме того, установили, что генетиче­ские потенции разных клеток донора неодинаковы.

Изучите рисунки по пересадке ядер, взятых из соматических клеток на разных стадиях развития лягушки (по Гёрдон, 1965, из Дьюкар Э., 1978) (рис. 4).

Рис. 4. Пересадка ядер из соматических клеток в яйцеклетки лягушки на разных стадиях развития клеток донора.

Работа 5. Взаимодействие бластомеров в период дробления , (лечебный факультет).

а. Влияние положения бластомеров на их дифференцировку. На дифференцировку клетки влияет ее положение в определен­ном месте зародыша в определенное время. У плацентарных животных до завершения восьмиклеточной стадии разные бластомеры не отличаются друг от друга по морфологии , биохимии и потенциям. Однако компактизация (сближение и увели­чение контакта бластомеров с образованием компактного клеточного шара) приводит к образованию наружных и внутрен­них клеток, которые резко различаются по своим свойствам. Наружные клетки формируют трофобласт, а внутренние - зародыш. Опыт по пересадке бластомеров показывает, что образование из бластомеров трофобласта или клеток зародыша оп­ределяется тем, где оказалась клетка - на поверхности или внутри группы клеток.

Изучите рис. 5, а пересадки бластомеров у зародышей мыши [Минц Б., 1970; Hillman et al., 1972].

color:black;letter-spacing:-.25pt">Рис. 5.

Взаимодействие бластомеров в период дробления.

а - пересадка бластомеров зародышам мыши; б - соединение бластомеров у зародышей мыши: 1 -зародыш, 2 - трофобласт; в - механизмы формирова­ния однояйцевых близнецов и двойниковых уродств у человека: 1 - внутрен­ние клетки бластоцисты; 2 - полость бластоцисты; 3 - зародыш; 4 - полость амниона; 5 - полость хориона; 6 - не полностью разъединенные близнецы.

б. Влияние контакта бластомеров на развитие зародыша. Образование однояйцевых близнецов и двойниковых уродств у человека.

При сохранении полного контакта бластомеров развивается один организм. Также один организм развивается при объеди­нении бластомеров нескольких зародышей. После специально­го воздействия бластомеры нескольких четырехклеточных за­родышей могут соединиться с образованием общей морулы. Например, если соединить бластомеры зародышей трех разных линий с контрастной окраской (белой, черной и рыжей), фор­мируется морула, из которой развиваются мыши с разноокрашенными участками кожи. Это связано с перемешиванием бла­стомеров зародышей разных линий мышей, часть из которых пошла на образование зародыша и свидетельствует о том, что наследственный материал бластомеров не смешивается.

Изучите рис. 5,б - соединение бластомеров у зародышей [Гилберт С, 1993].

Потеря контакта между бластомерами изменяет их судьбу. Разъединение клеток зародыша на ранних этапах развития при­водит к образованию идентичных близнецов, так как ранние бластомеры тотипотентны. Неполное разъединение клеток за­родыша приводит к возникновению двойниковых уродств, ко­торые могут быть у разных видов беспозвоночных, позвоноч­ных животных и у человека.

Рассмотрите слайды, таблицы, рисунки с примерами двой­никовых уродств у разных видов животных и человека.

Изучите рис. 5, в, на котором показан механизм образова­ния однояйцевых близнецов и двойниковых уродств у человека [из: Гилберт С., 1993, переработано].

Рис. 5. Продолжение.

Примерно в 33 % случаев разъединение бластомеров идет до образования трофобласта. Близнецы имеют собственные хорион и амнион.

Разъединение бластомеров после образования трофобласта, но до образования амниона происходит примерно в 66 % случаев. Близнецы имеют собственные амниотические оболочки, но находятся в общем хорионе.

Разъединение бластомеров после образования ам­ниона происходит редко, в нескольких процентах случаев. Близнецы имеют общие амнион и хорион.

Неполное разъединение клеток зародыша. Близне­цы имеют общие отделы тела (двойниковое уродст­во).

Работа 6. Клеточные процессы в периоды гаструляции и ор­ганогенеза.

Изучите табл. 2, рис. 6 и 7, слайды и препараты по эм­бриогенезу животных. Перепишите таблицу.

Рис. 6. Последовательные этапы формирования лица (вид спереди). а - 4-недельный зародыш (3,5 мм.); б - 5-недельный зародыш (6,5 мм); в - 5,5-недельный зародыш (9 мм); г - 6-недельный зародыш (12 мм); д - 7-недельный зародыш (19 мм); е - 8-недельный зародыш (28 мм). 1 - лобный выступ; 2 - обонятельная плакода; 3 - носовая ямка; 4 - ротовая пластинка; 5 - ротовое отверстие; 6 - верхнечелюстной отросток; 7 - нижнечелюстная дуга; 8 - гиоидная дуга; 9 - медиальный носовой отросток; 10 - латеральный носовой отросток; 11 - носослезная бороздка; 12 - гиомандибулярная щель; 13 - область филтрума, сформированная слившимися медиальными носовыми отростками; 14 - наружное ухо; 15 - слуховые бугорки вокруг гиомандибулярной щели; 16 - подъязычная кость; 17 - хрящи гортани.

Таблица 2

Формы клеточных взаимодействий

Образование нормальных структур (примеры)

Последствия нарушений межклеточных взаимодействий (примеры)

Клеточные перемещения

Избирательное размножение клеток

Избирательная клеточная гибель

Клеточная адгезия

Клеточные сгущения

Перемещение клеток при гаструляции, при образовании нервной трубки, при перемещении первичных половых клеток.

Закладка зачатков отдельных органов.

Разделение пальцев, гибель эпителиальных клеток при слиянии небных зачатков, носовых отростков.

Гибель нейроэпителиальных клеток при образовании нервной трубки.

Образование нервной трубки из нервной пластинки, слияние зачатков структур лица (небных отростков, носовых отростков между собой и с верхнечелюстными отростками).

Образование зачатков конечностей.

Нарушение образования гаструлы, нервной трубки; нарушение структуры, изменение количества или отсутствия гонад.

Отсутствие органа или его доли.

Синдактилия, расщелина твердого неба, расщелины твердой губы, лица, спинномозговые грыжи.

Спинномозговая грыжа, расщелины твердого неба, верхней губы, лица.

Отсутствие конечностей, дополнительные конечности.

Рис. 7. Развитие неба у зародыша свиньи [Карлсон Б., 1983].

а-г - этапы развития вторичного неба (препарат крыши ротовой полости, х 5); д, е (поперечные срезы, иллюстрирующие до и после опускания языка, 1 - верхняя губа; 2 - срединный небный отросток; 3 - латеральный небный отросток; 4 - носовая перегородка; 5 - язык; 6 - шов неба.

Работа 7. Эмбриональная индукция.

Разберите рис. 8, а, б, зарисуйте и обозначьте основные структуры.

Рис. 8. Эмбриональная индукция почки и зуба у млекопитающих, а - развитие почек: 1 - предпочка. 2 - мезонефральный канал, 3 - мезенхима первичной почки, 4 - первичная почка, 5 - вырост мочеточника вторичной почки, 6 - мезенхима вторичной почки, 7 - зачаток вторичной почки, → ин­дукция; б - ранние стадии развития зуба: I - десна нижней челюсти (вид свер­ху): II - поперечный срез десны; III-VI - стадии развития зуба: 1 - гребень десны, 2 - зубная пластинка, 3 - мезодермальные зубные сосочки, 4 - зача­ток эмалевого органа, 5 - амелобласты, 6 - зачаток эмали, 7 – одонтобласты, 8 - зачаток дентина, 9 - зачаток пульпы, 10 - эмаль, 11 - дентин; → индук­ция; ↔ − взаимная индукция.

Лечебный факультет :

а. Эмбриональная индукция, обусловливающая развитие почек у млекопитающих (рис. 8, а).

Мезонефральный (вольфов) канал индуцирует образование первичной почки. Вырост мочеточника из мезонефрального канала индуцирует образование вторичной почки, которая в свою очередь поддерживает рост мочеточника. Метанефрогенная мезенхима индуцирует ветвление мочеточника. Эпителий разветвлений мочеточника индуцирует мезенхиму к образованию почечных канальцев.

Стоматологический факультет

б. Эмбриональная индукция, обусловливающая развитие зуба у млекопитающих (рис. 8, б) [Дьюкар Э., 1978].

Первый зачаток зубов - зубная пластинка, утолщенная по­лоска эктодермы по гребню десны, развивается независимо от мезодермы. Под зубной пластинкой появляется ряд мезодермальных зубных сосочков, которые индуцируют образование из эктодермы зачатков эмалевого органа (при удалении мезодермальных сосочков зачатки эмалевого органа не образуются). Взаимная индукция между эмалевым органом и мезодермальным зубным сосочком приводит к формированию клеток, об­разующих эмаль, дентин и пульпу. На следующей стадии дифференцировки возникающие эмаль и дентин оказывают взаимное влияние на развитие друг друга.

Работа 8. Взаимосвязь нервной системы и иннервируемого ею органа в онтогенезе.

Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, при­чем эти структуры взаимно стимулируют развитие друг друга. Отсутствие периферических нервов или их повреждение (на­пример, лекарственными препаратами, токсинами токсоплазмы и др.) вызывают нарушение формирования иннервируемых ими структур. Так, например, в Европе родились несколько со­тен детей с отсутствием конечностей, матери которых в период беременности принимали снотворное талидомид.

В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые трав­мы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица (при врожденном параличе VI-VII черепных нервов). Способствуют восстановлению поврежденных струк­тур головного и спинного мозга пассивные движения (для это­го созданы специальные аппараты), массаж и физиотерапевти­ческая стимуляция иннервируемых органов.

При нейрофиброматозе (аутосомно-доминантный тип на­следования) развиваются опухоли периферических нервов. Если заболевание начинается в раннем детстве, то на той сто­роне тела, где развиваются опухоли, возникает гипертрофия костей и мягких тканей. Например, развивается дизморфоз лица (несимметричное, непропорциональное развитие струк­тур, формирующих лицо).

Установлено, что в раннем детстве игры, способствующие движению кистей рук, особенно мелкие, точные формы дея­тельности, стимулируют развитие структур головного мозга, в том числе и развитие интеллекта.

Разберите схемы экспериментов по изучению взаимосвязи нервных центров и иннервируемых органов.

Удаление нерва на левой стороне зародыша аксолотля при­вело к отсутствию конечности на оперированной стороне тела. Отсутствие конечности может быть обусловлено действием нейротропных тератогенов (токсины при токсоплазмозе, тали­домид и др.) (рис. 9, а).

Удаление зачатка конечности у зародыша аксолотля приво­дит к уменьшению размеров ганглиев и рогов серого вещества спинного мозга на оперированной стороне (рис. 9, б).

Рис. 9. Взаимосвязь нервных центров и иннервируемых органов [Дьюкар Э., 1978, с изменениями].

а - влияние спинномозговых нервов на развитие конечности: 1 - спинной мозг, 2 - спинномозговой нерв, иннервирующий конечность, 3 - спинномоз­говой ганглий, 4 - конечность; б - влияние зачатка конечности на развитие сегментов спинного мозга (поперечный сред зародыша аксолотля с удаленным зачатком конечности: 1 - спинномозговой ганглий, 2 - спинномозговой нерв, 3 - дорсальные рога серого вещества спинного мозга, 4 - вентральные рога се­рого вещества спинного мозга.

Работа 9. Гормональная регуляция онтогенеза у плацентар­ных млекопитающих.

Изучите по табл. 3 влияния гормонов на процессы разви­тия организма.

Таблица 3

Источник образования

гормона

Гормоны

Основные эффекты

Гипоталамус

Гипофиз

Эпифиз (шишковид­ное тело)

Щитовид­ная железа

Поджелудоч­ная железа

Надпочеч­ники

Яичники:

фолликулы

желтое тело

Плацента

Семенники

Тимус

Либерины

Статины

Гонадолиберин

Соматропный гормон

Тиреотропный гормон(ы)

Адренокортикотропный гормон (АКТГ)

Гонадотропины:

а) фолликулостимулирующий гормон (ФСГ)

б) лютеинизирующий гормон

(ЛГ)

в) пролактин (лютеотропный гормон - ЛТГ)

Мелатонин (син­тезируется но­чью)

Серотонин (син­тезируется днем)

Тироксин

Инсулин

Кортизол

Эстрогены

Прогестерон

Прогестерон

Хорионический соматомаммотропин (плацен­тарный гормон роста)

Тестостерон

Фактор, ингибирующий парамезонефральные протоки

Дигидротестостерон

Тимозин

В раннем эмбриогенезе гормоны ги­поталамуса влияют на дифференцировку и миграцию нейронов.

В позднем эмбриогенезе и постна­тальном периоде - регулируют разви­тие опосредованно путем изменения синтеза гормонов гипофиза.

Усиливают синтез гормонов аденогипофиза.

Тормозят синтез гормонов аденогипофиза.

Определяет момент наступления по­ловой зрелости и характер полового поведения.

Усиливает пролиферацию клеток и синтез белка. В постнатальном перио­де регулирует рост.

Ускоряет рост и дифференцировку клеток щитовидной железы.

Стимулирует рост надпочечников и продукцию стероидов.

Усиливают пролиферацию стволовых клеток, рост фолликулов в яичниках, стимулируют рост семенных канальцев и семенников, образование поло­вых гормонов в гонадах. Инициируют гаметогенез.

Поддерживает желтое тело беремен­ности в активном состоянии. Стиму­лирует рост молочной железы и секрецию молока.

Регулирует суточные биологические ритмы, половое созревание и репро­дуктивные функции.

Чувствительные к серотонину нейро­ны регулируют поведение, сон, про­цессы терморегуляции.

Регуляция двигательной активности пищеварительного тракта.

Повышает интенсивность обмена ве­ществ и синтеза белка; регулирует развитие головного мозга, рост и про­порции тела.

Необходим для нормального развития производных кожи. Инициирует дифференцировку молочной железы. Усиливает пролиферацию.

Необходим для нормального развития многих органов на поздних стадиях он­тогенеза. Стимулирует поздние стадии дифференцировки молочных желез.

Стимулируют развитие женских вто­ричных половых признаков; способст­вуют пролиферации и секреции в эпи­телиальных клетках матки; начальных изменений в молочных железах.

Сохранение беременности; дальнейшая дифференцировка молочных желез.

Дальнейшая пролиферация эпителия матки и сохранение беременности; дальнейшая дифференцировка мо­лочных желез.

Действие, сходное с действием гормо­на роста и пролактина гипофиза.

Определяет развитие мужских поло­вых путей, семенников, вторичных половых признаков и гормональной функции гипоталамуса (в эмбриогенезе), ингибирует развитие молочных желез, регулирует рост тела.

Регрессия парамезонефральных мюллеровых протоков.

Развитие предстательной железы, пениса, мошонки.

Пролифирация Т-лимфоцитов.

Работа 10.

Изучите таблицу 4, разберите и зарисуйте схему 1, приведите примеры прямого и опосредованного повреждения зародыша.

Таблица 4

Факторы

Основные механизмы нарушений

Эмбрио - и фетопатии

I. Неполноценное питание матери

1. Голодание и недоедание

2. Дефицит белка

3. Дефицит вита­минов (часто без гиповитаминоза у матери):

витамина В2

витамина С

витамина Е

фолиевая кислота

4. Избыток витаминов:

витамина А

витамина С

II. Заболевания матери

1. Ревматические пороки сердца

2. Ненаследственные врожден-ные пороки сердца

3. Гипертониче­ская болезнь

4. Анемия

5. Сахарный диабет

6. Тиреотоксикоз

7.Патология надпочечников

8. Иммунологи­ческий конфликт (по резус-факто­ру и системе АВ0; наиболее часто несовмес­тимы: 0 - А, 0 - В, А - В, В - А, комбинации групп крови ма­тери и плода)

III. Внутриутроб­ные инфекции

1.Вирус краснухи

2. Вирус гриппа

3. Вирус полиомиелита

4. Вирусный ге­патит (болезнь Боткина)

Токсоплазмоз

IV. Ионизирующая радиация

V. Влияние хи­мических соеди­нений, в том чис­ле лекарственных веществ (более 600 соединений)

Никотин

Алкоголь

Нарушение трофики за­родыша.

Нарушение метаболизма у зародыша.

Нарушение окислитель­но-восстановительных процессов в эпителии.

Нарушение роста, обра­зование ферментов био­логического окисления.

Нарушение процессов окисления, образования соединительной ткани, биосинтеза.

Нарушение окисления жиров, приводящее к по­явлению токсичных про­дуктов.

Нарушение синтеза ряда аминокислот, метальных групп.

Нарушение роста, окислительно-восстановительных процессов.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плацен­ты.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плаценты.

Гипоксия, нарушение маточно-плацентарного кровообращения, морфофункциональные на­рушения плаценты.

Нарушается транспорт кислорода к плоду, де­фицит железа, морфоло­гические изменения пла­центы.

Гормональные сдвиги, гипергликемия и кетоацидоз, ухудшение маточно-плацентарного кровообращения, пато­логические изменения в плаценте.

Повышенное выделение гормонов щитовидной железы.

Недостаток или избыток гормонов надпочечников.

Проникают через пла­центу резус-антитела. Проникновение через плаценту неполных изоиммунных антител А и В, которые вызывают ге­молиз эритроцитов пло­да. Выделившийся не­прямой билирубин явля­ется сильным тканевым токсином.

Инфицирование зароды­ша, особенно в первые три месяца развития.

Инфицирование плода, интоксикация организма матери, гипертермия, нарушение маточно-плацентарного кровообра­щения.

Вирус переходит через плаценту, вызывая забо­левание.

Патологические изменения материнского организма, изменения в плаценте.

Поражение зародыша проникающими радиацией и токсичными продуктами поврежденных тканей.

Непосредственное дейст­вие на зародыш. Наруше­ние структуры и функ­ции плаценты. Патологи­ческие изменения в мате­ринском организме.

Прямое токсическое действие на плод, пла­центу и организм матери.

Повреждение гамет, ге­неративные мутации. Прямое токсическое действие.

Гипотрофия плода, различные аномалии развития, преимущественно центральной нервной системы, мертворождение, ослабленные, склонные к заболевани­ям дети.

Дефекты органов зрения и мочеполовой системы.

Деформация конечно­стей, расщепление твер­дого неба, гидронефроз, гидроцефалия, аномалии сердца и др.

Возможны гибель заро­дыша, выкидыш.

Аномалии мозга, глаз, скелета.

Пороки сердца и сосудов.

Расщепление твердого неба, анэнцефалия.

Увеличивается вероят­ность выкидыша.

Гипотрофия плода, функциональная незре­лость, аномалии органов и систем, преимущест­венно сердечно-сосуди­стой. У детей часто встречаются инфекционно-аллергические за­болевания и нарушения нервной системы.

Гипотрофия плода. По­роки развития, в основ­ном сердца и сосудов.

Гипотрофия плода, на­рушения сердечно-сосу­дистой системы. Повы­шенная заболеваемость у детей.

Гибель плода, наруше­ние центральной нерв­ной системы, анемия у детей.

Гибель плода, недоно­шенные, незрелые с повышенной массой плоды, функциональная не­зрелость поджелудочной железы, легких, реже из­менения щитовидной железы, почек. Встреча­ются анэнцефалия, гид­ронефроз и другие нарушения центральной нервной системы

Нарушение формирова­ния центральной нерв­ной системы, щитовид­ной железы и, меньше, других желез внутренней секреции. Реже аномалии сердечно-сосудистой системы, костно-мышечной, половой и др.

Функциональная неполно­ценность надпочечников.

Гемолитическая болезнь плода и новорожденного.

Аномалии сердца, мозга, органов слуха, зрения и др.

Аномалии половых орга­нов, катаракта, «заячья губа».

Врожденный полиомие­лит.

Уродства на разных стади­ях развития. Врожденный вирусный гепатит, ослож­ненный циррозом печени; задержка развития.

Уродства головного моз­га, глаз, конечностей, «волчья пасть», пороки сердца, заболевания эн­докринных органов.

Врожденная лучевая бо­лезнь. Наиболее часто паралич нервной системы. Могут быть анома­лии глаз, сосудов, легких, печени, мочеполовых ор­ганов, конечностей.

Различные пороки раз­вития, зависящие от ве­щества, дозы и срока по­ступления.

Гипотрофия, склонность детей к респираторным заболеваниям.

Умственная отсталость, психические заболева­ния, пороки сердца, эпи­лепсия, алкогольное по­ражение плода.

Схема 1. Воздействие вредных факторов среды на зародыш.

Работа 11. Критические периоды в онтогенезе человека.

Изучите и перепишите табл. 5.

Таблица 5

Периоды онтогенеза человека

Критические периоды

Возможные нарушения развития

Предымплантаци­онный и имплантационный

Период гисто - и органогенеза и начала плацентации

Перинатальный пе­риод (роды)

Период новорожденности

Подростковый (пу­бертатный)

Климактерический

Для всего зародыша

Для разных органов и систем не совпадают по времени

Для всего организма и отдельных органов и систем

Для всего организ­ма и отдельных ор­ганов и систем

Для всего организ­ма и отдельных ор­ганов и систем

Гибель зародыша

Двойниковые уродства

Наследственные болезни

Пороки и аномалии развития различных органов и систем, гибель зародыша

Травмы, детский церебральный паралич, слабоумие, гибель

Высокая вероятность перегревания, переохлаждения, патологии различных организмов и систем, неспецифических инфекций и гибели

Повышен риск проявления ненаследственных заболеваний, нарушения обмена веществ, подростковых нарушений поведе­ния, психической ранимо­сти, агрессивности . Увели­чивается смертность

Возрастает риск развития соматических и психиче­ских болезней, увеличива­ется частота возникнове­ния опухолей. Повышается смертность

Работа 12. Классификация и механизмы образования пороков развития.

Изучите и перепишите информацию по классификации механизмов образования пороков развития.

I. По этиологическому признаку.

1. Наследственные: а) генеративные мутации (наследственные болезни); б) мутации в зиготе и бластомерах (наследственные болезни, мозаицизм).

2. Ненаследственные: а) нарушение реализации генетической информации (фенокопии); б) нарушение взаимодействия клеток и тканей; пороки развития органов и тканей (тератомы, кисты); в) соматические мутации (врожденные опухоли.)

3. Мультифакториальные.

II. По периоду онтогенеза.

1. Гаметопатии: а) наследственные; б) ненаследственные (перезревание гамет).

2. Бластопатии до 15-го дня; а) наследственные болезни (мозаицизм - зародыш состоит из клеток с нормальным и атипичным набором хромосом); б) не наследственные (двойниковые уродства, циклопия, сиреномелия).

3. Эмбриопатии до конца 8-й недели: большинство поро­ков развития, пороки, обусловленные действием тератогенов.

4. Фенопатии от 9 нед. до родов. Пороки этой группы встре­чаются редко: остатки эмбриональных структур (персистирование); сохранение первоначального расположения органов, например крипторхизм; недоразвитие отдель­ных органов или всего плода, отклонения в развитии органов.

5. Пороки, возникающие в постнатальный период (возника­ют реже, чем вышеуказанные пороки, обусловлены трав­мами или заболеваниями).

Контроль итогового уровня знаний:

Тестовые задания

1. Выберите один правильный ответ.

УЧЕНИЕ О ЗАРОДЫШЕВОМ РАЗВИТИИ ОРГАНИЗМОВ ПУТЕМ ПОСЛЕДОВАТЕЛЬНЫХ ОБРАЗОВАНИЙ НО­ВЫХ СТРУКТУР НАЗЫВАЕТСЯ:

1. Преформизм.

2. Эпигенез.

3. Трансформизм.

4. Витализм.

2. Выберите один правильный ответ.

ГЕНЕТИЧЕСКАЯ РЕГУЛЯЦИЯ ОНТОГЕНЕЗА У ПОЗВО­НОЧНЫХ ОСУЩЕСТВЛЯЕТСЯ ПУТЕМ:

1. Уменьшения количества генов в процессе развития.

2. Репрессии генов.

3. Дерепрессии генов.

4. Дерепрессии и репрессии генов.

3. Выберите один правильный ответ.

ПРИ КЛОНИРОВАНИИ РЕГУЛИРУЮТ РАЗВИТИЕ ЗА­РОДЫША ГЕНЫ:

1. Сперматозоида.

2. Яйцеклетки.

3. Сперматозоида и яйцеклетки.

4. Соматической клетки.

4. Выберите один правильный ответ.

ОДНОЯЙЦОВЫЕ БЛИЗНЕЦЫ ОБРАЗУЮТСЯ В РЕЗУЛЬТАТЕ;

1. Разъединения клеток зародыша на стадии гаструлы.

2. Разъединения клеток зародыша на стадии дифференцировки зародышевых листков.

3. Полного расхождения бластомеров.

4. Неполного расхождения бластомеров.

5. Выберите несколько правильных ответов.

ПРИ ОБРАЗОВАНИИ НЕРВНОЙ ТРУБКИ ПРОИСХОДИТ:

1. Избирательное размножение клеток.

2. Сгущение мезодермальных клеток.

3. Избирательная гибель клеток.

4. Адгезия клеток.

6. Выберите один правильный ответ.

ЭМБРИОНАЛЬНАЯ ИНДУКЦИЯ НАЧИНАЕТ РЕГУЛИ­РОВАТЬ РАЗВИТИЕ ПОЗВОНОЧНЫХ В ПЕРИОД:

1. Дробления.

2. Ранней гаструляции.

3. Нейруляции.

4. Органогенеза.

7. Выберите несколько правильных ответов.

СТАДИЯ ЗАВИСИМОЙ ДИФФЕРЕНЦИРОВКИ КЛЕТОК ХАРАКТЕРИЗУЕТСЯ:

1. Повышением чувствительности к действию индукторов.

2. Понижением чувствительности к действию индукторов.

3. Отсутствием способности к трансдифференцировке.

4. Способностью к трансдифференцировке.

8. Выберите один правильный ответ.

ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ РАЗВИТИЯ У МЛЕКО­ПИТАЮЩИХ НАЧИНАЕТСЯ В ПЕРИОД:

1. Гаструляции.

2. Дробления.

3. Гисто - и органогенеза.

4. Плодный.

9. Выберите несколько правильных ответов.

НАИБОЛЬШАЯ ЧУВСТВИТЕЛЬНОСТЬ ОРГАНОВ ЗАРО­ДЫША К ДЕЙСТВИЮ ТЕРАТОГЕНА В ПЕРИОДЫ:

1. Закладки зачатков органов.

2. Закладки новых структур органа.

3. Дифференцировки клеток органа.

4. Роста органа.

10. Установите соответствие.

ПОРОКИ РАЗВИТИЯ: МЕХАНИЗМЫ ВОЗНИКНО ВЕНИЯ:

1. Наследственные. а) генеративные мутации;

2. Ненаследственные. б) мутации в бластомерах;

в) мутации в клетках зачатков органов;

г) нарушение функций генов;

д) нарушение закладки органов.

Термины:

Адгезия, биологическая смерть, взрослое состояние, гуморальной регуляции онтогенеза, дефинитивные структуры органов, д орепродуктивный период, з ародыш, зародышевые оболочки, критический период развития, критические периоды эмбриогенеза , л ичиночное развитие, развитие половозрелого организма, р епродуктивный период, п острепродуктивный период, половое созревание, прямое развитие, непрямое развитие (р азвитие с метаморфозом), сиреномелия, старение, циклопия, ю венальный период, эмбриональной индукции.

Основная литература

1. Биология / Под ред. . - М.: Высшая школа, 2001. - Кн. 1. - С. 150, 280-282, 294-295, 297-298, 317-368, 372, 409-418.

2. Пехов и общая генетика. - М.: Изд-во РУДН, 1993. - С. 166, 201-219.

Дополнительная литература

1. , Белоусов индивидуального развития жи­вотных. - М.: Высшая школа, 1983.

2. Гилберт С. Биология развитая. - М.: Мир, 19^9,3, т. 1; 1994, т. 2; 1995, т. 3.

Онтогенез (от греч. ontos - сущее и genesis - развитие) - индивидуальное развитие каждой отдельной особи. Это совокупность последовательных взаимосвязанных событий, закономерно совершающихся в процессе жизненного цикла каждого организма.

Жизненный цикл одноклеточных начинается от деления материнской клетки и продолжается до следующего деления дочерней.

Жизненный цикл многоклеточных начинается с одной или группы клеток (при вегетативном размножении), от зиготы (при половом размножении) и заканчивается смертью.

В онтогенезе многоклеточных организмов с половым размножением выделяют три периода.

1. Прогенез (предзиготный) - период формирования половых клеток и оплодотворение.

2. Эмбриогенез (зародышевый) - период от зиготы до рождения или выхода из яйцевых оболочек.

3. Постэмбриональный (послезародышевый), включающий в себя периоды:

Дорепродуктивный - до полового созревания;

Репродуктивный - взрослое состояние, в котором организм выполняет свою главную биологическую задачу - воспроизведение особей нового поколения; в этом периоде начинаются жизненные циклы потомков;

Пострепродуктивный - старение и смерть организма. Особенности онтогенеза особей каждого вида сложились в процессе

исторического развития вида - в процессе филогенеза.

Однако в основе онтогенеза каждого многоклеточного организма лежат общие механизмы роста и развития, осуществляющиеся через процессы деления клеток, их дифференцировки, морфогенетического движения.

Два главных принципа онтогенеза - дифференциация (специализация его отдельных частей) и интеграция - объединение отдельных

частей и подчинение их единому организму, проявляются на всех этапах онтогенеза и на всех уровнях организма.

Согласно современным представлениям, в клетке, дающей начало новому организму, содержится вся генетическая программа одного (при бесполом размножении) или двух родителей (при половом).

Онтогенез - это последовательная реализация генетической программы в конкретных условиях среды, поэтому конечный результат зависит не только от генотипа, определяющего общее направление морфогенетических процессов, но и от средовых факторов.

Онтогенетические процессы контролируются взаимодействием многих факторов: генетических, индуктивным взаимодействием клеток, тканей, органов зародыша, эндокринной, нервной и иммунной системами.

Тема 3.1. Онтогенез. Общие закономерности

прогенеза

Цель. Знать особенности гаметогенеза у человека, биологическое значение и сущность мейоза, строение половых клеток, стадии оплодотворения.

Задание для студентов

Работа 1. Гаметогенез

Разберите схему гаметогенеза, отметив сходство и различия в процессах созревания мужских и женских гамет. Заполните и перепишите таблицу, указав в каждом периоде гаметогенеза тип деления, название клеток, набор хромосом и количество ДНК в них.

Гаметогенез. Особенности и отличия

Работа 2. Ово- и сперматогенез у человека

Изучите и перепишите таблицу, обратив внимание на особенности созревания мужских и женских гамет у человека.

Особенности ово- и сперматогенеза у человека

Период

Сперматогенез

Овогенез

Размножение

Пролиферация сперматогониев начинается в раннем эмбриональном периоде, наиболее интенсивная - с периода полового созревания, периодические волны митозов возникают весь репродуктивный период

Пролиферация овогониев начинается в раннем эмбриональном периоде, наиболее интенсивная - между 2-м и 5-м месяцами эмбриогенеза. К 7-му месяцу в эмбриональном яичнике около 7 млн овогониев. Позже часть овогониев дегенерирует

Подготовка к мейозу - автосинтетическая интерфаза прослеживается весь репродуктивный период

Подготовка к мейозу - автосинтетическая интерфаза начинается на 3-м месяце эмбриогенеза, заканчивается к рождению - 3 году после рождения. К моменту рождения в яичнике девочки около 100 000 овоцитов I порядка

Созревание (мейоз)

1 - редукционное деление

1-е мейотическое деление начинается в период полового созревания, продолжается 7-8 нед, заканчивается образованием 2-х сперматоцитов 2-го порядка

1-е мейотическое деление начинается на 7-м месяце эмбриогенеза, характеризуется длительной профазой с периодами «малого» и «большого» роста. В период «малого»роста хромосомы приобретают структуру «ламповых щеток», наблюдается экстракопирование (амплификация) генов, усиленный синтез иРНК, тРНК, белков, ферментов, витаминов, рибосом, мембран, митохондрий, накопление эндогенного желтка, продуцируемого овоцитом.

Окончание табл.

Период

Сперматогенез

Овогенез

2 - эквационное

Продолжается 8 ч, заканчивается образованием 4-х сперматид

В период «большого» роста происходит интенсивное запасание экзогенного желтка, продуцируемого печенью, поступающего через фолликулярные клетки. На стадии диакинеза деление блокируется - блок-1. В период полового созревания (под действием половых гормонов) блок-1 снимается. 1-е мейотическое деление заканчивается образованием крупного овоцита 2-го порядка и первого редукционного тельца. Начинается 2-е мейотическое деление, которое блокируется на стадии метафазы - блок-2, происходит овуляция. Процесс повторяется с месячной периодичностью для каждого последующего овоцита до начала климактерического периода. За весь продуктивный период овулирует 300-400 овоцитов.

2-е мейотическое деление завершается после оплодотворения образованием овотиды и второго редукционного тельца

Формирование

Продолжается 10 дней, происходит дифференцировка клеток, формирование головки, шейки, хвостика, акросомы, концентрация митохондрий в средней части

Работа 3. Сперматогенез в семеннике крыс

Рассмотрите под большим увеличением микроскопа поперечный срез семенного канальца крыс. Сравните препарат с прилагаемым рисунком, найдите клетки, находящиеся на разных стадиях сперматогенеза.

Рис. 1. Участок поперечного среза семенного канальца крысы: 1 - ограничивающая мембрана; 2 - сперматогоний тип (А) - «долгосрочный резерв»; 3 - сперматогоний тип (В) - «митотически активные клетки»; 4 - сперматоцит первого порядка; 5 - сперматоцит второго порядка; 6 - сперматиды на ранней стадии развития; 7 - сперматиды на поздней стадии развития; 8 - сперматозоиды; 9 - клетка Сертоли

Работа 4. Строение сперматозоидов различных позвоночных

Рассмотрите под большим увеличением микроскопа внешнее строение сперматозоидов:

б) морской свинки;

в) петуха.

Работа 5. Ультрамикроскопическое строение сперматозоида

Зарисуйте строение сперматозоида (рис. 2). Обозначьте основные структуры.

Рис. 2. Сперматозоид человека по данным электронной микроскопии (схема): 1 - головка; 2 - акросома; 3 - наружная мембрана акросомы; 4 - внутренняя мембрана акросомы; 5 - ядро (хроматин); 6 - хвост (волокнитая оболочка; 7 - шейка (переходный отдел); 8 - проксимальная центриоль; 9 - средний отдел; 10 - митохондриальная спираль; 11 - дистальная центриоль (терминальное кольцо); 12 - осевые филаменты хвоста

Работа 6. Строение яйцеклетки млекопитающих

Рассмотрите под большим увеличением микроскопа яичник кошки. Найдите зрелый фолликул с овоцитом 1-го порядка. Сравните препарат с прилагаемым рисунком. Зарисуйте строение яйцеклетки млекопитающего, отметив основные структуры.

Рис. 3. Строение яйцеклетки млекопитающих:

1 - ядро; 2 - ядрышко; 3 - цитоплазматическая мембрана (оволемма); 4 - микроворсинки цитоплазматической мембраны - микровилли; 5 - цитоплазма; 6 - кортикальный слой; 7 - фолликулярные клетки; 8 - отростки фолликулярных клеток; 9 - блестящая оболочка; 10 - желточные включения

Работа 7. Типы яйцеклеток хордовых и позвоночных

Заполните таблицу типов яйцеклеток у хордовых и позвоночных, указав количество и распределение желтка в цитоплазме.

Типы яйцеклеток у хордовых и позвоночных

Работа 8. Оплодотворение

Рассмотрите и зарисуйте схему (рис. 4) этапов оплодотворения у животных. Обратите внимание на акросомальную и кортикальную реакции, на формирование оболочки оплодотворения.

Рис. 4. Этапы оплодотворения:

1 - ядро сперматозоида; 2 - проксимальная центриоль; 3 - акросома; 4 - ферменты акросомы; 5 - блестящая оболочка; 6 - цитоплазматическая мембрана; 7 - кортикальный слой; 8 - желточная оболочка; 9 - акросомная нить; 10 - оболочка оплодотворения; 11 - гиалиновая оболочка; 12 - перивителлиновое пространство; 13 - сперматозоиды

Работа 9. Внутренняя фаза оплодотворения

Рассмотрите под большим увеличением микроскопа препарат - оплодотворения яйцеклетки аскариды, найдите, заштрихуйте и обозначьте:

а) стадию двух пронуклеусов;

б) стадию синкарион.

Рис. 5. Фазы оплодотворения:

1 - оболочка яйцеклетки; 2 - цитоплазма; 3 - мужской пронуклеус; 4 - женский пронуклеус; 5 - пронуклеусы на стадии синкарион; 6 - редукционные тельца

Приложение 1

Хромосомы типа «ламповых щеток»

(по Альберте, Брей, Льюис, 1994)

В длительной диплотене мейоза овоцита выделяют особую фазу диктиотены, в которой хромосомы приобретают структуру типа «ламповых щеток». Каждый бивалент состоит из 4 хроматид, образующих симметричные петли хроматина разного размера длиной 50-100 тыс. п.н., вдоль петель идет синтез РНК. Хромосомы типа «ламповых щеток» активно транскрибируются для накопления генных продуктов в цитоплазме ооцита. Эти хромосомы обнаружены в ооцитах рыб, земноводных, рептилий и птиц.

Приложение 2

Дифференцировка цитоплазмы яйца после оплодотворения

Карта презумптивных органов яйца:

а - рыбы; б - рептилии и птицы; в - амфибии

Топография закладок органов зародыша амфибии к началу гаструляции:

1 - эктодерма; 2 - нервная пластинка; 3 - хорда; 4 - кишечная эктодерма; 5 - мезодерма

Топография органов эмбриона амфибии на более поздних стадиях развития: 1 - покровная ткань (эпидермис); 2 - нервная трубка с головным мозгом; 3 - хорда; 4 - кишка с жаберными щелями; 5 - оболочка хорды; 6 - сердце

Вопросы для самоподготовки

1. Что такое онтогенез? Представления об онтогенезе: эпигенез, преформизм, современное.

2. Назовите основные периоды онтогенеза человека.

3. В чем сущность и значение предзиготного периода - прогенеза?

4. Назовите периоды гаметогенеза.

5. В чем отличия сперматогенеза от овогенеза?

6. Какие существуют типы яйцеклеток по количеству и распределению желтка?

7. С чем связано изменение количества желтка в яйцеклетках в процессе филогенеза позвоночных?

8. Оплодотворение. Биологическая сущность. Партеногенез. Гиногенез. Андрогенез.

9. Биологический смысл акросомальной и кортикальной реакций в процессе оплодотворения.

10. Генетические процессы в пронуклеусах внутренней стадии оплодотворения.

11. Что такое ооплазматическая сегрегация? Какова ее роль в дальнейшем развитии яйцеклетки?

12. Какие основные проблемы характерны для прогенеза человека? В чем заключаются современные возможности их разрешения?

Тестовые задания

1. МЕЙОЗ СООТВЕТСТВУЕТ СТАДИИ ГАМЕТОГЕНЕЗА:

1. Размножения

3. Созревания

4. Формирования

2. ОВУЛЯЦИЯ ОСУЩЕСТВЛЯЕТСЯ НА СТАДИИ:

1. Овогония

2. Овоцита 1-го порядка

3. Овоцита 2-го порядка

4. Овотиды

5. Дифференцированной яйцеклетки

3. У МЛЕКОПИТАЮЩИХ И ЧЕЛОВЕКА ОПЛОДОТВОРЕНИЕ ПРОИСХОДИТ НА СТАДИИ:

1. Овогония

2. Овоцита 1-го порядка

3. Овоцита 2-го порядка

4. Овотиды

5. Зрелой дифференцированной яйцеклетки

4. СТАДИЯ РОСТА В СПЕРМАТОГЕНЕЗЕ ЗАКАНЧИВАЕТСЯ

ОБРАЗОВАНИЕМ:

1. Сперматогония

2. Сперматоцита 1-го порядка

3. Сперматоцита 2-го порядка

4. Сперматиды

5. Сперматозоида

5. БИОЛОГИЧЕСКИЙ СМЫСЛ КОРТИКАЛЬНОЙ РЕАКЦИИ:

1. Контакт гамет организмов одного вида

2. Проникновение сперматозоида в яйцеклетку

3. Сближение пронуклеусов

4. Образование оболочки оплодотворения, обеспечение моноспермии

5. Новые комбинации наследственного материала

6. ОСОБЕННОСТИ ЖЕНСКИХ ГАМЕТ МЛЕКОПИТАЮЩИХ:

1. Подвижность

2. Выраженный кортикальный слой

3. Высокий ядерно-цитоплазматический показатель

4. Акросома

5. Желток в цитоплазме

6. Блестящая оболочка

7. ФОРМЫ ПОЛОВОГО РАЗМНОЖЕНИЯ, ПРОХОДЯЩИЕ БЕЗ ОПЛОДОТВОРЕНИЯ:

1. Копуляция

2. Конъюгация

3. Гиногенез

4. Полиэмбриония

5. Андрогенез

Установите соответствие.

8. ТИПЫ ЯЙЦЕКЛЕТОК:

1. Изолецитальные

2. Телолецитальные умеренно

3. Телолецитальные резко

ХОРДОВЫЕ И ПОЗВОНОЧНЫЕ ЖИВОТНЫЕ:

а) Плацентарные млекопитающие и человек

б) Яйцекладущие млекопитающие

в) Рептилии

г) Амфибии

д) Хрящевые рыбы

е) Костные рыбы

9. В КЛЕТКАХ НА РАЗНЫХ СТАДИЯХ ОВОГЕНЕЗА:

1. Овогониях

2. Овоцитах 1-го порядка

3. Овоцитах 2-го порядка

4. Овотидах

НАБОР ХРОМОСОМ И КОЛИЧЕСТВО ДНК:

10. НАБОР ХРОМОСОМ И КОЛИЧЕСТВО ДНК:

В КЛЕТКАХ НА РАЗНЫХ СТАДИЯХ СПЕРМАТОГЕНЕЗ

а) Сперматогониях после митоза

б) Сперматоцитах 1-го порядка

в) Сперматоцитах 2-го порядка

г) Сперматогониях перед митозо

д) Сперматозоидах

Литература

Основная

Руководство к практическим занятиям по биологии / Под ред.

В.В. Маркиной. - М.: Медицина, 2006. - С. 96-104.

Биология / Под ред. Н.В. Чебышева. - М.: ВУНМЦ, 2000.

Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2007.

Дополнительная

Гилберт С. Биология развития: в 3-х т. - М.: Мир, 1998.

Фогель Ф, Матульски А. Генетика человека: в 3-х т. - М.: Мир,

Тема 3.2. Общие закономерности эмбриогенеза

Цель. Изучить стадии эмбриогенеза животных и человека, способы дробления и гаструляции, формирование зародышевых листков, формирование тканей и органов, провизорные органы у анамний и амниот и их функции.

Задание для студентов

Работа 1. Основные этапы эмбриогенеза у хордовых и человека

Используя муляжи, микропрепараты, таблицы, изучите основные стадии эмбриогенеза у животных. Отметьте особенности развития хордовых животных. Зарисуйте основные стадии эмбриогенеза на примере зародыша ланцетника (рис. 1), обозначьте части зародыша на разных этапах развития.

Рис. 2. Стадии развития человека (из разных источников):

а - дробление; б - бластоциста; в - 8-дневный эмбрион; г - 13-14-дневный эмбрион; д - 30-дневный эмбрион; е -эмбрион 5 нед (в полости матки); ж - плод в полости матки;

1 - крупные бластомеры; 2 - мелкие бластомеры; 3 - эмбриобласт; 4 - бластоцель; 5 - трофобласт; 6 - энтодерма; 7 - полость амниона; 8 - амнион; 9 - эмбрион; 10 - желточный мешок; 11 - стебелек; 12 - ворсины хориона; 13 - плацента; 14 - аллантоис; 15 - пупочный канатик; 16 - плод; 17 - шейка матки

Работа 3. Гисто- и органогенез. Производные зародышевых листков

Изучите и перепишите таблицу.

Производные зародышевых листков

Работа 4. Органогенез на примере развития начального отдела пищеварительной системы

Используя рисунки, материалы лекций и учебника, изучите особенности развития начального отдела пищеварительной системы человека.

Развитие полости рта

Первым зачатком ротовой полости является эктодермальная впадина - ротовая ямка (стомодеум, stomodaeum). Она вначале отделена от полости глотки ротоглоточной мембраной, которая затем прорывается. Ротовая ямка является не только закладкой полости рта, но и полости носа. Полость рта и носовая полость разделяются твердым и мягким нёбом, это происходит на 7-й неделе эмбриогенеза.

Эпителий крыши стомодеума образует впячивание в сторону промежуточного мозга - карман Ратке - будущая передняя доля гипофиза. В дальнейшем карман Ратке полностью отделяется от стомодеума и образует переднюю (аденогипофиз) и промежуточную доли гипофиза (эндокринная железа).

Рис. 3. Лицевая область у зародышей человека:

а - четырехнедельный зародыш; б - пятинедельный зародыш; в - зародыш в возрасте 5,5 нед;

1 - выпячивание, обусловленное средним мозговым пузырем; 2 - обонятельная плакода; 3 - лобный отросток; 4 - верхнечелюстной отросток; 5 - первичное ротовое отверстие; 6 - нижнечелюстной отросток; 7 - подъязычная жаберная дуга; 8 - третья жаберная дуга; 9 - закладка носовой дырки; 10 - закладка глаза

Развитие зубов

Спереди ротовая полость ограничена ротовым отверстием, по краям которого закладывается подковообразная полоска эпителиального утолщения - губно-десневая полоска. В ней образуется желобок, который отделяет область губ от десневой области. Из полости этого желобка образуется преддверие рта. В мезенхиму десневой области начинает врастать вторая (тоже подковообразная) утолщенная эпителиальная полоска - зубодесневая (зубная пластинка), из которой берут начало эпителиальные элементы зубов.

Эпителий зубной пластинки врастает в мезенхиму челюстных закладок (обычно на 7-й неделе). На ее внутренней поверхности появляются колбовидные выросты, из которых позже возникают эмалевые органы (каждый эмалевый орган является зачатком отдельного зуба). В эмалевый орган врастает мезенхимный зубной сосочек.

Клетки эмалевого органа формируют эмаль, а зубные сосочки - дентин и пульпу.

Сначала образуется коронка зуба. Развитие корней начинается после рождения.

Как и у молочных зубов, у постоянных зубов зачатки закладываются во время эмбриогенеза.

Развитие слюнных желез

Большие слюнные железы (околоушная, поднижнечелюстная, подъязычная), открывающиеся в ротовую полость, закладываются на 2-м месяце эмбрионального развития, малые железы ротовой полости - на 3-м месяце, имеют эктодермальное происхождение. Первоначально закладываются в виде эпителиальных канатиков, которые врастают в мезенхиму, где начинают разветвляться. Полная дифференциация желез наступает вскоре после рождения ребенка.

Развитие языка

Закладка языка состоит из трех бугорков. Два из них - правый и левый подъязычные бугорки - располагаются парно, третий - средний язычный бугорок - непарный. Между отдельными зачатками языка начинается процесс, приводящий к их сращению.

Рис. 4. Срезы зуба на различных стадиях развития (по Коллману): 1 - эмаль; 2 - дентин; 3 - мезенхима; 4 - остатки зубной полоски; 5 - эмалевая мякоть; 6 - зубной сосочек; 7 - закладки зубной альвеолы; 8 - зубная мякоть; 9 - эпителиа льные жемчужины; 10 - закладка нижней челюсти с альвеолярным отростком; 11 - закладка окончательного зуба; 12 - зубной мешочек; 13 - эпителий ротовой полости; 14 - зубная полоска; 15 - закладка языка; 16 - эмалевый орган

Рис. 5. Развитие языка. Вид изнутри на основание глоточной области: а - шестинедельный зародыш; б - семинедельный зародыш; в - у взрослого; 1 - язычный боковой бугорок; 2 - язычный средний бугорок (непарный); 3 - слепое отверстие; 4 - copula; 5 - закладка надгортанника; 6 - черпаловидные бугорки; 7 - нижняя губа; 8 - срединная борозда языка; 9 - небная миндалина; 10 - корень языка с язычной миндалиной; 11 - надгортанник

Развитие области глотки

Глотка располагается сразу за ротовой полостью.

У человека здесь закладывается 5 пар жаберных дуг, между которыми находятся 4 пары жаберных карманов. Из эктодермы шейной области навстречу жаберным карманам формируются жаберные щели.

У животных, дышащих жабрами, они соединяются, образуя сквозные щели, через которые из воды в кровь, циркулирующую в капиллярных сетях сосудов жаберных дуг, поступает кислород. У амниот, включая человека, дышащих легкими, жаберные щели и карманы закладываются, но не соединяются. У человека все жаберные карманы зарастают. В дальнейшем они преобразуются в другие структуры.

Преобразование жаберных карманов

Из первой пары жаберных карманов у человека образуются барабанные полости и слуховые трубы, соединяющие эти полости с носоглоткой. Из первой пары жаберных щелей образуются наружные слуховые проходы.

К месту расположения слуховых косточек снаружи начинает врастать впячивание наружной эктодермы, просвет которого дает начало наружному слуховому проходу. Впячивание примыкает к зачатку полости среднего уха. Позже в этом месте образуется барабанная перепонка.

Рис. 6. Развитие области глотки (вид сбоку, заимствовано у Пэттена): 1 - первый жаберный карман; 2 - второй жаберный карман; 3 - третий жаберный карман; 4 - четвертый жаберный карман; 5 - закладка щитовидной железы; 6 - закладка гипофиза; 7 - пищевод

Из материала II пары жаберных карманов образуются небные миндалины.

Из материала III и IV пар жаберных карманов образуются:

Тимус, закладка которого поисходит в конце 1-го - начале 2-го месяца внутриутробной жизни. Вскоре полости зарастают и возникают плотные эпитемиальные узлы;

Паращитовидные железы. Закладываются в виде эпитемиальных узелков, которые позже отделяются от энтодермы жаберных карманов и поверхностно располагаютя в капсуле щитовидной железы;

Ультимобронхиальные тельца. У человека они в виде С-клеток входят в состав щитовидной железы.

II, III, IV пары жаберных щелей редуцируются.

Работа 6. Провизорные органы анамний и амниот

Изучите таблицы, макропрепараты и рисунок, сравните провизорные органы и их функции у разных групп животных. Перепишите и заполните таблицу.

Работа 7. Гистологические типы плацент (Токин Б.П., 1987)

Изучите классификацию и функции плаценты. Отметьте особенность плаценты человека (рис. 7).

Плацента - провизорный орган, в ней различают зародышевую, или плодную, часть и материнскую, или маточную. Плодная часть представлена ветвистым хорионом, а материнская - слизистой оболочкой матки.

Плацента различается анатомически (по форме) и гистологически. Выделяют несколько гистологических типов плацент по степени взаимоотношения ворсин хориона и слизистой оболочки матки.

Рис. 7. Типы плацент:

1 - эпителий хориона; 2 - эпителий слизистой оболочки матки; 3 - соединительная ткань ворсины хориона; 4 - соединительная ткань слизистой оболочки матки; 5 - кровеносные сосуды ворсинок хориона; 6 - кровеносные сосуды матки; 7 - лакуны

Приложение 1

Основные этапы эмбриогенеза человека и формирование структур висцерального черепа и начального отдела пищеварительного тракта


Приложение 2

Рис. 1. Изменение внешнего вида эмбриона человека на ранних стадиях развития (Sadler, 1995):

а - стадия 25 сомитов (28 суток развития); б - 5 недель развития; в - 6 недель развития; г - 8 недель развития;

1 - зрительная плакода; 2 - слуховая плакода; 3 - жаберные дуги; 4 - сомиты; 5 - пупочный канатик; 6 - сердечный выступ; 7 - закладка верхней конечности; 8 - закладка нижней конечности; 9 - хвост; 10 - шейный изгиб; 11 - формирующийся слуховой проход; 12 - развитие пальцев рук; 13 - развитие пальцев ног

Приложение 3

Рис. 1. Провизорные органы позвоночных:

а - анамнии; б - неплацентарные амниоты; в - плацентарные амниоты; 1 - зародыш; 2 - желточный мешок; 3 - амнион; 4 - аллантоис; 5 - хорион (серозная оболочка); 6 - ворсины хориона; 7 - плацента; 8 - пупочный канатик; 9 - редуцированный желточный мешок; 10 - редуцированный аллантоис

Вопросы для самоподготовки

1. Назовите основные процессы, происходящие в эмбриогенезе.

2. Каковы основные стадии развития зародыша?

3. В чем сущность процесса дробления? Назовите и охарактеризуйте основные типы дробления.

4. Опишите зародыш на стадии морулы, бластулы, гаструлы.

5. Назовите основные способы гаструляции.

6. Какие существуют способы образования мезодермы?

7. Охарактеризуйте способы дробления и гаструляции у плацентарных млекопитающих.

8. Назовите производные трех зародышевых листков.

9. Опишите основные этапы образования начального отдела пищеварительной системы человека.

10. Назовите провизорные органы, их функции. Чем они отличаются у анамний и амниот?

11. Какое строение имеет плацента? В чем заключается ее функция? Опишите особенности строения плаценты у человека.

Тестовые задания

Выберите один правильный ответ.

1. НАБОР ХРОМОСОМ В ЗИГОТЕ:

2. ХАРАКТЕРНЫЙ ДЛЯ ЧЕЛОВЕКА ТИП ДРОБЛЕНИЯ:

1. Полное равномерное

2. Полное неравномерное

3. Неполное поверхностное

4. Неполное дискоидальное

3. ТИП БЛАСТУЛЫ, ХАРАКТЕРНЫЙ ДЛЯ ЧЕЛОВЕКА:

1. Целобластула

2. Дискобластула

3. Бластоциста

4. Амфибластула

4. ПЛАЦЕНТА, ХАРАКТЕРНАЯ ДЛЯ ЧЕЛОВЕКА:

1. Десмохориальная

2. Гемохориальная

3. Эндотелиохориальная

4. Эпителиохориальная

Выберите несколько правильных ответов.

5. ПРИ ГАСТРУЛЯЦИИ У ХОРДОВЫХ ПРОИСХОДИТ:

1. Закладка мезодермы

2. Закладка пищеварительных желез

3. Закладка осевых органов

4. Образование двухслойного зародыша

6. ИЗ ПЕРВЫХ ЖАБЕРНОГО КАРМАНА И ЖАБЕРНОЙ ЩЕЛИ ОБРАЗУЮТСЯ:

1. Барабанная полость

3. Ультимобранхиальное тельце

4. Слуховой проход

6. НА ПОЗДНИХ СТАДИЯХ ЭМБРИОНАЛЬНОГО РАЗВИТИЯ ЧЕЛОВЕКА ФУНКЦИОНИРУЮТ ПРОВИЗОРНЫЕ ОРГАНЫ:

2. Желточный мешок

3. Плацента

4. Аллантоис

Установите правильную последовательность. 7. СТАДИЙ В ЭМБРИОГЕНЕЗЕ ХОРДОВЫХ:

1. Гаструла

4. Бластула

Установите соответствие.

8. В ПЕРИОДЫ

ЭМБРИОГЕНЕЗА:

1. Дробление

2. Гисто- и органогенез

3. Гаструляция

ОСНОВНЫЕ СОБЫТИЯ:

а) Образование тканей и органов

б) Образование зародышевых листков

в) Последовательные митотические деления, приводящие к образованию однослойного зародыша

Установите соответствие.

9. У ЧЕЛОВЕКА ИЗ ЗАРОДЫШЕВЫХ ЛИСТКОВ:

1. Эктодерма

2. Мезодерма

3. Энтодерма

РАЗВИВАЕТСЯ:

а) Железистый эпителий слюнных желез

б) Пульпа зубов

в) Эпителий средней части пищеварительного тракта

г) Эмаль зубов

д) Дентин зубов

Литература

Основная

Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. - Кн. 1. - С. 276-284, 287-317.

Пехов А.П.

Дополнительная

Газарян К.Г., Белоусов Л.В. Биология индивидуального развития животных. - М.: Высшая школа, 1983

Гилберт С. Биология развития. - М.: Мир, 1993. - Т. 1.

Карлсон Б. Основы эмбриологии по Пэттену. - М.: Мир, 1983.

Станек И. Эмбриология человека. - М.: Веда, 1977.

Данилов Р.К., Боровая Т.Г. Общая и медицинская эмбриология. -

М.-СПб.: СпецЛит, 2003.

Тема 3.3. Закономерности постэмбрионального периода онтогенеза

Цель. Знать типы постэмбрионального развития животных. Изучить периоды и особенности постнатального онтогенеза человека.

Задание для студентов

Работа 1. Типы развития организмов в постэмбриональном периоде

Постэмбриональный период онтогенеза начинается после выхода зародыша из зародышевых оболочек или после рождения. Он делится на три периода: дорепродуктивный (ювенильный), репродуктивный (взрослое состояние) и пострепродуктивный (имеется не у всех видов). Продолжительность указанных периодов, их временное соотношение - видоспецифичны. Основные процессы, происходящие в послезародышевом периоде онтогенеза, - это рост, формирование дефинитивных (окончательных) структур органов, половое созревание, старение. Постэмбриональный период заканчивается биологической смертью особи.

Различают два типа постэмбрионального развития: прямое и развитие с метаморфозом.

При прямом развитии в ювенильном периоде формирующаяся особь обладает всеми основными чертами организации взрослого организма и отличается главным образом меньшими размерами, пропорциями тела и недоразвитием некоторых систем органов. Прямое развитие встречается у беспозвоночных, позвоночных животных и у человека.

При развитии с метаморфозом из яйца выходит личинка, отличающаяся от взрослого животного строением и образом жизни. Личиночное развитие характерно для видов, откладывающих мелкие яйцеклетки с недостаточным количеством питательных веществ для развития всех структур, характерных для особей этого вида. Личинки по строению больше сходны с предковыми формами, могут иметь органы, не характерные взрослым особям. Они свободно передвигаются и способны самостоятельно питаться. Развитие с метаморфозом широко распространено в животном мире: губки, сцифоидные и коралловые полипы, большинство членистоногих, многие иглокожие, асцидии, круглоротые, двоякодышащие и костистые рыбы, амфибии.

Изучите таблицу, перепишите и дополните ее примерами.

Работа 2. Особенности постнатального периода онтогенеза человека

Изучите и перепишите таблицу.

Периоды

Основные процессы

Риск развития заболеваний

1. Новорож- денное? до 1 месяца

Первый этап приспособления к менее благоприятным условиям внешней среды, чем в материнском организме: нестерильным условиям, более низкой температуре, изменению внешнего давления. Отпадает пуповина. Ребенок начинает сосать грудь матери (4 суток - молозиво, затем молоко), что требует затраты сил и сопровождается потерей веса на 150-200 г. Начинается легочное дыхание. Устанавливается внеутробное кровообращение, боталлов проток и овальное отверстие между предсердиями зарастают. Изменяются функции отдельных органов. Устанавливаются собственные суточные биоритмы

Снижены ввиду незрелости иммунной нервной и других систем. Иммунитет пассивный за счет антител, полученных из материнского организма через плаценту и с молозивом. Нуждается в уходе и защите матери. Критический период

Неспецифические инфекции, перегревание, переохлаждение, патология различных органов и систем, особенно пищеварительной, вследствие недостаточности собственных ферментов. Повышена вероятность смерти

2. Младенческий (грудной) до 1 года

Интенсивный рост и развитие: длина тела увеличивается в 1,5 раза, масса - в 3 раза. Роднички закрываются, появляются изгибы позвоночника

Снижены ввиду бурного роста, морфологической незаконченности строения и

Продолжение табл.

Периоды

Основные процессы

Адаптационные возможности организма

Риск развития заболеваний

Головной мозг бурно растет и развивается, вырабатываются многочисленные условные связи, формируется вторая сигнальная система, развиваются статические функции. Интенсивное психоэмоциональное развитие. Собственных пищеварительных ферментов вырабатывается меньше, чем у взрослого. Прорезываются молочные зубы. Пассивный иммунитет постепенно ослабевает, приобретенный - слабо выражен

функциональным несовершенством систем органов

Склонность к судорогам и другим нарушениям нервной системы.

3. Раннее детство до 4 лет

Продолжается рост и развитие ребенка, однако интенсивность роста снижается. Прорезываются все 20 молочных зубов. Особенно быстро развивается интеллект. Речь включает много слов, говорит предложениями

Повышаются постепенно

Часто - острые инфекции: корь, коклюш, ветряная оспа и др. Зубочелюстнолицевые аномалии вследствие раннего удаления молочных зубов.

Увеличивается

инфицирование

туберкулезом

Продолжение табл.

Периоды

Основные процессы

Адаптационные возможности организма

Риск развития заболеваний

4. Первое детство 4 года - 7 лет

Первый ростовой скачок. Прорезываются большие коренные зубы. Появляются половые различия в строении скелета, отложении жира, формировании психики

Повышается постепенно

Зубочелюстно-лицевые аномалии вследствие раннего удаления молочных зубов

5. Второе детство (предпубертатный) 7-12 лет

Усиленный рост, особенно мышечной системы. Заканчивается развитие печени, дыхательной системы. Начинается смена молочных зубов на постоянные. Повышается секреция половых гормонов. Начало развития вторичных половых признаков (у девочек раньше)

Повышаются постепенно

Учащается травматизм. Патология сердечнососудистой и других систем. Аномалии прорезывания постоянных зубов и прикуса

6. Подростковый (пубертатный) 12-15-16 лет

Ростовой скачок. Заканчивается формирование кровеносной и ряда органов пищеварительной и других систем. Все молочные зубы заменяются на постоянные.

Интенсивное половое созревание: усиливается выработка половых гормонов, формируются половые особенности тела, заканчивается развитие вторичных половых признаков, у девочек появляется менархе, у мальчиков - поллюции. Половое созревание характеризуется радикальными биохимическими, гормональными, физиологическими, морфологическими, нервнопсихологическими перестройками организма

Критический

Возможно проявление наследственных заболеваний, нарушения обмена веществ (ожирение или истощение). Пубертатные поведенческие кризы, агрессивность

Продолжение табл.

Периоды

Основные процессы

Адаптационные возможности организма

Риск развития заболеваний

7. Юношеский период (постпубертатный) 15-16 - 18-21 год

К концу периода прекращается рост тела. Заканчивается формирование всех систем органов. Завершается половое созревание. У юношей появляется оволосение лица. Происходит интенсивное развитие интеллекта

Могут быть снижены

Нарушения функций различных органов и систем вследствие несбалансированного роста тела и развития систем органов (особенно в связи с акселерацией). Психоневрозы

8. Первая зрелость 18-21-35 лет

Развитие взрослого организма. Устойчивый гомеостаз. Способность к воспроизведению полноценного потомства

Максимальные

9. Вторая зрелость до 55-60 лет

Физиологические изменения органов, обмена веществ, предшествующие инволюции. Замедление скорости ответных реакций. Снижение выработки гормонов, особенно половых. Проявление заметных признаков старения организма в конце периода. Постепенное угасание репродуктивной функции

Постепенно снижаются вследствие снижения функции иммунной и других систем. Критический период

Повышается риск развития соматических и психических болезней. Учащение возникновения опухолей. Могут возникнуть климактерический синдром, психические расстройства

Продолжение табл.

Периоды

Основные процессы

Адаптационные возможности организма

Риск развития заболеваний

10. Пожилой возраст до 75 лет

Постепенная инволюция органов и тканей организма. Скорость старения у разных систем органов неодинакова. Дряблость кожи. Ограничение подвижности в суставах, снижение массы и тонуса мышц. Часто - ожирение или резкое снижение веса. Снижение физической активности. Повышенная утомляемость

Слабые устойчивость и адаптация к факторам среды

Увеличение частоты развития возрастных болезней: атеросклероза, диабета, подагры и других. Психоневрозы

11. Старческий возраст до 90 лет

Инволюция всех систем. Снижение слуха, остроты зрения, памяти, воли, эмоций, психических реакций

Могут быть старческое слабоумие, депрессии

12. Долгожительство свыше 90 лет

Биологический феномен, обусловленный комплексом различных факторов, как биологических (наследственность, тип телосложения), так и социальных (традиции правильного поведения в стрессовых ситуациях), активным образом жизни и рациональным питанием

Работа 3. Окончательное формирование структур некоторых органов человека в постэмбриональном периоде

После рождения человека продолжается закладка и формирование структурно-функциональных единиц органов. Зрелость отдельных структур тела наступает асинхронно. Все органы и системы по структуре и функции становятся как у взрослого организма примерно к 20-21 году.

Изучите и перепишите таблицу

Работа 4. Зубочелюстно-лицевые аномалии человека, развивающиеся в постнатальном периоде жизни

Изучите и перепишите таблицу.

Вид аномалии

Причина возникновения

Недоразвитие нижней челюсти

Одной из причин недоразвития челюсти может быть неправильное искусственное вскармливание ребенка, так как при этом отсутствует нормальная функциональная нагрузка, необходимая для выведения нижней челюсти из дистального положения

Сужение верхней челюсти

При длительном нарушении правильного носового дыхания (незаращение костного нёба, воспалительные процессы в носовой полости) ребенок дышит через рот, что изменяет положение элементов ротоглотки

Смещение нижней челюсти вперед или ее отставание в развитии

При слишком высоком положении изголовья создаются условия для смещения челюсти вперед. Если ребенок во время сна запрокидывает голову, то создаются предпосылки для отвисания челюсти и ее отставания в развитии

Нарушение прикуса

Причиной может стать - раннее удаление молочных зубов. Это приводит к перемещению зачатков постоянных зубов кпереди, что укорачивает челюстную дугу; перенесенные воспалительные заболевания челюстей и зубов; эндокринные патологии и др.

Деформация челюстей

Вредные привычки - сосание пальца, губ, щек и различных предметов (пеленки, карандаша и т.д.), подкладывание под щеку ладони и т.д.

Формирование высокого нёба

Дисфункция щитовидной железы; длительное дыхание через рот, например при воспалительных процессах в носовой полости

Асимметрия лица

Корь, дифтерия, коклюш, рахит, скарлатина

Замедленное прорезывание зубов, гипоплазия эмали

Возможно при дисфункции щитовидной и паращитовидной желез, нарушении минерального обмена и др.

Воспаление слюнных желез

Переохлаждение, недостаточная санация ротовой полости

Работа 5. Проявления процессов старения на различных уровнях организации особи

Заполните таблицу используя материал учебника и лекций.

Вопросы для самоподготовки

1. Что такое постэмбриональное развитие?

2. Каковы типы постэмбрионального развития?

3. Каковы отличия прямого развития от развития с метаморфозом?

4. В чем отличительные особенности полного метаморфоза и чем он обусловлен?

5. Чем обусловлен метаморфоз амфибий?

6. Каковы периоды постнатального развития человека?

7. Какие факторы определяют развитие организма человека в постнатальный период?

8. Какие этапы онтогенеза человека входят в дорепродуктивный, репродуктивный и пострепродуктивный периоды?

9. Чем они характеризуются?

10. Назовите критические периоды постнатального развития человека; объясните, чем они обусловлены.

11. Понятие о теориях и механизмах старения.

Тестовые задания

Выберите один правильный ответ.

1. СМЕНА ЗУБОВ У ЧЕЛОВЕКА НАЧИНАЕТСЯ В ВОЗРАСТЕ:

2. У ЧЕЛОВЕКА ГЕН СТАРЕНИЯ:

1. Находится в половых хромосомах

2. Находится в первой паре аутосом

3. Имеется в каждой паре хромосом

4. Появляется в результате мутаций

1. Детском

2. Подростковом

3. Репродуктивном

4. Пострепродуктивном

4. МАКСИМАЛЬНАЯ ПРОДОЛЖИТЕЛЬНОСТЬ ЖИЗНИ

ЧЕЛОВЕКА В ОСНОВНОМ ОПРЕДЕЛЯЕТСЯ:

1. Образом жизни

2. Питанием

3. Генотипом

4. Условиями среды

Выберите несколько правильных ответов.

5. ПРИ ПРЯМОМ ТИПЕ РАЗВИТИЯ ПРОИСХОДИТ:

1. Рост молодой особи

2. Редукция личиночных органов

3. Формирование окончательных структур органов

4. Изменение пропорций тела особи

6. ПРИ РАЗВИТИИ С ПОЛНЫМ МЕТАМОРФОЗОМ У МОЛОДОЙ

1. Форма тела, как у взрослого

2. Форма тела, отличная от взрослого

3. Личиночные органы имеются

4. Половая система отсутствует

7. НАРУШЕНИЕ ФУНКЦИЙ РАЗЛИЧНЫХ СИСТЕМ ОРГАНОВ В ЮВЕНИЛЬНОМ ПЕРИОДЕ ПОСТНАТАЛЬНОГО

ОНТОГЕНЕЗА ОБУСЛОВЛЕНО:

1. Незаконченным развитием иммунной системы

2. Несбалансированностью нервной регуляции

3. Интенсивным ростом организма

4. Работой генов старения

8. РОСТ ЧЕЛОВЕКА КОНТРОЛИРУЮТ ГОРМОНЫ:

1. Соматотропин

2. Половые

3. Паратгормон

4. Тироксин

9. В ПОСТНАТАЛЬНОМ ЭТАПЕ ОНТОГЕНЕЗА ЧЕЛОВЕКА

КРИТИЧЕСКИМИ ЯВЛЯЮТСЯ ПЕРИОДЫ:

1. Новорожденности

2. Младенческий

3. Подростковый

4. Юношеский

Установите соответствие.

10. ТЕОРИИ СТАРЕНИЯ:

1. Перенапряжения нервной системы

2. Интоксикации организма

3. Накопления мутаций соматических клеток

а) И.И. Мечников

б) А.А. Богомолец

в) М. Сцилард

г) И.П. Павлов

д) Л. Хейфлик

Литература

Основная

Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. -

Кн. 1. - С. 276-278, 368-372, 381-409.

Пехов А.П. Биология и общая генетика. - М.: Изд-во РУДН, 1993. -

Дополнительная

Газарян К.Г., Белоусов М.В. Биология индивидуального развития животных. - М.: Высшая школа, 1983.

Гилберт С. Биология развития. - М.: Мир, 1996.

Тема 3.4. Регуляция онтогенеза

Цель. Изучить основные механизмы регуляции онтогенеза; влияние вредных факторов на организм человека и механизмы образования пороков развития.

Индивидуальное развитие и рост генетически детерменированы, т.е. генотип особи обуславливает определенную последовательность этапов развития и роста, а также тип развития на разных стадиях онтогенеза. В развитии отмечается единство непрерывного и прерывистого, постепенность и цикличность. В онтогенезе чередуются периоды ускоренного развития с этапами относительной стабилизации. Для онтогенеза характерна гетерохрония в закладке и созревании разных систем и тканей организма, а также разных признаков в одной системе. Для постэмбрионального периода позвоночных свойственно индивидуальное разнообразие возрастной динамики, обусловленное взаимодействием генетических и средовых факторов. Спецификой биологии развития человека является опосредованное воздействие экологических факторов через социальноэкономические и социально-психологические условия.

Задание для студентов

Работа 1. Основные факторы регуляции развития плацентарных млекопитающих

Перепишите таблицу.

Работа 2. Генетическая регуляция развития организма

На всех этапах онтогенеза гены регулируют и контролируют развитие организма.

В овогенезе в клетках синтезируется большое количество разных видов информационных и рибосомальных РНК, которые активируются после оплодотворения и контролируют развитие зародыша от зиготы до стадии бластулы. Гены самого зародыша начинают функционировать у разных видов позвоночных на разных стадиях дробления (например,

у человека на стадии двух бластомеров), и продукты их деятельности начинают регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы у многих видов позвоночных развитие организма регулируется только продуктами деятельности собственных генов зародыша (рис. 1).

Регуляция экспрессии генов в процессе развития организмов осуществляется на всех этапах синтеза белка как по типу индукции, так и по типу репрессии, причем контроль на уровне транскрипции определяет время функционирования и характер транскрипции данного гена.

На рис. 1 представлены некоторые модели генетической регуляции развития на уровне транскрипции. Модель 1 каскадной эмбриональной индукции (рис. 1) объясняет определенную смену стадий онтогенеза путем последовательной активации соответствующих стадиоспецифических генов. Так, индуктор 1 взаимодействует с сенсорным геном (С), активируя ген-интегратор (И), продукт деятельности которого действует через промотор (П 1) на структурные гены (СГ 1 , СГ 2 , и СГ 3) В свою очередь, продукт деятельности структурного гена СГ 3 является индуктором 2 для структурных генов СГ 4 , СГ 5 и т.д.

В процессе развития происходит также репрессия генов более ранних стадий развития. При этом репрессором могут служить продукты активности структурных генов более поздних стадий онтогенеза (модель 2, рис. 1)

Некоторые структурные гены активируются или репрессируются продуктами действия нескольких генов (модель 3, рис. 1)

Индукция или репрессия нескольких структурных генов может быть вызвана продуктом деятельности одного гена. Этой моделью можно объяснить плейотропное действие генов, влияние половых гормонов и т.д. (модель 4, рис. 1).

Разберите схемы на рис. 1 и зарисуйте модель каскадной эмбриональной индукции.

Обозначьте:

Рис. 1. Генетическая регуляция развития организма

Работа 3. Политенные хромосомы

На каждой стадии развития в создании тканеспецифических продуктов участвует лишь небольшая часть генома, причем на разных этапах онтогенеза активны строго определенные стадиоспецифические гены. Так, например, при изучении политенных (гигантских) хромосом, образовавшихся в результате многократной репликации в клетках личинок ряда видов двукрылых насекомых, хорошо видны неактивные и активные участки хромосом. Максимально активные зоны ДНК - пуфы представляют собой расплетенные участки хромосом, на которых интенсивно транскрибируются мРНК для синтеза стадиоспецифических белков. При развитии личинок ранее активные участки ДНК спирализуются, а в других зонах образуются пуфы.

1. Изучите по рис. 2 участок политенной хромосомы, претерпевающей пуфинг (по Grossbach, 1973 из С. Гилберт, 1994), зарисуйте рис. 2г.

Рис. 2. Процесс пуфинга. Стадии образования пуфа (а-г)

2. Изучите микропрепарат под микроскопом при большом увеличении и зарисуйте. Обозначьте: 1 - эухроматин; 2 - гетерохроматин; 3 - пуф.

Работа 4. Клонирование. Регуляционная способность ядер

При дифференцировке клеток происходят избирательная экспрессия разных частей генома и ограничение генетических потенций у дифференцированных клеток. Однако в ядрах соматических клеток сохраняются все гены и в соответствующих условиях они мо-

гут реактивироваться и обеспечить развитие нормального зародыша. Клонирование - это развитие нового организма, являющегося генетической копией донора соматической клетки. У видов, размножающихся половым путем, клонирование происходит при пересадке ядер из соматической клетки в энуклеированную яйцеклетку. В настоящее время получены путем клонирования животные разных классов, в том числе и млекопитающие. Оказалось, что в процессе онтогенеза генетические потенции ядер соматических клеток снижаются и чем старше донор соматических ядер, тем ниже процент развития клонированных особей. Установлено, что генетические потенции разных клеток донора неодинаковы.

Изучите рисунок по пересадке ядер, взятых из соматических клеток на разных стадиях развития лягушки (по Гердон, 1965 из Э. Дьюкар, 1978) (рис. 3).

Рис. 3. Пересадка ядер из соматических клеток в яйцеклетку лягушки на разных стадиях развития клеток донора

Работа 5. Клеточные процессы в периоды гаструляции и органогенеза

Изучите таблицу, рисунки в приложении, слайды и препараты по эмбриогенезу животных. Перепишите таблицу.

Формы клеточных взаимодействий

Образование нормальных структур (примеры)

Последствия нарушений межклеточных взаимодействий (примеры)

Клеточные перемещения

Перемещение клеток при гаструляции, образовании нервной трубки, перемещении клеток нервного гребня

Нарушение образования гаструлы, нервной трубки; нарушение формирования структур лица

Избирательное

размножение

Закладка зачатков отдельных органов

Отсутствие органа или его доли, например слюнной железы

Избирательная клеточная гибель

Гибель эпителиальных клеток при слиянии нёб- ных зачатков, носовых отростков

Синдактилия, расщелина твердого нёба, расщелины верхней губы, лица

Клеточная адгезия

Слияние зачатков структур лица (нёбных отростков, носовых отростков между собой и с верхнечелюстными отростками)

Расщелины твердого нёба, верхней губы, лица

Клеточные сгущения

Образование мезодермальных зачатков зубов

Отсутствие зубов, дополнительные зубы

Работа 6. Эмбриональная индукция. Развитие зуба у млекопитающих

(Дьюкар Э., 1978)

По гребню десны закладывается первый зачаток зубов - зубная пластинка, утолщенная полоска эктодермы. Под зубной пластинкой появляется ряд мезодермальных зубных сосочков, которые индуцируют образование из эктодермы зачатков эмалевого органа (при удалении мезодермальных сосочков зачатки эмалевого органа не образуются). Взаимная индукция между эмалевым органом и мезодермальным зубным сосочком приводит к формированию клеток, образующих эмаль, дентин и пульпу. На следующей стадии дифференцировки образующиеся эмаль и дентин оказывают взаимное влияние на развитие друг друга.

Рис. 4. Ранние стадии развития зуба млекопитающих (схема): а - десна нижней челюсти, вид сверху; б - поперечный срез десны; в-е - стадии

развития зуба;->- - индукция; < ^ - взаимная индукция;

1 - гребень десны; 2 - зубная пластинка; 3 - мезодермальные зубные сосочки; 4 - зачаток эмалевого органа; 5 - амелобласты; 6 - зачаток эмали; 7 - одонтобласты; 8 - зачаток дентина; 9 - зачаток пульпы; 10 - эмаль; 11 - дентин

Разберите, зарисуйте рис. 4 и обозначьте основные структуры.

Работа 7. Нервная регуляция в онтогенезе

Нервная регуляция начинается с закладки отделов ЦНС и продолжается в течение жизни особи.

Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, причем эти структуры взаимно стимулируют развитие друг на друга. Отходящие от центров ЦНС периферические нервы подрастают к зачаткам органов и стимулируют их развитие. Отсутствие периферических нервов или их повреждение (например лекарственными препаратами, токсинами токсоплазмы и др.) вызывает нарушение формирования иннервируемых ими структур. Так, например, в Европе родилось несколько сотен детей с отсутствием конечностей, матери которых в период беременности принимали снотворное талидомид, блокирующее рост периферических нервов.

В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые травмы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица (при врожденном параличе VI-VII нервов). Способствуют восстановлению поврежденных структур головного и спинного мозга пассивные движения конечностей (для этого созданы специальные аппараты), массаж и физиотерапевтическая стимуляция иннервируемых органов.

При нейрофиброматозе (аутосомно-доминантный тип наследования) развиваются опухоли периферических нервов. Если заболевание начинается в раннем детстве, то на той стороне тела, где развиваются опухоли, возникает гипертрофия костей и мягких тканей. Например, развивается дизморфоз лица (несимметричное, непропорциональное развитие структур формирующих лицо, рисунок приложения 5).

Установлено, что в раннем детстве игры, способствующие движению кистей рук, особенно мелкие, точные формы деятельности, стимулируют развитие структур головного мозга, в том числе и развитие интеллекта.

На рис. 5 представлены схемы экспериментов на аксолотле по изучению роли периферического нерва в развитии конечностей, а также формирование двигательных центров спинного мозга при отсутствии конечностей. Удаление нерва на левой стороне зародыша аксолотля привело к отсутствию конечности на оперированной стороне тела.

Отсутствие конечности может быть обусловлено действием нейротропных тератогенов (токсины при токсоплазмозе, талидомид и др.) (рис. 5а).

Удаление зачатка конечности у зародыша аксолотля приводит к уменьшению размеров ганглиев и рогов серого вещества спинного мозга на оперированной стороне (рис. 5б).

Разберите рисунки экспериментов по изучению взаимосвязи нервных центров и иннервируемых органов.

Рис. 5. Взаимосвязь нервных центров и иннервируемых органов (Дьюкар Э., 1978, с изменениями):

а - влияние спинномозговых нервов на развитие конечности: 1 - спинной мозг; 2 - спинномозговой нерв, иннервирующий в конечность; 3 - спинномозговой ганглий; 4 - конечность; б - влияние зачатка конечности на развитие сегментов спинного мозга (поперечный срез зародыша аксолотля с удаленным зачатком конечности: 1 - спинномозговой ганглий; 2 - спинномозговой нерв; 3 - дорсальные рога серого вещества спинного мозга; 4 - вентральные рога серого вещества спинного мозга

Работа 8. Гормональная регуляция развития челюстно-лицевой области

Изучите по таблице влияние гормонов на процессы развития челюстно-лицевой области человека.

Работа 9. Воздействие вредных факторов среды на зародыш

Изучите таблицу, разберите и зарисуйте схему, приведите примеры прямого и опосредованного повреждения зародыша.

Влияние вредных факторов на плод

Продолжение табл.

Факторы

Основные механизмы нарушений

Эмбрио- и фетопатии

3. Дефицит витаминов (часто без гиповитаминоза у матери):

Нарушение метаболизма у зародыша

Витамина B 2

Нарушение роста, образование ферментов биологического окисления

Расщепление твердого нёба, гидроцефалия, аномалии сердца и др.

Витамина C

Нарушение процессов окисления, образования соединительной ткани, биосинтеза

Возможны гибель зародыша, выкидыш

Витамина E

Нарушение окисления жиров, приводящее к появлению токсических продуктов

Аномалии мозга, глаз, скелета

4. Избыток витаминов:

Витамина A

Нарушение роста, окислительновосстановительных процессов

Расщепление твердого нёба, анэнцефалия

II. Заболевания матери

1. Ревматизм

Гипоксия, нарушение трофики, дистрофические изменения плаценты

Гипотрофия плода, функциональная незрелость, аномалии органов и систем, преимущественно сердечнососудистой. У детей часто встречаются инфекционноаллергические заболевания и нарушение нервной системы

Нарушается транспорт кислорода к плоду, дефицит железа, морфологические изменения плаценты

Гибель плода, нарушение центральной нервной системы, анемия у детей

Продолжение табл.

Факторы

Основные механизмы нарушений

Эмбрио- и фетопатии

3. Сахарный диабет

Гормональные сдвиги, гипергликемия и кетоацидоз, ухудшение маточно-плацентарного кровообращения, патологические изменения в плаценте

Гибель плода, недоношенные, незрелые с повышенной массой плоды, функциональная незрелость поджелудочной железы, легких, реже - изменения щитовидной железы, почек. Встречаются анэнцефалия, гидронефроз и др. нарушения центральной нервной системы

4. Тиреотоксикоз

Повышенное выделение гормонов щитовидной железы

Нарушение формирования центральной нервной системы, щитовидной железы и меньше других - желез внутренней секреции. Реже - аномалии сердечнососудистой системы, костномышечной, и др.

5. Иммунологический конфликт (по резус-фактору и системе AB0; наиболее часто несовместимы: 0 - A, 0 - B, A - B, B - A, комбинации групп крови матери и плода)

Проникают через плаценту резус-антитела. Проникновение через плаценту неполных изоиммунных антител A и B, которые вызывают гемолиз эритроцитов плода. Выделившийся непрямой билирубин является сильным тканевым токсином

Гемолитическая болезнь плода и новорожденного

III. Внутриутробные инфекции

1. Вирус краснухи

Инфицирование зародыша, особенно в 1-3 месяцы развития

Аномалии сердца, мозга, органов слуха, зрения и других

Окончание табл.

Факторы

Основные механизмы нарушений

Эмбрио- и фетопатии

2. Вирус гриппа

Инфицирование плода, интоксикация организма матери, гипертермия, нарушение маточноплацентарного кровообращения

Аномалии половых органов, катаракта, заячья губа

Токсоплазмоз

Уродства головного мозга, глаз, конечностей, расщелина твердого нёба

IV. Ионизирующая радиация

Поражение зародыша проникающей радиацией и токсическими продуктами поврежденных тканей

Врожденная лучевая болезнь. Наиболее часто - паралич нервной системы. Могут быть аномалии глаз, сосудов, легких, печени, конечностей

V. Влияние химических соединений, в том числе лекарственных веществ (более 600 соединений)

Непосредственное действие на зародыш. Нарушение структуры и функции плаценты. Патологические изменения в материнском организме

Различные пороки развития, зависящие от вещества, дозы и срока поступления

Прямое токсическое действие на плод, плаценту и организм матери

Гипотрофия, склонность детей к респираторным заболеваниям

Алкоголь

Повреждение гамет, генеративные мутации. Прямое токсическое действие

Умственная отсталость, психические заболевания, пороки сердца, эпилепсия, алкогольное поражение плода

Тетрациклин

Прямое действие на зародыш

Пятнистая эмаль на зубах

Разберите и зарисуйте схему 1. Проведите примеры нарушений развития зародыша при воздействии вредных факторов непосредственно на зародыш или опосредованно через материнский организм и плаценту.

Схема 1. Пути воздействия вредных факторов среды на зародыш

Работа 10. Классификация и механизмы образования пороков развития

Изучите и перепишите.

I. По этиологическому признаку.

1. Наследственные:

а) генеративные мутации (наследственные болезни);

б) мутации в зиготе и бластомерах (наследственные болезни, мозаицизм).

2. Ненаследственные:

а) нарушение реализации генетической информации (фенокопии);

б) нарушение взаимодействия клеток и тканей; пороки развития органов и тканей (тератомы, кисты);

в) соматические мутации (врожденные опухоли).

3. Мультифакториальные.

II. По периоду онтогенеза. 1. Таметопатии:

а) наследственные;

б) ненаследственные (перезревание гамет).

2. Бластопатии до пятнадцатого дня:

а) наследственные болезни (мозацизм - зародыш состоит из клеток с нормальным и атипичным набором хромосом);

б) ненаследственные (двойниковые уродства, циклопия 1).

3. Эмбриопатии до конца восьмой недели: большинство пороков развития, пороки, обусловленные действием тератогенов.

4. Фетопатии от девяти недель до родов: пороки этой группы встречаются редко: остатки ранних структур (персестирование - бранхиогенные кисты и свищи); сохранение первоначального расположения органов; недоразвитие отдельных органов или всего плода, отклонение в развитии органов.

5. Пороки, возникающие в постнатальный период (возникают реже, чем вышеуказанные пороки, обусловлены травмами, заболеваниями, воздействием средовых факторов).

1 Циклопия - в черепе только одна орбита с одним или двумя глазными яблоками, расположенными посередине. Часто сочетается с отсутствием больших полушарий головного мозга.

Приложение 1

Генетический контроль развития млекопитающих

(по Б.В. Конюхову, 1976)

Приложение 2

Последовательные этапы формирования лица, вид спереди

(по Пэттену из Morris, Human Anatomy, McGrow-Hill, Company, New York)

а - 4-недельный зародыш (3,5 мм); б - 5-недельный зародыш 6,5 мм); в - 5,5-недельный зародыш 9 мм); г - 6-недельный зародыш (12 мм); д - 7-недельный зародыш (19 мм); е - 8-недельный зародыш (28 мм);

1 - лобный выступ; 2 - обонятельная плакода; 3 - носовая ямка; 4 - ротовая пластинка; 5 - ротовое отверстие; 6 - верхнечелюстной отросток; 7 - нижнечелюстная дуга; 8 - гиоидная дуга; 9 - медиальный носовой отросток; 10 - латеральный носовой отросток; 11 - носослезная бороздка; 12 - гиомандибулярная щель; 13 - область филтрума, сформированная слившимися медиальными носовыми отростками; 14 - наружное ухо; 15 - слуховые бугорки вокруг гиомандибулярной щели; 16 - подъязычная кость; 17 - хрящи гортани

Приложение 3

Механизмы слияния нёбных складок у зародышей млекопитающих

а - фронтальный разрез (в полости XY, показанной на врезке слева) через носовую полость и ротовую полость, в области щеки до сращения небных складок: 1 - носовая полость; 2 - носовая перегородка; 3 - небные складки; 4 - зачаток языка; 5 - нижняя челюсть; б - то же, что и на а, после сращения нёбных складок: 6 - зона гибели клеток и слияния; в - три последовательные стадии (I-III) процессов разрушения эпителия и слияния мезенхимы: 1 - эпителий левой половины неба; 2 - эпителий правой половины неба; 3 - мезенхима; 4 - макрофаги; 5 - мертвые клетки; 6 - непрерывная мезенхима; 7 - сохраняющийся эпителий; 6 - зона избирательной гибели клеток и адгезии

Приложение 4

Развитие слюнных желез у человека

Положение слюнных желез у 11-недельного зародыша человека: а-б - ранняя стадия развития слюнной железы в культуре; в-д - схема поясняющая взаимоотношения между процессами ветвления железы и распределения внеклеточного материала. Закладка борозды ветвления развивающейся дольке сопровождается сокращением микрофиламентов клетках на вершине дольки и накоплением коллагеновых волокон снаружи от базальной пластинки в области борозды. По мере прогрессирования указанных процессов происходит углубление борозды и постепенное снижение уровня синтеза гликозаминогликанов в клетках этой области. 1 - околоушная железа; 2 - отверстие выводного протока околоушной железы; 3 - отверстие выводного протока подчелюстной железы; 4 - закладка подъязычной железы; 5 - подчелюстная железа; 6 - гликозаминогликаны; 7 - коллагеновые волокна

Приложение 5

Внешние проявления нейрофиброматоза (дизморфоз структур лица, пигментные пятна на коже)

Вопросы для самоподготовки

1. В чем отличия между регуляционным и мозаичным типами развития?

2. В чем сущность дифференцировки клеток?

3. Как происходит регуляция ранних стадий эмбрионального развития и когда начинает функционировать геном зародыша?

4. В чем заключается действие генов в раннем развитии?

5. Как изменяется генетическая потенция ядер клеток в процессе развития?

6. Как осуществляется генетическая регуляция дифференцировки?

7. Какие клеточные процессы происходят в период дробления, гаструляции, органогенеза?

8. Какие основные формы взаимодействия клеток в периоды органогенеза?

9. В чем сущность эмбриональной индукции и ее виды?

10. Какова химическая структура индукторов и механизм их действия?

11. Какое значение имеет нервная система в регуляции онтогенеза?

12. Какие механизмы гормональной регуляции в онтогенезе?

13. Каковы возможные пути действия факторов среды, вызывающие нарушение эмбриогенеза?

14. Почему эмбриопатии характеризуются более глубокими нарушениями, чем фетопатии?

15. Как осуществляется взаимосвязь материнского организма и плода, каковы последствия ее нарушения?

16. В чем разница между наследственными и ненаследственными врожденными заболеваниями?

17. Что такое фенокопии?

18. Нарушения каких процессов в онтогенезе приводят к порокам развития?

19. Что такое тератогены, их классификация, механизм действия?

Тестовые задания

Выберете один правильный ответ.

1. ГЕНЕТИЧЕСКАЯ РЕГУЛЯЦИЯ ОНТОГЕНЕЗА

У ПОЗВОНОЧНЫХ ОСУЩЕСТВЛЯЕТСЯ ПУТЕМ:

1. Уменьшения числа генов в процессе развития

2. Репрессии генов

3. Дерепрессии генов

4. Дерепрессии и репрессии генов

2. ПРИ КЛОНИРОВАНИИ РЕГУЛИРУЮТ РАЗВИТИЕ ЗАРОДЫША

1. Сперматозоида

2. Яйцеклетки

3. Сперматозоида и яйцеклетки

4. Соматической клетки

5. Яйцеклетки и соматической клетки донора

3. НЕНАСЛЕДСТВЕННЫЕ ПОРОКИ РАЗВИТИЯ

ЗУБОЧЕЛЮСТНОЙ СИСТЕМЫ ОТНОСЯТСЯ К:

1. Фетопатиям

2. Гаметопатиям

3. Эмбриопатиям

4. Бластопатиям

4. ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ РАЗВИТИЯ

У МЛЕКОПИТАЮЩИХ НАЧИНАЕТСЯ В ПЕРИОД:

1. Гаструляции

2. Дробления

3. Гисто- и органогенеза

4. Плодный

5. УЧЕНИЕ О ЗАРОДЫШЕВОМ РАЗВИТИИ ОРГАНИЗМОВ ПУТЕМ ПОСЛЕДОВАТЕЛЬНЫХ ОБРАЗОВАНИЙ НОВЫХ СТРУКТУР НАЗЫВАЕТСЯ:

1. Преформизм

2. Эпигенез

3. Трансформизм

4. Витализм

Выберите несколько правильных ответов.

6. ЗАКЛАДКУ И РАЗВИТИЕ ЗАЧАТКОВ ЗУБОВ У ЧЕЛОВЕКА РЕГУЛИРУЮТ:

2. Эмбриональная индукция

3. Нервная система

4. Гормоны

5. Факторы среды

7. НЕЗАРАЩЕНИЕ ВТОРИЧНОГО НЕБА У ЧЕЛОВЕКА ВОЗНИКАЕТ В СЛЕДСТВИИ НАРУШЕНИЯ КЛЕТОЧНЫХ ПРОЦЕССОВ:

1. Избирательное размножение

2. Сгущение мезодермальных клеток

3. Избирательная гибель

4. Адгезия

5. Перемещение

8. СТАДИЯ ЗАВИСИМОЙ ДИФФЕРЕНЦИРОВКИ КЛЕТОК ХАРАКТЕРИЗУЕТСЯ:

1. Повышением чувствительности к действию индукторов

2. Понижением чувствительности к действию индукторов

3. Отсутствием способности к трансдифференцировке

4. Способностью к трансдифференцировке

9. НАИБОЛЬШАЯ ЧУВСТВИТЕЛЬНОСТЬ ОРГАНОВ ЗАРОДЫША

К ДЕЙСТВИЮ ТЕРАТОГЕНА В ПЕРИОДЫ:

1. Закладки зачатков органов

2. Закладки новых стру ктур органа

3. Дифференцировки клеток органа

4. Роста органа

Установите соответствие.

10. ПОРОКИ РАЗВИТИЯ:

1. Наследственные

2. Ненаследственные

МЕХАНИЗМЫ ВОЗНИКНОВЕНИЯ:

а) Генеративные мутации

б) Мутации в бластомерах

в) Мутации в клетках зачатков органов

г) Нарушение функций генов

д) Нарушение закладки органов

Литература

Основная

Биология / Под ред. В.Н.Ярыгина. - М.: Высшая школа, 2001. - Кн. 1. - С. 150, 280-282, 294, 295, 297, 298, 317-368, 372, 409-418. Пехов А.П. Биология и общая генетика. - М.: Изд-во РУДН, 1993. -

Новое на сайте

>

Самое популярное