Домой Полезные свойства плодов Развитие общей теории систем. Общая теория систем и другие науки о системах. По направленности связи делятся на

Развитие общей теории систем. Общая теория систем и другие науки о системах. По направленности связи делятся на

Принцип системности, выдвижение которого было подготовлено историей естествознания и философии, находит в XX веке все больше сторонников в различных областях знания. В 30-40-е годы австрийский ученый Л. фон Берталанфи успешно применил системный подход к изучению биологических процессов , а после второй мировой войны он предложил концепцию разработки общей теории систем.

В программе построения общей теории систем Берталанфи указывал, что ее основными задачами являются:

1) выявление общих принципов и законов поведения систем независимо от природы составляющих их элементов и отношений между ними;

2) установление в результате системного подхода к биологическим и социальным объектам законов, аналогичных законам естествознания;

3) создание синтеза современного научного знания на основе выявления изоморфизма законов различных сфер деятельности.

Существует ряд системных принципов, важных для понимания концепции системы:

· Доминирование роли целого над частным, сложного над простым.

· Целое больше суммы своих частей.

· Система обладает структурой с определенным расположением и связью ее составных частей.

· Система имеет иерархическую структуру.

· Система обладает множеством состояний, соответствующих ее различным свойствам, которые описываются набором параметров.

· Структура системы является наиболее консервативной характеристикой системы в отличие от состояния системы.

· Свойства системы как целого определяются не только свойствами ее отдельных элементов, но и свойствами структуры системы в целом.

· Система выделяется из среды своими качествами. Системы бывают открытые и закрытые.

· Каждая система имеет параметры, которые являются для нее основными, или жизненно важными. От них зависит существование системы.

· Гомеостаз системы сохраняет жизненно важные параметры в процессе адаптации системы к внешним условиям и тем самым поддерживает существование самой системы.

Общая теория систем, по замыслу Берталанфи, предложившего первую программу построения такой теории, должна быть некоей общей наукой о системах любых типов . Однако конкретные реализации этой и подобных амбициозных программ натолкнулись на очень серьезные трудности, главная из которых состоит в том, что общность понятия системы ведет к потере конкретного содержания.

В настоящее время построено несколько математических моделей систем, использующих аппарат теории множеств, алгебры. Однако прикладные достижения этих теорий пока весьма скромны. В то же время системное мышление все чаще используется представителями практически всех наук (географии, политологии, психологии и т.д.). Системный подход находит все более широкое распространение в анализе процессов.

Искандер Хабибрахманов написал для рубрики «Рынок игр» материал о теории систем, принципах поведения в них, взаимосвязях и примерах самоорганизации.

Мы живем в сложном мире и не всегда понимаем, что происходит вокруг. Мы видим людей которые становятся успешными не заслужив этого и тех, кто действительно достоин успеха, но остается в безвестности. Мы не уверены в завтрашнем дне, мы все больше закрываемся.

Чтобы объяснить непонятные нам вещи, мы придумывали шаманов и гадалок, легенды и мифы, университеты, школы и онлайн-курсы, но это, кажется, не помогло. Когда мы учились в школе, нам показывали картинку ниже и спрашивали, что случится, если потянуть за нитку.

Со временем большинство из нас научались давать правильный ответ на этот вопрос. Однако затем мы выходили в открытый мир, и наши задачи начинали выглядеть так:

Это вело к фрустрации и апатии. Мы стали похожими на мудрецов из притче о слоне, каждый из которых видит лишь маленькую часть картины и не может сделать правильный вывод об объекте. У каждого из нас свое непонимание мира, нам сложно коммуницировать его друг с другом, и это делает нас еще более одинокими.

Дело в том, что мы живем в век двойного сдвига парадигмы. С одной стороны, мы отходим от механистической парадигмы общества, доставшейся нам от индустриального века. Мы понимаем, что входы, выходы и мощности не объясняют всего разнообразия мира вокруг нас, и зачастую на него гораздо сильнее влияют социокультурные аспекты общества.

С другой стороны, огромное количество информации и глобализация ведут к тому, что вместо аналитического анализа независимых величин мы должны изучать взаимозависимые объекты, неделимые на отдельные составляющие.

Кажется, что от умения работать с этими парадигмами зависит наше выживание, и для этого нам нужен инструмент, как когда-то нужны были инструменты для охоты и обработки земли.

Одним из таких инструментов является теория систем. Ниже будут примеры из теории систем и ее общие положения, будет больше вопросов чем ответов и, надеюсь, будет немного вдохновения узнать об этом больше.

Теория систем

Теория систем - это довольно молодая наука на стыке большого количества фундаментальных и прикладных наук. Это своего рода биология от математики, которая занимается описанием и объяснением поведения тех или иных систем и общего между этим поведением.

Существует множество определений понятия системы, вот одно их них. Система - множество элементов, находящихся в отношениях, которое образует определенную целостность структуры, функции и процессов.

В зависимости от целей исследований, системы классифицируют:

  • по наличию взаимодействия с внешним миром - открытые и закрытые;
  • по количество элементов и сложности взаимодействия между ними - простые и сложные;
  • по возможности наблюдения всей системы полностью – малые и большие;
  • по наличию элемента случайности - детерминированные и недетерминированные;
  • по наличию у системы цели - казуальные и целенаправленные;
  • по уровню организации - диффузные (случайные блуждания), организованные (наличие структуры) и адаптивные (структура подстраивается под изменения вовне).

Также у систем существуют особые состояния, изучение которых дает понимание о поведении системы.

  • Устойчивый фокус. При небольших отклонениях, система снова возвращается в исходное состояния. Пример - маятник.
  • Неустойчивый фокус. Небольшое отклонение выводит систему из равновесия. Пример - конус, поставленный острием на стол.
  • Цикл. Некоторые состояния системы циклически повторяются. Пример - история разных стран.
  • Сложное поведение. Поведение системы обладает структурой, но она настолько сложна, что предсказать будущее состояние системы не представляется возможным. Пример - цены на акции на бирже.
  • Хаос. Система полностью хаотична, в ее поведении полностью отсутствует структура.

Зачастую при работе с системами, мы хотим сделать их лучше. Поэтому нужно задавать себе вопрос, в какое особое состояние мы хотим ее привести. Идеально, если интересующее нас новое состояние является устойчивым фокусом, тогда мы можем быть спокойны, что если мы достигнем успеха, то он не исчезнет на следующий день.

Сложные системы

Мы все чаще встречаем вокруг нас сложные системы. Здесь я не нашел звучащих терминов в русском языке, поэтому придется говорить на английском. Существует два принципиально разных понятия сложности.

Первый (complicatedness) - означает некоторую сложность устройства, которая применяется к навороченным механизмам. Такой вид сложности зачастую порождает неустойчивость системы к малейшим изменениям в окружающей среде. Так, если на заводе остановится один из станков, он может вывести из строя весь процесс.

Второй (complexity) - означает сложность поведения, например, биологических и экономических систем (либо их эмуляций). Такое поведение напротив сохраняется даже при некоторых изменениях окружающей среды или состояния самой системы. Так, при уходе крупного игрока с рынка, игроки меньше поделят его долю между собой, и ситуация стабилизируется.

Зачастую сложные системы обладают свойствами, которые способны ввергнуть непосвященного в апатию, и сделать работу с ними трудной и интуитивно непонятной. Такими свойства являются:

  • простые правила сложного поведения,
  • эффект бабочки или детерминированный хаос,
  • эмерджентность.

Простые правила сложного поведения

Мы привыкли, что если нечто демонстрирует сложное поведение, то оно, скорее всего, сложно устроено внутри. Поэтому мы видим закономерности в случайных событиях и пытаемся объяснить непонятные нам вещи происками злых сил.

Однако это не всегда так. Классическим примером простого внутреннего устройства и сложно внешнего поведения является игра «Жизнь». Она состоит из нескольких простых правил:

  • вселенная - клетчатая плоскость, есть начальное расположение живых клеток.
  • в следующий момент времени живая клетка живет, если у нее два или три соседа;
  • иначе она умирает от одиночества или перенаселения;
  • в пустой клетке, рядом с которой ровно три живые клетки, зарождается жизнь.

В целом, для написания программы, которая будет реализовывать эти правила, потребуется пять-шесть строчек кода.

При этом данная система может производить довольно сложные и красивые шаблоны поведения, так что не видя самих правил их сложно угадать. И уж точно сложно поверить, что это имплементируется несколькими строчками кода. Возможно, реальный мир также построен на нескольких простых законах, которые мы еще не вывели, а все безграничное многообразие порождается этим набором аксиом.

Эффект бабочки

В 1814 году Пьер-Симон Лаплас предложил мысленный эксперимент, заключающийся в существовании разумного существа, способного воспринять положение и скорость каждой частицы вселенной и знающего все законы мира. Вопрос заключался в теоретической способности такого существа предсказывать будущее вселенной.

Данный эксперимент вызвал множество споров в научных кругах. Ученые, вдохновленные прогрессом в вычислительной математике, склонялись к положительному ответу на данный вопрос.

Да, мы знаем, что принцип квантовой неопределенности исключает существование такого демона даже в теории, и предсказание положения всех частиц в мире принципиально невозможно. Но возможно ли оно в более простых детерминированных системах?

Действительно, если мы знаем состояние системы и правила, по которым они изменяются, что мешает нам вычислить следующее состояние? Нашей единственной проблемой может стать ограниченное количество памяти (мы можем хранить числа с ограниченной точностью), но все вычисления в мире так и работают, поэтому это не должно стать проблемой.

На самом деле нет.

В 1960 году Эдвард Лоренц создал упрощенную модель погоды, состоящую из нескольких параметров (температура, скорость ветра, давление) и законов, по которым из текущего состояния получается состояние в следующий момент времени, представляющих набор дифференциальных уравнений.

dt = 0,001

x0 = 3,051522

y0 = 1,582542

z 0 = 15,623880

xn+1 = xn + a(-xn + yn)dt

yn+1 = yn + (bxn - yn - znxn)dt

zn+1 = zn + (-czn + xnyn)dt

Он вычислял значения параметров, выводил их на монитор и строил графики. Получалось что-то вроде этого (график для одной переменной):

После этого Лоренц решил перестроить график, взяв некоторую промежуточную точку. Логично, что график получился бы абсолютно таким же, так как начальное состояние и правила перехода никак не изменились. Однако когда он это сделал, получилось нечто неожиданное. На графике ниже синяя линия отвечает за новый набор параметров.

То есть вначале оба графика идут очень близко, различий почти нет, но затем новая траектория все более отдаляется от старой, начиная вести себя по-другому.

Как выяснилось, причина парадокса крылась в том, что в памяти компьютера все данные хранились с точностью до шестого знака после запятой, а выводились с точностью до третьего. То есть микроскопическое изменение параметра привело к огромному различию в траекториях системы.

Это была первая детерминированная система, обладающая таким свойством. Эдвард Лоренц дал ей название «Эффект бабочки».

Этот пример показывает нам, что иногда события, кажущиеся нам неважными, в конечном итоге имеют огромное воздействие на исходы. Поведение таких систем невозможно предсказать, но они и не являются хаотическим в прямом смысле этого слова, ведь они детерминированы.

Более того, траектории данной системы обладают структурой. В трехмерном пространстве множество всех траекторий выглядит так:

Что символично, оно похоже на бабочку.

Эмерджентность

Томас Шеллинг, американский экономист, рассматривал карты распределения расовых классов в различных городах Америки, и наблюдал следующую картину:

Это карта Чикаго и здесь разными цветами изображены места проживания людей различных национальностей. То есть в Чикаго, как и в других городах Америки, присутствует довольно сильная расовая сегрегация.

Какие выводы мы можем из этого сделать? Первыми в голову приходят: люди нетолерантны, люди не принимают и не хотят жить с людьми, которые отличаются от них. Но так ли это?

Томас Шеллинг предложил следующую модель. Представим город в виде клетчатого квадрата, в клетках живут люди двух цветов (красные и синие).

Тогда почти у каждого человека из этого города есть 8 соседей. Выглядит это как-то так:

При этом если у человека меньше 25% соседей того же цвета, то он случайным образом переезжает в другую клетку. И так продолжается до тех пор, пока каждого жителя не устраивает его положение. Жителей этого города совсем нельзя назвать нетолерантными, ведь им нужно всего лишь 25% людей таких же как они. В нашем мире их назвали бы святыми, настоящим примером терпимости.

Однако если запустить процесс переездов, то из случайного расположения жителей выше, мы получим следующую картину:

То есть мы получим расово сегрегированный город. Если же вместо 25%, каждый житель будет хотеть хотя бы половину соседей таких же как он, то мы получим практически полную сегрегацию.

При этом данная модель не учитывает такие вещи, как наличие локальных храмов, магазинов с национальной утварью и так далее, которые также увеличивают сегрегацию.

Мы привыкли объяснять свойства системы свойствами ее элементов и наоборот. Однако для сложных систем это зачастую приводит нас к неверным выводам, ведь, как мы видели, поведение системы на микро и макро уровнях может быть противоположным. Поэтому зачастую спустившись на микро уровень, мы стараемся сделать как лучше, а получается как всегда.

Такое свойство системы, когда целое не может быть объяснено суммой элементов, называется эмерджентностью.

Самоорганизация и адаптивные системы

Пожалуй, самым интересным подклассом сложных систем являются адаптивные системы, или системы, способные к самоорганизации.

Самоорганизация означает, что система меняет свое поведение и состояние, в зависимости от изменений во внешнем мире, она адаптируется к изменениям, постоянное преображаясь. Такие системы повсюду, практически любая социально-экономическая или биологическая, ровно как комьюнити любого продукта, являются примерами адаптивных систем.

А вот видео с щенками.

Сначала система находится в хаосе, но при добавлении внешнего стимула она упорядочивается и появляется довольно милое поведение.

Поведение муравьиного роя

Поведение муравьиного роя при поиске еды является прекрасным примером адаптивной системы, построенной на простых правилах. При поиске еды, каждый муравей блуждает случайным образом, пока не найдет еду. Найдя еду насекомое возвращается домой, отмечая пройденный путь феромонами.

При этом вероятность выбора направления при блуждании пропорциональна количеству феромона (силе запаха) на данном пути, а со временем феромон испаряется.

Эффективность муравьиного роя настолько высока, что похожий алгоритм используется для нахождения оптимального пути в графах в реальном времени.

При этом поведение системы, описывается простыми правилами, каждое из которых критически важно. Так случайность блуждания позволяет находить новые источники питания, а испаряемость феромона и привлекательность пути, пропорциональное силе запаха, позволяет оптимизировать длину маршрута (на коротком пути, феромон будет испаряться медленнее, поскольку новые муравьи будут добавлять свой феромон).

Адаптивное поведение всегда находится где-то между хаосом и порядком. Если хаоса слишком много, то система реагирует на любое, даже незначимое, изменение и не может адаптироваться. Если же хаоса слишком мало, то в поведении системы наблюдается стагнация.

Я наблюдал это явление во многих командах, когда наличие четких должностных инструкций и жестко регламентированных процессов делало команду беззубой, и любой шум вовне выбивал ее из колеи. С другой стороны, отсутствие процессов приводил к тому, что команда действовала неосознанно, не накапливала знания и поэтому все ее несинхронизированные усилия не вели к результату. Поэтому построение такой системы, а именно в этом задача большинства профессионалов в любой динамической сфере, является своего рода искусством.

Для того, чтобы система была способна к адаптивному поведения необходимо (но не достаточно):

  • Открытость . Закрытая система не может адаптироваться по определению, поскольку она ничего не знает о внешнем мире.
  • Наличие положительных и отрицательных обратных связей . Отрицательные обратные связи позволяют системе оставаться в выгодном состоянии, так как они уменьшают реакцию на внешний шум. Однако, адаптация невозможно и без положительных обратных связей, которые помогают системе переходить в новое лучшее состояние. Если говорить об организациях, то за отрицательные обратные связи отвечают процессы, тогда как за положительные - новые проекты.
  • Разнообразие элементов и связей между ними . Эмпирически, увеличение разнообразия элементов и количества связей увеличивает количество хаоса в системе, поэтому любая адаптивная система должна обладать необходимым количеством и того и другого. Также разнообразие позволяет более гладко реагировать на изменения.

Напоследок, хочется привести пример модели, подчеркивающей необходимость разнообразия элементов.

Для колонии пчел очень важно поддерживать постоянную температуру улья. При этом если температуру улья опускается ниже желаемой для данной пчелы, она начинает махать крыльями, чтобы согреть улей. У пчел нет координации и желаемая температура заложена в ДНК пчелы.

Если у всех пчел будет одинаковая желаемая температура, то при ее опускании ниже, все пчелы начнут одновременно махать крыльями, быстро согреют улей, а затем он также быстро остынет. График температуры будет выглядеть так:

А вот другой график, где желаемая температура для каждой пчелы сгенерирована случайно.

Температура улья держится на постоянном уровне, потому что пчелы подключаются к согреванию улья по очереди начиная с самых «мерзнущих».

На этом все, напоследок хочется повторить некоторые идеи, которые обсуждались выше:

  • Иногда вещи не совсем такие, какими они кажутся.
  • Отрицательный фидбек помогает оставаться на месте, положительный - двигаться вперед.
  • Иногда, чтобы сделать лучше нужно добавить хаоса.
  • Иногда для сложного поведения достаточно простых правил.
  • Цените разнообразие, даже если вы не пчела.

Общая теория систем Л. Берталанфи

Иркутск 2015 г.

Введение

Общие положения

Общие исследования систем

Кибернетика

Сферы применения ОТС по Берталанфи:

Заключение

Список литературы

Введение

Появление системного подхода дало ученым некоторую надежду на то, что, наконец, "целое" из диффузной и неконструктивной формы примет четкие очертания операционального исследовательского принципа.

Термин "система" имеет весьма древнее происхождение, и едва ли есть какое-либо научное направление, которое его не употребляло. Достаточно вспомнить "систему кровообращения", "систему пищеварения" и т.д., которые до сих пор некоторыми исследователями принимаются за выражение системного подхода. Большей частью термин "система" употребляется там, где речь идет о чем-то собранном вместе, упорядоченном, организованном, но, как правило, не упоминается критерий, по которому компоненты собраны, упорядочены, организованы.

Очевидно, что ОТС не является плодом раздумий горстки мыслителей. Ее возникновению способствовало несколько научных течений. Концепции открытых систем развивались одновременно в термодинамике и биологии в 30-х годах. Понятие эквифинальности было введено Берталанфи в 1940 г. Принципиальные различия между неживой и живой природой были описаны Бриллюэном в 1949 г. Примеры открытых систем в экологии, неврологии и философии приведены Уиттекером, Кречем и Бентли в публикациях 50-х годов.

Большую роль в возникновении ОТС как науки сыграли научные направления и концепции, связанные с именами выдающихся ученых:

Нейман разработал к 1948 г. общую теорию автоматов и заложил основы теории искусственного интеллекта.

Работа Шеннона по теории информации (1948 г), в которой понятие количества информации было дано с позиций теории связи.

Кибернетика Винера (1948 г.), с помощью которой была найдена связь понятий энтропии, неупорядоченности, количества информации и неопределенности. Была подчеркнута особая важность этих понятий для изучения систем.

Эшби к 1956 г. разработал концепции саморегулирования и самоуправления, являющиеся дальнейшим развитием идей Винера и Шеннона.

Представления, вызванные к жизни в связи с развитием кибернетики и теории информации, приводят к двум отчасти противоречивым следствиям: во-первых, они позволяют аппроксимировать открытые системы замкнутыми путем введения механизма обратной связи; во-вторых, они показывают невозможность искусственного воспроизведения на модели ряда особенностей процесса автоматического регулирования в живых системах.

Ученые, идущие по первому пути, направили свои усилия на построение моделей и теорий организаций, в которых преобладают концепции, заимствованные из аналитического и механистического подходов. Привлекательной стороной этих теорий является их строгость. Однако в рамках этих теорий не поддаются определению многие специфические свойства живых систем. Второй путь оказался важным для развития поведенческой теории организаций, которая сочетает концепции экономической теории с поведенческими представлениями, вытекающими из психологии, социологии и антропологии. Последние лучше объясняют феномен поведения, чем аналитико-механистические теории, но уступают им в строгости.

Для того чтобы подчеркнуть тот факт, что общих систем не существует, а речь идет о поиске общих теорий, вероятно, более подходящей была бы какая-либо иная комбинация этих слов. Ласло указывал, что данное "семантическое недоразумение" первоначально возникло в результате перевода с немецкого, ранних работ Берталанфи. В упомянутых работах строилась "теория, применимая в различных областях науки", а не "теория того, что называется общими системами", как ошибочно было в английском варианте. Основополагающая работа Берталанфи была в английском варианте названа "Теория общей системы" лишь однажды.

Цель данной работы - рассмотреть общую теорию систем Л. Берталанфи.

Теория систем - междисциплинарная область науки и исследование природы сложных систем в природе <#"justify">общая теория система берталанфи

Предпосылки возникновения междисциплинарной теории

Мотивы, ведущие к выдвижению идеи общей теории систем, можно суммировать в следующих нескольких положениях.

До XX века область науки как деятельности, направленной на установление объясняющей и предикативной системы законов, практически отождествлялась с теоретической физикой. Лишь несколько попыток создания систем законов в нефизических областях получили общее признание (на пример, генетика). Тем не менее биологические, бихевиоральные и социальные науки нашли свою собственную базу, и поэтому стала актуальной проблема, возможно ли распространение научных концептуальных схем на те области и проблемы, где приложение физики является недостаточным или вообще неосуществимым.

Классическая наука не использовала понятия и не разрешала проблем, имевшихся в биологических или социологических областях. К примеру, в живом организме наблюдается организация, регулирование, непрерывную динамику и порядок, как и в человеческом поведении, но подобные вопросы выходили за рамки классической науки, опирающейся на так называемое механистическое мировоззрение; подобные вопросы считались метафизическими.

Охарактеризованное положение было тесно связано со структурой классической науки. Последняя занималась главным образом проблемами с двумя переменными (линейными причинными рядами, одной причиной и одним следствием) или в лучшем случае проблемами с несколькими переменными. Классическим примером этого служит механика. Она дает точное решение проблемы притяжения двух небесных тел - Солнца и планеты и благодаря этому открывает возможность для точного предсказания будущих расположений звезд и даже существования до сих пор не открытых планет. Тем не менее уже проблема трех тел в механике в принципе неразрешима и может анализироваться только методом приближений. Подобное же положение имеет место и в более современной области физики - атомной физике. Здесь также проблема двух тел, например протона и электрона, вполне разрешима, но, как только мы касаемся проблемы многих тел, снова возникают трудности. Однонаправленная причинность, отношения между причиной и следствием, двумя или небольшим числом переменных - все эти механизмы действуют в широкой области научного познания. Однако множество проблем, встающих в биологии, в бихевиоральных и социальных науках, по существу, являются проблемами со многими переменными и требуют для своего решения новых понятийных средств. Уоррен Уивер, один из основателей теории информации, выразил эту мысль в часто цитируемом положении. Классическая наука, утверждал он, имела дело либо с линейными причинными рядами, то есть с проблемами двух переменных, либо с проблемами, относящимися к неорганизованной сложности. Последние могут быть разрешены статистическими методами и в конечном счете вытекают из второго начала термодинамики. В современной же физике и биологии повсюду возникают проблемы организованной сложности, то есть взаимодействия большого, но не бесконечного числа переменных, и они требуют новых понятийных средств для своего разрешения.

Сказанное выше не является метафизическим, или философским, утверждением. Мы не воздвигаем барьер между неорганической и живой природой, что, очевидно, было бы неразумно, если иметь в виду различные промежуточные формы, такие, как вирусы, нуклеопротеиды и самовоспроизводящиеся элементы вообще, которые определенным образом связывают эти два мира. Точно так же мы не декларируем, что биология в принципе "несводима к физике", что было бы неразумно ввиду колоссальных достижений в области физического и химического объяснения жизненных процессов. Подобным же образом у нас нет намерения установить барьер между биологией и бихевиоральными и социальными науками. И все же это не устраняет того факта, что в указанных областях мы" не имеем подходящих понятийных средств для объяснения и предсказания, подобных тем, какие имеются в физике и в ее различных приложениях.

По-видимому, существует настоятельная потребность в распространении средств науки на те области, которые выходят за рамки физики и обладают специфическими чертами биологических, бихевиоральных и социальных явлений. Это означает, что должны быть построены новые понятийные модели. Каждая наука является в широком смысле слова моделью, то есть понятийной структурой, имеющей целью отразить определенные аспекты реальности. Одной из таких весьма успешно действующих моделей является система физики. Но физика - это только одна модель, имеющая дело с определенными аспектами реальности. Она не может быть монопольной и не совпадает с самой реальностью, как это предполагали механистическая методология и метафизика. Она явно не охватывает все аспекты мира и представляет, как об этом свидетельствуют специфические проблемы в биологии и бихевиоральных науках, некоторый ограниченный аспект реальности. Вероятно, возможно "введение других моделей, имеющих дело с явлениями, находящимися вне компетенции физики.

Все эти рассуждения носят весьма абстрактный характер. Поэтому, по-видимому, следует ввести некоторый личный момент, рассказав, как автор данной работы пришел к проблемам такого рода.

Общие положения

Первоначальные идеи о теории систем возникли на основе исследований в области социологии <#"center">Общие исследования систем

Многие ранние исследователи в области наук о системах пытались найти общую теорию систем, которая могла бы описать и объяснить произвольную систему с точки зрения науки. Термин "общая теория систем" восходит к одноимённому труду Л. Берталанфи, целью которого было собрать вместе всё, что он обнаружил в своей работе, будучи биологом. Его желанием было использовать слово "система" для описания принципов, которые являются общими для всех систем. В своей книге он писал:

"…существуют модели, принципы и законы, которые применимы к обобщённым системам или их подклассам, независимые от их особого рода, природы их компонентов, типов связей между ними. Кажется, что можно создать теорию, которая бы изучала не системы какого-то определённого рода, но дававшая понимание принципов систем в общем".

Эрвин Ласло в своём предисловии к книге Берталанфи "Перспективы общей теории систем" писал:

"Таким образом, когда Берталанфи говорит об "Allgemeine Systemtheorie" (нем. <#"center">Кибернетика

Кибернетика изучает обратные связи <#"justify">Сферы применения ОТС по Берталанфи:

·Кибернетика, базирующаяся на принципе обратной связи, или круговых причинных цепях, и вскрывающая механизмы целенаправленного и самоконтролируемого поведения.

·Теория информации, вводящая понятие информации как некоторого количества, измеряемого посредством выражения, изоморфного отрицательной энтропии в физике, и развивающая принципы передачи информации.

·Теория игр, анализирующая в рамках особого математического аппарата рациональную конкуренцию двух или более противодействующих сил с целью достижения максимального выигрыша и минимального проигрыша.

·Теория решений, анализирующая аналогично теории игр рациональные выборы внутри человеческих организаций, основываясь на рассмотрении данной ситуации и ее возможных исходов.

·Топология, или реляционная математика, включающая неметрические области, такие, как теория сетей и теория графов.

·Факторный анализ, то есть процедуры изоляции - посредством использования математического анализа - факторов в многопеременных явлениях в психологии и других научных областях.

·Общая теория систем в узком смысле, пытающаяся вывести из общего определения понятия "система", как комплекса взаимодействующих компонентов, ряд понятий, характерных для организованных целых, таких, как взаимодействие, сумма, механизация, централизация, конкуренция, финальность и т.д., и применяющая их к конкретным явлениям.

Поскольку теория систем в широком смысле является по своему характеру фундаментальной основополагающей наукой, она имеет свой коррелят в прикладной науке, иногда выступающий под общим названием науки о системах, или системной науки (Systems Science). Это научное движение тесно связано с современной автоматикой. В общем плане следует различить в науке о системах следующие области:

·Системотехнику (Systems Engineering), то есть научное планирование, проектирование, оценку и конструирование систем человек - машина.

·Исследование операций (Operations research), то есть научное управление существующими системами людей, машин, материалов, денег и т.д.

·Инженерную психологию (Human Engineering), то есть анализ приспособления систем и прежде всего машинных систем, для достижения максимума эффективности при минимуме денежных и иных затрат.

Хотя в только что названных научных дисциплинах имеется много общего, в них, однако, используются различные понятийные средства. В системотехнике, например, применяются кибернетика и теория информации, а также общая теория систем. В исследовании операций используются методы линейного программирования и теории игр. Инженерная психология, занимающаяся анализом способностей, психологических ограничений и вариабильности человеческих существ, широко использует средства биомеханики, промышленной психологии, анализ человеческих факторов и т.д.

важно иметь в виду, что системный подход, как некоторая новая концепция в современной науке, имеет параллель в технике. Системный подход в науке нашего времени стоит в таком же отношении к так называемой механистической точке зрения, в каком системотехника находится к традиционной физической технологии.

Все перечисленные теории имеют определенные общие черты.

Во-первых, они сходятся в том, что необходимо как-то решать проблемы, характерные для бихевиоральных и биологических наук и не имеющие отношения к обычной физической теории.

Во-вторых, эти теории вводят новые по сравнению с физикой понятия и модели, например обобщенное понятие системы, понятие информации, сравнимое по значению с понятием энергии в физике.

В-третьих, эти теории, как указывалось выше, имеют дело преимущественно с проблемами со многими переменными.

В-четвертых, вводимые этими теориями модели являются междисциплинарными по своему характеру, и они далеко выходят за пределы сложившегося разделения науки.

В-пятых и, может быть, самое важное-такие понятия, как целостность, организация, телеология и направленность движения или функционирования, за которыми в механистической науке закрепилось представление как о ненаучных или метафизических, ныне получили полные права гражданства и рассматриваются как чрезвычайно важные средства научного анализа. В настоящее время мы располагаем концептуальными и в некоторых случаях даже материальными моделями, способными воспроизводить основные свойства жизни и поведения.

Основные понятия общей теории систем

Система - это комплекс взаимодействующих компонентов.

Система - это множество связанных действующих элементов.

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т.д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система (от греч. SYSTEMA, означающего "целое, составленное из частей") представляет собой множество элементов, связей и взаимодействий между ними и внешней средой, образующих определенную целостность, единство и целенаправленность. Практически каждый объект может рассматриваться как система.

Система - это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Система определяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.

Важным средством характеристики системы являются ее свойства . Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство - это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы. Свойства - это внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующие основные свойства системы:

  • Система есть совокупность элементов. При определенных условиях элементы могут рассматриваться как системы.
  • Наличие существенных связей между элементами. Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.
  • Наличие определенной организации, что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.
  • Наличие интегративных свойств, т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.
  • Эмерджентностъ - несводимость свойств отдельных элементов и свойств системы в целом.
  • Целостность - это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.
  • Делимость - возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.
  • Коммуникативность. Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.
  • Системе присуще свойство развиваться, адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие - объясняет сложные термодинамические и информационные процессы в природе и обществе.
  • Иерархичность. Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.
  • Важным системным свойством является системная инерция, определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.
  • Многофункциональность - способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.
  • Гибкость - это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.
  • Адаптивность - способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система - такая, в которой происходит непрерывный процесс обучения или самоорганизации.
  • Надежность - это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.
  • Безопасность - способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.
  • Уязвимость - способность получать повреждения при воздействии внешних и (или) внутренних факторов.
  • Структурированность - поведение системы обусловлено поведением ее элементов и свойствами ее структуры.
  • Динамичность - это способность функционировать во времени.
  • Наличие обратной связи.

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией

F (х, у, t),

где U1 - экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F (x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы - это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения - некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть ZСД (подпространство) - множество допустимых состояний системы.

Равновесие - способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость - это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.

Структура системы - совокупность элементов системы и связей между ними в виде множества. Структура системы означает строение, расположение, порядок и отражает определенные взаимосвязи, взаимоположение составных частей системы, т.е. ее устройства и не учитывает множества свойств (состояний) ее элементов.

Система может быть представлена простым перечислением элементов, однако чаще всего при исследовании объекта такого представления недостаточно, т.к. требуется выяснить, что представляет собой объект и что обеспечивает выполнение поставленных целей.

Внешняя среда

Понятие элемента системы. По определению элемент - это составная часть сложного целого. В нашем понятии сложное целое - это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент - часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними проявлениями в виде связей и взаимосвязей с остальными элементами и внешней средой.

Понятие связи. Связь - совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами - это значит выявить наличие зависимостей их свойств. Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи - совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие - совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Понятие внешней среды. Система существует среди других материальных или нематериальных объектов, которые не вошли в систему и объединяются понятием "внешняя среда" - объекты внешней среды. Вход характеризует воздействие внешней среды на систему, выход - воздействие системы на внешнюю среду.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система - объект анализа (синтеза), а другая - как внешняя среда.

Внешняя среда - набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда - это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Заключение

"Система - это набор взаимодействующих элементов", сказал фон Берталанфи, подчёркивая, что система - это структура, у которой элементы каким-то образом действуют друг на друга (взаимодействуют).

Достаточно ли данного определения, чтобы отличить систему от не системы? Очевидно нет, потому что в любой структуре пассивно или активно её элементы так или иначе действуют друг на друга (давят, толкают, притягивают, индуцируют, нагревают, действуют на нервы, нервничают, обманывают, поглощают и пр.). Любой набор элементов всегда так или иначе действует и невозможно найти объект, который не совершал бы какие-либо действия. Однако эти действия могут быть случайными, без цели, хотя случайно, но не предсказуемо, они могут способствовать достижению какой-либо цели. Например, вилка, запущенная шаловливым внуком, может попасть в глаз бабушке и сорвать с него старое бельмо, но таким образом, что сам глаз не будет поврежден и его зрение будет восстановлено (случай, описанный в романе, теоретически возможен). В данном случае, хотя и был получен полезный эффект, вилка в сочетании с внуком не является системой для удаления бельма, а данное странное происшествие было случайным и не предсказуемым. Таким образом, хотя признак действия и является основным, он определяет не понятие системы, а одно из необходимых условий этого понятия.

"Система - это комплекс избирательно вовлеченных элементов, взаимосодействующих достижению заданного полезного результата, который принимается основным системно образующим фактором", сказал в своё время Анохин.

Очевидно, данное определение ближе остальных к правильному пониманию, потому что в понятие "Что может делать данный объект?" вкладывается понятие цели. Содействовать можно только лишь достижению определённой цели, а заданный полезный результат может быть только целью. Остаётся лишь выяснить, кто или что определяет полезность результата. Другими словами, кто или что ставит цель перед системой?

ОТС должна дать ответы на всё мыслимые вопросы о бытие нашего Мира и, возможно, когда-нибудь ответы на все эти вопросы и будут найдены, но не сегодня. В данной работе была осуществлена всего лишь попытка ответить на очень небольшое число этих очень сложных и спорных вопросов и в задачу автора не входило найти все ответы.

Системный анализ намного облегчает наше понимание тех процессов, которые происходят в мире. Но самое главное, системный анализ превращает науку из экспериментальной в аналитическую. Различие между ними огромное и принципиальное. Эмпирика даёт нам факты, но никак не объясняет их. Анализ в сочетании с эмпирикой может дать нам факты, их объяснение и прогноз. Практический выигрыш от этого огромный.

Мир един и знания о нём должны быть связаны одно с другим. Общая теория систем на то и "общая", потому что затрагивает все стороны нашей жизни, и связывает их в единое целое.

Список литературы

1.Общая теория систем - критический обзор, Берталанфи [Электронный ресурс] /

О принципах исследования систем, В.А. Лекторский, В.Н. Садовский [Электронный ресурс] / http://vphil.ru.

Теория систем [Электронный ресурс] / http://traditio.ru

Общая теория систем (системы и системный анализ), Гайдес Марк Аронович [Электронный ресурс] / http://www.medlinks.ru

Австрийский учёный-биолог, проживавший в Канаде и США, Людвиг фон Берталанфи, в 1937 году впервые выдвинул ряд идей, которые позже он объединил в одну концепцию. Он назвал её «Общая теория систем». Что же это такое? Это научная концепция изучения различных объектов, рассматриваемых в качестве системы.

Основная идея предложенной теории заключалась в том, что законы, управляющие системными объектами, - едины, одинаковы для разных систем. Справедливости ради надо сказать, что основные идеи Л. Берталанфи были заложены разными учёными, в том числе и русским философом, писателем, политическим деятелем, врачом, в своем фундаментальном труде «Тектология», написанном им в 1912 году. А.А. Богданов активно участвовал в революции, однако, во многом был не согласен с В.И. Лениным. не принял, но, тем не менее, продолжил сотрудничество с большевиками, организовав первый в тогдашней России Институт переливания крови и ставя на себе медицинский эксперимент. Он погиб в 1928 году. Мало кто знает и сегодня, что в начале двадцатого века русский учёный-физиолог В.М. Бехтерев, независимо от А.А. Богданова, описал более 20 универсальных законов в сфере психологических и социальных процессов.

Общая теория систем изучает различные виды, структуру систем, процессы их функционирования и развития, организацию компонентов структурно-иерархических уровней, и многое другое. Л. Берталанфи также исследовал так называемые открытые системы, обменивающиеся свободной энергией, веществом и информацией со средой.

Общая теория систем в настоящее время исследует такие общесистемные закономерности и принципы, как, например, гипотеза семиотической обратной связи, организационной непрерывности, совместимости, взаимодополнительных соотношений, закон необходимого разнообразия, иерархических компенсаций, принцип моноцентризма, наименьших относительных сопротивлений, принцип внешнего дополнения, теорема о рекурсивных структурах, закон расхождения и другие.

Современное состояние наук о системах многим обязано Л. Берталанфи. Общая теория систем во многом схожа по целям либо методам исследования с кибернетикой - наукой об общих закономерностях процесса управления и передачи информации в разных системах (механические, биологические или социальные); теорией информации — разделом математики, определяющим понятие информации, её законы и свойства; теорией игр, анализирующей с помощью математики конкуренцию двух или более противостоящих сил с целью получения наибольшего выигрыша и наименьшего проигрыша; теорией принятия решений, анализирующей рациональные выборы среди различных альтернатив; факторным анализом, использующим процедуру выделения факторов в явлениях со многими переменными.

Сегодня общая теория системполучает мощный импульс для своего развития в синергетике. И. Пригожин и Г. Хакен исследуют неравновесные системы, диссипативные структуры и энтропию в открытых системах. Кроме этого, из теории Л. Берталанфи выделились такие прикладные научные дисциплины, как системотехника - наука о системном планировании, проектировании, оценке и конструировании систем вида «человек-машина»; инженерная психология; теория полевого поведения исследование операций - наука об управлении компонентами экономических систем (люди, машины, материалы, финансы и другое); СМД-методология, которая была разработана Г.П. Щедровицким, его сотрудниками и учениками; теория интегральной индивидуальности В. Мерлина, основу которой составила во многом рассмотренная выше общая теория систем Берталанфи.

ОБЩАЯ ТЕОРИЯ СИСТЕМ с пециально-научная и логико-методологическая концепция исследований объектов, представляющих собой системы . Общая теория систем тесно связана с системным подходом и является конкретизацией и логико-методологическим выражением его принципов и методов. Первый вариант общей теории систем был выдвинут Л. фон Берталанфи , однако у него было много предшественников (в частности, А.А.Богданов ). Общая теория систем возникла у Берталанфи в русле защищаемого им «организмического» мировоззрения как обобщение разработанной им в 1930-х гг. «теории открытых систем», в рамках которой живые организмы рассматривались как системы, постоянно обменивающиеся со средой веществом и энергией. По замыслу Берталанфи общая теория систем должна была отразить существенные изменения в понятийной картине мира, которые принес 20 в. Для современной науки характерно: 1) ее предмет – организация; 2) для анализа этого предмета необходимо найти средства решения проблем со многими переменными (классическая наука знала проблемы лишь с двумя, в лучшем случае – с несколькими переменными); 3) место механицизма занимает понимание мира как множества разнородных и несводимых одна к другой сфер реальности, связь между которыми проявляется в изоморфизме действующих в них законов; 4) концепцию физикалистского редукционизма, сводящего всякое знание к физическому, сменяет идея перспективизма – возможность построения единой науки на базе изоморфизма законов в различных областях. В рамках общей теории систем Берталанфи и его сотрудниками разработан специальный аппарат описания «поведения» открытых систем, опирающийся на формализм термодинамики необратимых процессов, в частности на аппарат описания т.н. эквифинальных систем (способных достигать заранее определенного конечного состояния независимо от изменения начальных условий). Поведение таких систем описывается т.н. телеологическими уравнениями, выражающими характеристику поведения системы в каждый момент времени как отклонение от конечного состояния, к которому система как бы «стремится».

В 1950–70-х гг. предложен ряд других подходов к построению общей теории систем (М.Месарович, Л.Заде, Р.Акофф, Дж.Клир, А.И.Уемов, Ю.А.Урманцев, Р.Калман, Е.Ласло и др.). Основное внимание при этом было обращено на разработку логико-концептуального и математического аппарата системных исследований. В 1960-е гг. (под влиянием критики, а также в результате интенсивного развития близких к общей теории систем научных дисциплин) Берталанфи внес уточнения в свою концепцию, и в частности различил два смысла общей теории систем. В широком смысле она выступает как основополагающая наука, охватывающая всю совокупность проблем, связанных с исследованием и конструированием систем (в теоретическую часть этой науки включаются кибернетика, теория информации, теория игр и решений, топология, теория сетей и теория графов, а также факторальный анализ). Общая теория систем в узком смысле из общего определения системы как комплекса взаимодействующих элементов стремится вывести понятия, относящиеся к организменным целым (взаимодействие, централизация, финальность и т.д.), и применяет их к анализу конкретных явлений. Прикладная область общей теории систем включает, согласно Берталанфи, системотехнику, исследование операций и инженерную психологию.

Учитывая эволюцию, которую претерпело понимание общей теории систем в работах Берталанфи и др., можно констатировать, что с течением времени имело место все более увеличивающееся расширение задач этой концепции при фактически неизменном состоянии ее аппарата и средств. В результате создалась следующая ситуация: строго научной концепцией (с соответствующим аппаратом, средствами и т.д.) можно считать лишь общую теорию систем в узком смысле; что же касается общей теории систем в широком смысле, то она или совпадает с общей теорией систем в узком смысле (в частности, по аппарату), или представляет собой действительное расширение и обобщение общей теории систем в узком смысле и аналогичных дисциплин, но тогда встает вопрос о развернутом представлении ее средств, методов и аппарата. В последние годы множатся попытки конкретных приложений общей теории систем, напр., к биологии, системотехнике, теории организации и др.

Общая теория систем имеет важное значение для развития современной науки и техники: не подменяя специальные системные теории и концепции, имеющие дело с анализом определенных классов систем, она формулирует общие методологические принципы системного исследования.

Литература:

1. Общая теория систем. М., 1966;

2. Кремянский В.И. Некоторые особенности организмов как «систем» с точки зрения физики, кибернетики и биологии. – «ВФ», 1958, № 8;

3. Лекторский В.Α. , Садовский В.Н. О принципах исследования систем. – «ВФ», 1960, № 8;

4. Сетров М.И. Значение общей теории систем Л.Берталанфи для биологии. – В кн.: Философские проблемы современной биологии. М. – Л., 1966;

5. Садовский В.Н. Основания общей теории систем. М., 1974;

6. Блауберг И.В. Проблема целостности и системный подход. М., 1997;

7. Юдин Э.Г. Методология науки. Системность. Деятельность. М., 1997;

8. Bertalanffy L. Das biologische Weltbild, Bd. 1. Bern, 1949;

9. Idem. Zu einer allgemeinen Systemlehre. – Biologia generalis, 1949, S. 114–29;

10. Idem. An Outline of General System Theory. – «British Journal Philosophy of Science», 1950, p. 134–65;

11. Idem. Biophysik des Fliessgleichgewichts. Braunschweig, 1953;

12. General Systems, Yearbook of the Society for General Systems Research, eds. L.Bertalanffy and A.Rapoport. Michigan, 1956 (изд. продолжается);

13. Zadeh L.O. The Concept of State in System Theory. – Views on General System Theory, ed. by M.D.Mesarovic. N. Y., 1964.

В.Н.Садовский

Новое на сайте

>

Самое популярное