Домой Плодовые деревья Процесс основанный на регенерации. Регенерация. Регенерация бывает физиологической, репаративной и патологической. Целительная иммунная система саламандры

Процесс основанный на регенерации. Регенерация. Регенерация бывает физиологической, репаративной и патологической. Целительная иммунная система саламандры

Регенерация бывает физиологической, репаративной и патологической . Процесс регенерации очень близок, фактически идентичен гиперпластическому процессу (размножение клеток и внутриклеточных структур). Различаются они тем, что гиперплазия (гипертрофия) обычно возникает в связи с необходимостью усиления функции, а регенерация - с «целью» нормализации функции при повреждении органа и убыли части его массы. Раньше считали, что регенерация ограничивается лишь органным и тканевым уровнями. Теперь стало очевидным, что физиологическая и репаративная регенерация - явление универсальное, свойственное не только тканевому и клеточному уровням, но и внутриклеточному, включая молекулярный (регенерация поврежденной структуры ДНК). Так, после патогенного воздействия и повреждения ДНК происходит ее «залечивание», осуществляемое последовательной работой репаративных ферментов. Они «узнают» поврежденный участок, расширяют его, т.е. как бы очищают место повреждения, а затем «застраивают» образовавшуюся брешь по комплементарной неповрежденной нити ДНК и «сшивают» встроенные нуклеотиды. Самым замечательным в процессе репарации ДНК является то, что она как бы в миниатюре повторяет те главные звенья регенераторного процесса, которые мы привыкли наблюдать при его развертывании на тканевом уровне,- повреждение, ферментативное расщепление омертвевших тканей и очищение зоны повреждения в пределах здоровых тканей, заполнение образовавшегося дефекта новообразованной тканью того же типа (полная регенерация) или соединительной тканью (неполная регенерация). Это свидетельствует о том, что при всем кажущемся бесконечном разнообразии процессов, развертывающихся в организме, каждый из них в принципе протекает по некоторой универсальной, общей для всех уровней организации типовой схеме.

Регенерация, протекающая на молекулярном и ультраструктурном уровнях, ограничивается клетками, и поэтому она получила название внутриклеточной. Структурное обеспечение приспособления организма к повседневным влияниям окружающей среды обеспечивается соответствующими колебаниями интенсивности физиологической регенерации , которая в случае болезни резко усиливается и принимает характер репаративной. И физиологическая, и репаративная регенерация в одних органах обеспечивается всеми ее формами - клеточной (митоз, амитоз) и внутриклеточной. В таких же органах и системах, как ЦНС и сердце (миокард), где размножение клеток отсутствует, структурной основой нормализации их функции служит исключительно внутриклеточная регенерация. Таким образом, последняя является универсальной формой регенерации, свойственной всем органам без исключения.

Репаративная регенерация бывает полной, неполной и внутриклеточной.

Клеточная форма регенерации присуща следующим органам и тканям (костная, кроветворная, рыхлая соединительная, эндотелий, мезотелий, слизистые желудочно-кишечного тракта, мочеполовой системы, органов дыхания, кожа, лимфоидная ткань),

К органам и тканям, где преобладает внутриклеточная форма регенерации , относят миокард и нервные клетки.

В некоторых органах наблюдается клеточная и внутриклеточная форма регенерации - печень, почки, легкие, гладкие мышцы, эндокринные железы, поджелудочная железа, вегетативная нервная система.

Морфогенез репаративного процесса складывается из двух фаз - пролиферации и дифференцировки . В первую фазу идет размножение молодых недифференцированных клеток (камбиальных, стволовых или клеток предшественников). Размножаясь а затем дифференцируясь, они восполняют убыль высокодифференцированных клеток. Есть и другая точка зрения об источниках регенерации. Допускается, что источником регенерации могут быть высокодифференцированные клетки органа, который в условиях патологического процесса могут перестраиваться, утрачивать часть своих специфических органелл и одновременно приобретать способность к митотическому делению с последующией пролиферацией и дифференцировкой. Исходы процесса регенерации могут быть различными. В одних случаях репаративная регенерация заканчивается формированием части идентичной погибшей – тогда говорят о полной регенерации или реституции. В других – возникает неполная регенерация (субституция). В зоне повреждения образуется не специфическая для данного органа ткань, а соединительная, в дальнейшем подвергающаяся рубцеванию. При этом оставшиеся структуры компенсаторно увеличиваются в своей массе, т.е. гипертрофируются. Возникает регенерационная гипертрофия, которая и является выражением сущности неполной регенерации. Регенерационная гипертрофия может осуществляться двумя путями – гиперплазией клеток (печень, почки, подж. железа, легкие, селезенка и др.) и ультраструктур (гипертрофией клеток – миокард и нейроны головного мозга). Полностью регенерируют в основном те ткани, которым присуща клеточная регенерация, неполностью регенерируют поперечно-полосатые мышцы, миокард, крупные сосуды. Регенерацией.гипертрофия наблюдается в печени, легких, почках, эндокринных железах, ВНС.

Патологическая регенерация – извращение регенерационного процесса в сторону гипорегенерации или гиперрегенерации, фактически это неправильно протекающая репаративная регенерация. Примерамм такой регенерации и их причинами являются:

1. Ткани не утратили регенераторной способности, но по физическим и биохимическим условиям регенерация принимает избыточный характер, давая в итоге опухолевидные разрастания и приводя к нарушению функцнн (интенсивное разрастание грануляционной ткани в ранах /избыточные грануляции/, келлоидные рубцы после ожогов, ампутационные невромы).

2. Утрата тканями привычных, адекватных темпов регенерации (например при истощении, авитаминозах, диабете) – длительно незаживающие раны, ложные суставы, метаплазия эпителия – в очаге хронического воспаления).

3. Регенерация носит качественно новый характер в отношении возникших тканей,с этим связана функциональная неполноценность регенерата /например, образование ложных долек при циррозах печени/, а иногда и переход его в новый качественный процесс – опухоль.

Регенерация осуществляется под воздействием различных регуляторных механизмов:

1) гуморальные (гормоны, поэтич.факторы, фактор роста, кейлоны)

2) иммунологические (установлен факт переноса лимфоцитами "регенерационной информации", стимулирующей пролиферативную активность клеток различных внутренних органов

3) нервные и

4) функциональные (дозированная функциональная нагрузка).

Эффективность процессов регенерации в большой мере определяется условиями, в которых она протекает. Видное значение в этом отношение имеет общее состояние организма. Истощение, гиповитаминоз, нарушение иннервации и др. оказывает значительное влияние на ход репаративной регенерации, затормаживая ее и переводя в патологическую. Существенное влияние оказывает степень функциональной нагрузки, правильное дозирование которой способствует регенерации (восстановление костной ткани при переломах). Скорость репаративной регенерации в известной мере определяется и возрастом, конституцией, обменом веществ, питанием. Имеют значение и местные факторы – состояние иннервации, крово- и лимфообращения, характер патологического процесса, пролиферативная активность клеток.

Заживление ран происходит по законам репаративной регенерации. В зависимости от глубины дефекта, вида ткани и методов лечения различают 4 вида заживления ран.

1. Непосредственное закрытие дефекта эпителиальных покровов , при котором отмечается наползание эпителиальных клеток на поверхность дефекта из области краев повреждения .

2. Заживление под струпом происходит в мелких дефектах, на поверхности которых образуется корочка (струп), под которую в течение 3-5 суток подрастают эпителиальные клетки, после чего корочка отпадает.

3. Первичное натяжение .

4. Вторичное натяжение .

Заживление первичным натяжением происходит в области обработанных и зашитых кожных ран или мелких дефектов органов и тканей, в которых, вследствие слабой травматизации тканей и малой микробной инвазии, дистрофические и некроботические изменения клеток и волокон минимальны даже на ультраструктурном уровне. Первичная реакция лаброцитов и сосудов микроциркуляции относительно слаба, пoэтому экссудация умерена и имеет серозный характер, нейтрофильный и макрофагальный этапы воспалительной клеточной pеакции ослаблены вследствии небольшой концентрации медиаторов, определяющих хемотаксис этих клеток. Это проводит к быстрому очищению раны и переходу к пролиферативной фазе – появлению фибробластов, новообразованию капилляров, затем аргирофильных и коллагеновых волокон. Грануляционная ткань, которая при первичном натяжении слабо выражена, быстро созревает.(10-15 день). Поверхность дефекта эпителизируется и на месте раны образуется нежный рубчик.

Заживление вторичным натяжением происходит при больших и глубоких, открытых дефектах, с активной микробной инвазией через нагноение. На границе с омертвевшей тканью развивается демаркационное гнойное воспаление. В течение 5-6 суток происходит отторжение некротизированных масс (вторичное очищение раны) и в краях раны начинает формироваться грануляционная ткань. Грануляционная ткань, постепенно заполняющая раневой дефект, имеет выраженные признаки воспаления и сложную шестислойную структуру, описанную Н.Н.Аничковым:

1. поверхностный лейкоцитарно-некротический слой

2. поверхностный слой сосудистых петель

3. слой вертикальных сосудов

4. созревающий слой

5. слой горизонтально расположенных фибробластов

6. фиброзный слой.

Атрофия (а-исключение, trophe-питание)уменьшение объема клеток, тканей, органов со снижением или прекращением их функции. Уменьшение объема тканей и органов происходит при атрофии за счет паренхиматозных элементов. Атрофию необходимо отличать от гипоплазии – врожденного недоразвития органов и тканей.

Атрофию принято делить на физиологическую и патологическую, местную и общую.

Физиологическая атрофия происходит на протяжении всей жизни человека. Так, с возрастом атрофируются: вилочковая железа, половые железы, кости, межпозвоночные хрящи.

Патологическая атрофия возникает при нарушениях кровообращения, нервной регуляции, интоксикациях, действии биологических, физических и химических факторов, при недостаточности питания.

Общая атрофия проявляется истощением . При этом отмечается выраженное снижение массы тела, сухость и дряблость кожных покровов. Подкожно-жировая клетчатка практически отсутствует. Также отсутствует жировая клетчатка в большом и малом сальнике, вокруг почек. Сохранившиеся ее участки имеют буро-коричневый цвет за счет накопления липохромов. В печени и миокарде –явления бурой атрофии с накоплением в их клетках липофусцина. Внутренние органы, железы внутренней секреции уменьшены в размерах.

Различают следующие виды истощения: 1.алиментарное истощение, развивающееся при голодании или нарушениях усвоения пищи; 2. истощение при раковой кахексии /чаще всего при раке желудка и других отделов желудочно-кишечного тракта/; 3. истощение при гипофизарной кахексии (болезнь Симмондса при разрушении аденогипофиза); 4. истощение при церебральной кахексии, возникающее при сенильных формах деменции, болезнях Альцгеймер и Пика, вследствие вовлечения в процесс гипоталамуса; 5. истощение при других заболеваниях, чаще при хронических инфекциях: туберкулез, хроническая дизентерия, бруцеллез и др.

Различают следующие виды местной атрофии:

1. Дисфункциональная атрофия (от бездействия), возникающая в результате снижения функции органа, вследствие ее невостребованности. Примером такой атрофии является атрофия мышц при переломах костей, костной ткани альвеолярных отростков челюстей после удаления зубов.

2. Атрофия вследствие недостаточности кровоснабжения – возникает вследствие сужения просветов сосудов, кровоснабжающих данный орган или ткань. Примерами являются: атрофия почек, вследствие гиалиноза артериол при гипертонической болезни, атрофия головного мозга при атеросклерозе мозговых артерий.

4. Нейротическая атрофия возникает при нарушениях иннервации тканей при болезнях и повреждениях ЦНС и периферических нервов: атрофия мягких тканей руки при повреждении плечевого нерва, атрофия поперечно-полосатой мускулатуры у людей, перенесших полиомиелит.

1. Атрофия от действия химических и физических факторов. Так, радиация вызывает атрофию костного мозга и половых желез. Длительное применение АКТГ вызывает атрофию коры надпочечников, инсулина – атрофию островков Лангерганса поджелудочной железы.

Атрофированные органы при исследовании невооруженным глазом, как правило, уменьшены. Поверхность их гладкая или зернистая. При накоплении в атрофированном органе липофусцина говорят о бурой атрофии, которая имеет место в миокарде и печени.

Атрофия на ранних стадиях развития является обратимым процессом и если устранить ее причину функция органа может восстановиться.

Регенерация (от лат. regeneratio - возрождение) представляет собой процесс обновления всех функционирующих структур организма (биомолекул, клеточных органелл, клеток, тканей, органов и всего организма) и является проявлением важнейшего атрибута жизни - самообновления. Так, физиологическая регенерация на клеточном и тканевом уровне - это обновление эпидермиса, волос, ногтей, роговицы, эпителия слизистой кишечника, клеток периферической крови и др. Согласно изотопному методу, состав атомов человеческого тела в течение года обновляется на 98%. При этом клетки слизистой желудка обновляются за 5 дней, жировые клетки - за 3 недели, клетки кожи - за 5 недель, клетки скелета - за 3 месяца.

Регенерация в широком смысле слова - это и нормальное обновление органов и тканей, и восстановление утраченного, и ликвидация повреждений, и, наконец, реконструкция (воссоздание органа).

Организм располагает двумя главными стратегиями замены ткани и самообновления (регенерации). Первый путь состоит в том, что дифференцированные клетки замещаются в результате их образования новых из регионарных стволовых клеток. Примером этой категории являются стволовые кроветворные клетки. Второй путь состоит в том, что регенерация ткани происходит за счет дифференцированных клеток, но сохранивших способность к делению: например, гепатоциты, скелетно-мышечные и эндотелиальные клетки.

Фазы регенерации : пролиферация (митоз, увеличение количества недифференцированных клеток), дифференцировка (структурно-функциональная специализация клеток) и формообразование.

Виды и формы регенерации

1. Клеточная регенерация - это обновление клеток в результате митоза недифференцированных или слабо дифференцированных клеток.

Для нормального протекания процессов регенерации определяющую роль играют не только стволовые клетки, но и другие клеточные источники, специфическую активацию которых осуществляют биологически активные вещества (гормоны, простагландины, поэтины, специфические факторы роста):
- активация резервных клеток, остановившихся на раннем этапе своей дифференцировки и не участвующих в процессе развития до получения стимула к регенерации



Временная дедифференцировка клеток в ответ на регенеративный стимул, когда дифференцированные клетки утрачивают признаки специализации, а затем снова дифференцируются в тот же клеточный тип

Метаплазия - превращение в клетки другого типа: например, хондроцит трансформируется в миоцит или наоборот (органопрепарат как адекватный детерминантный стимул физиологической метаплазии клеток).

2. Внутриклеточная регенерация - обновление мембран, сохранившихся органелл либо увеличение их числа (гиперплазия) и размеров (гипертрофия).

3. Биохимическая регенерация - обновление биомолекулярного состава клетки, её органоидов, ядра, цитоплазмы (например, пептидов, факторов роста, коллагена, гормонов и т.д.). Внутриклеточная форма регенерации является универсальной, так как она свойственна всем органам и тканям.

Репаративная регенерация (от лат. reparatio - восстановление) наступает после повреждения ткани или органа (например, механическая травма, оперативное вмешательство, действие ядов, ожоги, обморожения, лучевые воздействия и др.). В основе репаративной регенерации лежат те же механизмы, которые свойственны физиологической регенерации.

Очень высоки способности к репарации внутренних органов: печени, яичника, слизистой кишечника и др. В качестве примера можно привести печень, в которой источник регенерации практически неиссякаем, доказательством чего являются широко известные экспериментальные данные, полученные на животных: при 12-кратном удалении трети печени в течение года у крыс к концу года под влиянием органопрепаратов печень восстанавливала свои нормальные размеры.

Репаративная регенерация таких тканей, как мышечная и скелетная, имеет определённые особенности. Для репарации мышцы важно сохранение небольших её культей на обоих концах, а для регенерации кости необходима надкостница. Индукторами репарации являются биологически активные вещества, выделяющиеся при повреждении ткани. Кроме того, индукторами могут быть отдельные фрагменты этой же повреждённой ткани: полное замещение дефекта костей черепа удаётся получить после введения в него костных опилок.

Репаративная регенерация может происходить в двух формах.

1. Полной регенерации - участок некроза заполняется тканью, идентичной погибшей, и место повреждения исчезает полностью. Такая форма характерна для тканей, в которых регенерация протекает преимущественно в клеточной форме. К полной регенерации можно отнести восстановление внутриклеточных структур при дистрофии клеток (например, жировая дистрофия гепатоцитов у людей злоупотребляющих алкоголь).

2. Неполной регенерации – участок некрозазамещается соединительной тканью, а нормализация функции органа происходит за счет гиперплазии сохранившихся окружающих клеток (инфаркт миокарда). Такой способ имеет место в органах с преимущественно внутриклеточной регенерацией.

Перспективы научных исследований по регенерации. В настоящее время активно исследуются органопрепараты – экстракты содержимого живой клетки со всеми входящими в нее важными клеточными макромолекулами (белки, биорегуляторные вещества, факторы роста и дифференцировки). Каждая ткань имеет определенную биохимическую специфику клеточного содержимого. Благодаря этому, изготавливается большое количество органопрепаратов с адресной направленностью на определенные ткани и органы.

В целом прямое влияние органопрепаратов, как эталонов биохимизма клеток, состоит в первую очередь в ликвидации клеточного дисбаланса биорегуляторов процессов регенерации, на поддержание баланса оптимальных концентраций биомолекул и на сохранение химического гомеостаза, который нарушен в условиях не только любой патологии, но и при функциональных изменениях. Это приводит к восстановлению митотической активности, дифференцировки клеток и регенераторного потенциала ткани. Органопрепараты обеспечивают качество важнейшей характеристики процесса физиологической регенерации - способствуют появлению в процессе деления и дифференцировки здоровых и функционально активных клеток, устойчивых к токсинам среды, метаболитам и другим воздействиям. Такие клетки формируют специфическое микроокружение, характерное для данного вида здоровой ткани, которая оказывает угнетающее воздействие на существующие "плюс-ткани" и предотвращает появление малигнизированных клеток.

Итак, влияние органопрепаратов на процессы физиологической регенерации состоит в том, что они, с одной стороны, незрелые развивающиеся клетки гомологичной ткани (региональные стволовые клетки и др.) стимулируют к нормальному развитию в зрелые формы, т.е. стимулируют митотическую активность нормальных тканей и дифференцировку клеток, а с другой стороны, нормализуют клеточный метаболизм в гомологичных тканях. В результате в гомологичной ткани осуществляется физиологическая регенерация с образованием нормальных клеточных популяций с оптимальным метаболизмом и весь этот процесс носит физиологический характер. Благодаря этому, при повреждении органа (например, кожи или слизистой желудка) органопрепараты обеспечивают идеальную репарацию - заживление без рубца.

Необходимо подчеркнуть, что восстановление митотической активности и дифференцировки клеток под влиянием органопрепаратов является ключевым в исправлении дефектов и аномалий развития органов у детей.
В условиях патологии или ускоренного старения процессы физиологической регенерации также имеют место, но они не имеют такого качества - появляются молодые клетки, которые не устойчивы к циркулирующим токсинам, недостаточно выполняют свои функции, не способны противостоять патогенам, что создаёт условия для сохранения патологического процесса в ткани или органе, для развития преждевременного старения. Отсюда понятна и очевидна целесообразность применения органопрепаратов как средств, способных наиболее эффективно восстановить регенераторный потенциал и биохимический гомеостаз ткани, органа и всего организма и таким образом воспрепятствовать процессам старения. А это ни что иное, как ревитализация.

Регенерация (от лат. regeneratio - возрождение) - процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии. Однако при регенерации все они идут уже вторично, т.е. в сформированном организме.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Значение ее особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. Это крипты в эпителии тонкой кишки, костный мозг, пролиферативные зоны в эпителии кожи. Интенсивность клеточного обновления в перечисленных тканях очень велика. Это так называемые «лабильные» ткани. Все эритроциты теплокровных животных, например, сменяются за 2-4 мес, а эпителий тонкой кишки полностью сменяется за 2 сут. Это время требуется для перемещения клетки из крипты на ворсинку, выполнения ею функции и гибели. Клетки таких органов, как печень, почка, надпочечник и др., обновляются значительно медленнее. Это так называемые «стабильные» ткани.

Об интенсивности пролиферации судят по количеству митозов, приходящихся на 1000 подсчитанных клеток. Если учесть, что сам митоз в среднем длится около 1 ч, а весь митотаческий цикл в соматических клетках в среднем протекает 22-24 ч, то становится ясно, что для определения интенсивности обновления клеточного состава тканей необходимо подсчитать количество митозов в течение одних или нескольких суток. Оказалось, что количество делящихся клеток не одинаково в разные часы суток. Так был открыт суточный ритм клеточных делений, пример которого изображен на рис. 8.23.

Рис. 8.23. Суточные изменения митотического индекса (МИ)

в эпителии пищевода (I ) и роговицы (2 ) мышей.

Митотический индекс выражен в промилле (0 / 00), отражающем число митозов

в тысяче подсчитанных клеток


Суточный ритм количества митозов обнаружен не только в нормальных, но и в опухолевых тканях. Он является отражением более общей закономерности, а именно ритмичности всех функций организма. Одна из современных областей биологии - хронобиология - изучает, в частности, механизмы регуляции суточных ритмов митотической активности, что имеет весьма важное значение для медицины. Существование самой суточной периодичности количества митозов указывает на регулируемость физиологической регенерации организмом. Кроме суточных существуют лунные и годичные циклы обновления тканей и органов.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.

Репаративная (от лат. reparatio - восстановление) регенерация наступает после повреждения ткани или органа. Она очень разнообразна по факторам, вызывающим повреждения, по объемам повреждения, по способам восстановления. Механическая травма, например оперативное вмешательство, действие ядовитых веществ, ожоги, обморожения, лучевые воздействия, голодание, другие болезнетворные агенты,- все это повреждающие факторы. Наиболее широко изучена регенерация после механической травмы. Способность некоторых животных, таких, как гидра, планария, некоторые кольчатые черви, морские звезды, асцидия и др., восстанавливать утраченные органы и части организма издавна изумляла ученых. Ч. Дарвин, например, считал удивительными способность улитки воспроизводить голову и способность саламандры восстанавливать глаза, хвост и ноги именно в тех местах, где они отрезаны.

Объем повреждения и последующее восстановление бывают весьма различными. Крайним вариантом является восстановление целого организма из отдельной малой его части, фактически из группы соматических клеток. Среди животных такое восстановление возможно у губок и кишечнополостных. Среди растений возможно развитие целого нового растения даже из одной соматической клетки, как это получено на примере моркови и табака. Такой вид восстановительных процессов сопровождается возникновением новой морфогенетической оси организма и назван Б.П. Токиным «соматическим эмбриогенезом», ибо во многом напоминает эмбриональное развитие.

Существуют примеры восстановления больших участков организма, состоящих из комплекса органов. В качестве примера служат регенерация ротового конца у гидры, головного конца у кольчатого червя и восстановление морской звезды из одного луча (рис. 8.24). Широко распространена регенерация отдельных органов, например конечности у тритона, хвоста у ящерицы, глаз у членистоногих. Заживление кожных покровов, ран, повреждений костей и других внутренних органов является менее объемным процессом, но не менее важным для восстановления структурно-функциональной целостности организма. Особый интерес представляет способность зародышей на ранних стадиях развития восстанавливаться после значительной утраты материала. Эта способность была последним аргументом в борьбе между сторонниками преформизма и эпигенеза и привела в 1908 г. Г. Дриша к концепции эмбриональной регуляции.


Рис. 8.24. Регенерация комплекса органов у некоторых видов беспозвоночных животных. А - гидра;Б - кольчатый червь; В - морская звезда

(пояснение см. в тексте)

Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидермальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки, проходит следующим образом (рис. 8.25). Эпителий на краю раны утолщается вследствие увеличения объема клеток и расширения межклеточных пространств. Сгусток фибрина играет роль субстрата для миграции эпидермиса в глубь раны. В мигрирующих эпителиальных клетках нет митозов, однако они обладают фагоцитарной активностью. Клетки с противоположных краев вступают в контакт. Затем наступает кератинизация раневого эпидермиса и отделение корки, покрывающей рану.

Рис. 8.25. Схема некоторых событий, происходящих

при эпителизации кожной раны у млекопитающих.

А- начало врастания эпидермиса под некротическую ткань; Б- срастание эпидермиса и отделение струпа:

1 -соединительная ткань, 2- эпидермис, 3- струп, 4- некротическая ткань

К моменту встречи эпидермиса противоположных краев в клетках, расположенных непосредственно вокруг края раны, наблюдается вспышка митозов, которая затем постепенно падает. По одной из версий, эта вспышка вызвана понижением концентрации ингибитора митозов - кейлона.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Регенерация конечности тритона и аксолотля изучена детально. Выделяют регрессивную и прогрессивную фазы регенерации. Регрессивная фаза начинается с заживления раны, во время которого происходят следующие основные события: остановка кровотечения, сокращение мягких тканей культи конечности, образование над раневой поверхностью сгустка фибрина и миграция эпидермиса, покрывающего ампутационную поверхность.

Затем начинается разрушение остеоцитов на дистальном конце кости и других клеток. Одновременно в разрушенные мягкие ткани проникают клетки, участвующие в воспалительном процессе, наблюдается фагоцитоз и местный отек. Затем вместо образования плотного сплетения волокон соединительной ткани, как это происходит при заживлении ран у млекопитающих, в области под раневым эпидермисом утрачиваются дифференцированные ткани. Характерна остеокластическая эрозия кости, что является гистологическим признаком дедифференцировки. Раневой эпидермис, уже пронизанный регенерирующими нервными волокнами, начинает быстро утолщаться. Промежутки между тканями все более заполняются мезенхимоподобными клетками. Скопление мезенхимных клеток под раневым эпидермисом является главным показателем формирования регенерационной бластемы. Клетки бластемы выглядят одинаково, но именно в этот момент закладываются основные черты регенерирующей конечности.

Затем начинается прогрессивная фаза, для которой наиболее характерны процессы роста и морфогенеза. Длина и масса регенерационной бластемы быстро увеличиваются. Рост бластемы происходит на фоне идущего полным ходом формирования черт конечности, т.е. ее морфогенеза. Когда форма конечности в общих чертах уже сложилась, регенерат все еще меньше нормальной конечности. Чем крупнее животное, тем больше эта разница в размерах. Для завершения морфогенеза требуется время, по истечении которого регенерат достигает размеров нормальной конечности.

Некоторые стадии регенерации передней конечности у тритона после ампутации на уровне плеча показаны на рис. 8.26. Время, необходимое для полной регенерации конечности, варьирует в зависимости от размера и возраста животного, а также от температуры, при которой она протекает.

Рис. 8.26. Стадии регенерации передней конечности у тритона

У молодых личинок аксолотлей конечность может регенерировать за 3 нед, у взрослых тритонов и аксолотлей за 1-2 мес, а у наземных амбистом для этого требуется около 1 года.

При эпиморфной регенерации не всегда образуется точная копия удаленной структуры. Такую регенерацию называют атипичной. Существует много разновидностей атипичной регенерации. Гипоморфоз - регенерация с частичным замещением ампутированной структуры. Так, у взрослой шпорцевой лягушки возникает шиловидная структура вместо конечности. Гетероморфоз - появление иной структуры на месте утраченной. Это может проявляться в виде гомеозисной регенерации, заключающейся в появлении конечности на месте антенн или глаза у членистоногих, а также в изменении полярности структуры. Из короткого фрагмента планарии можно стабильно получать биполярную планарию (рис. 8.27).

Встречается образование дополнительных структур, или избыточная регенерация. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более (рис. 8.28). Можно получить больше пальцев при регенерации конечности аксолотля, повернув конец культи конечности на 180°. Дополнительные структуры являются зеркальным отражением исходных или регенерировавших структур, рядом с которыми они расположены (закон Бэйтсона).

Рис. 8.27. Биполярная планария

Морфаллаксис - это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части. На раневой поверхности в этом случае не происходит значительных формообразовательных процессов. Отрезанный кусочек сжимается, клетки внутри него перестраиваются, и возникает целая особь

уменьшенных размеров, которая затем растет. Этот способ регенерации впервые описал Т. Морган в 1900 г. В соответствии с его описанием морфаллаксис осуществляется без митозов. Нередко имеет место сочетание эпиморфного роста на месте ампутации с реорганизацией путем морфаллаксиса в прилежащих частях тела.

Рис. 8.28. Многоголовая планария, полученная после ампутации головы

и нанесения насечек на культю

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме.

Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.

Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Восстановление отдельных мезодермальных тканей, таких, как мышечная и скелетная, называют тканевой регенерацией. Для регенерации мышцы важно сохранение хотя бы небольших ее культей на обоих концах, а для регенерации кости необходима надкостница. Регенерация путем индукции происходит в определенных мезодермальных тканях млекопитающих в ответ на действие специфических индукторов, которые вводят внутрь поврежденной области. Этим способом удается получить полное замещение дефекта костей черепа после введения в него костных опилок.

Таким образом, существует множество различных способов или типов морфогенетических явлений при восстановлении утраченных и поврежденных частей организма. Различия между ними не всегда очевидны, и требуется более глубокое понимание этих процессов.

Изучение регенерационных явлений касается не только внешних проявлений. Существует целый ряд вопросов, носящих проблемный и теоретический характер. К ним относятся вопросы регуляции и условий, в которых протекают восстановительные процессы, вопросы происхождения клеток, участвующих в регенерации, способности к регенерации у различных групп, животных и особенностей восстановительных процессов у млекопитающих.

Установлено, что в конечности амфибий после ампутации и в процессе регенерации происходят реальные изменения электрической активности. При проведении электрического тока через ампутированную конечность у взрослых шпорцевых лягушек наблюдается усиление регенерации передних конечностей. В регенератах увеличивается количество нервной ткани, из чего делается вывод, что электрический ток стимулирует врастание нервов в края конечностей, в норме не регенерирующих.

Попытки стимулировать подобным образом регенерацию конечностей у млекопитающих оказались безуспешными. Так, под действием электрического тока или при сочетании действия электрического тока с фактором роста нервов удавалось получить у крысы только разрастание скелетной ткани в виде хрящевых и костных мозолей, которые не походили на нормальные элементы скелета конечностей.

Несомненна регуляция регенерационных процессов со стороны нервной системы. При тщательной денервации конечности во время ампутации эпиморфная регенерация полностью подавляется и бластема никогда не образуется. Были проведены интересные опыты. Если нерв конечности тритона отвести под кожу основания конечности, то образуется дополнительная конечность. Если его отвести к основанию хвоста - стимулируется образование дополнительного хвоста. Отведение нерва на боковую область никаких дополнительных структур не вызывает. Эти эксперименты привели к созданию концепции регенерационных полей. .

Было установлено, что для инициации регенерации решающим является число нервных волокон. Тип нерва роли не играет. Влияние нервов на регенерацию связывается с трофическим действием нервов на ткани конечностей.

Получены данные в пользу гуморальной регуляции регенерационных процессов. Особенно распространенной моделью для изучения этого является регенерирующая печень. После введения нормальным интактным животным сыворотки или плазмы крови от животных, подвергшихся удалению печени, у первых наблюдалась стимуляция митотической активности клеток печени. Напротив, при введении травмированным животным сыворотки от здоровых животных получали снижение количества митозов в поврежденной печени. Эти опыты могут свидетельствовать как о присутствии в крови травмированных животных стимуляторов регенерации, так и о присутствии в крови интактных животных ингибиторов клеточного деления. Объяснение результатов опытов затрудняется необходимостью учитывать иммунологический эффект инъекций.

Важнейшим компонентом гуморальной регуляции компенсаторной и регенерационной гипертрофии является иммунологический ответ. Не только частичное удаление органа, но и многие воздействия вызывают возмущения в иммунном статусе организма, появление аутоантител и стимуляцию процессов клеточной пролиферации.

Большие разногласия существуют по вопросу о клеточных источниках регенерации. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезенхимными? Существует три предположения.

1. Гипотеза резервных клеток подразумевает, что предшественниками регенерационной бластемы являются так называемые резервные клетки, которые останавливаются на некоем раннем этапе своей дифференцировки и не участвуют в процессе развития до получения стимула к регенерации.

2. Гипотеза временной дедифференцировки, или модуляции, клеток предполагает, что в ответ на регенерационный стимул дифференцированные клетки могут утрачивать признаки специализации, но затем снова дифференцируются в тот же клеточный тип, т.е., потеряв на время специализацию, они не утрачивают детерминацию.

3. Гипотеза полной дедифференцировки специализированных клеток до состояния, сходного с мезенхимными клетками и с возможной последующей трансдифференцировкой или метаплазией, т.е. превращением в клетки другого типа, полагает, что в этом случае клетка утрачивает не только специализацию, но и детерминацию.

Современные методы исследования не позволяют с абсолютной достоверностью доказать все три предположения. Тем не менее абсолютно верно, что в культях пальцев аксолотля происходит высвобождение хондроцитов из окружающего матрикса и миграция их в регенерационную бластему. Дальнейшая их судьба не определена. Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репрограммироватьсвой синтетический аппарат. Например, хондроцит становится миоцитом или наоборот.

Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Об особенностях регенерации печени уже было сказано выше. Различные ткани млекопитающих тоже хорошо регенерируют. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни нежные морфогенетические процессы затрудняли бы существование. Достижения биологии в области регенерации успешно применяются в медицине. Однако в проблеме регенерации очень много нерешенных вопросов.

Регенерация – процесс вторичного развития органа или ткани, вызванный повреждениями какого – либо рода.

Регенерация происходит на всех уровнях материи

По способности к регенерации выделяют 3 группы тканей и органов:

1. Регенераторная реакция в форме новообразования клеток: эпителий кожи, костный мозг, костная ткань, эпителий тонкой кишки, лимфатическая система.

2. Промежуточная форма. Происходит деление клеток и внутриклеточная регенерация. Печень, легкие, почки, надпочечники, скелетная мускулатура.

3. Преобладает внутриклеточная регенерация. Клетки центральной нервной системы, миокарда.

Физиологическая регенерация – восстановление частей организма, износившихся в процессе жизнедеятельности. Действует на протяжении всего онтогенеза, поддерживает постоянство структур, несмотря на гибель клеток. Интенсивные процессы физиологической регенерации при восстановлении клеток крови, эпидермиса, слизистых оболочек. Примерами могут быть линька птиц, рост зубов у грызунов. Физиологическая регенерация происходит не только в тканях с интенсивно делящимися клетками, но и там, где клетки делятся незначительно. 25 гепатоцитов из 1000 погибают и столько же восстанавливаются. Физиологическая регенерация – динамический процесс, который включает в себя клеточное деление и другие процессы. Обеспечение функций лежит в основе нормального функционирования организма.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. С общебиологической точки зрения, физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.

Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др.

Обновляются производные эпидермиса - волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Репаратиная регенерация,ее значение.Способы репаративной регенерации. Проявление регенерационной способности в филогенезе. Молекулярно- генетические, клеточные и системные механизмы регенерации. Особенности восстановительных процессов у млекопитающих.

Репаративная (восстановительная) регенерация – восстановление поврежденных тканей и органов после чрезвычайных воздействий. При полной регенерации восстанавливается полное исходное строение ткани после ее повреждения, её архитектура остается неизменной. Распространена у организмов, способных к бесполому размножению. Например, белая планария, гидра, моллюски (если удалить голову, но оставить нервно – узловую структуру). Типичная репаративная регенерация возможна у высших организмов, в т.ч. и человека. Например, при устранении некротических клеток органов. В острой стадии пневмонии происходит деструкция альвеол и бронхов, затем происходит восстановление. При действии гепатотропных ядов возникают диффузные некротические изменения печени. После прекращения действия ядов восстанавливается архитектоника за счет деления гепатоцитов – клеток печеночной паренхимы. Восстанавливается исходная структура.Гомоморфоз – восстановление структуры в том виде, в котором она существовала до разрушения. Неполная репаративная регенерация – регенерированный орган отличается от удаленного - гетероморфоз . Исходная структура не восстанавливается, а иногда вместо одного органа развивается другой орган. Например, глаз у рака. При удалении в некоторых случаях развивается антенна. У человека печень при удалении части печеночной доли аналогично регенерирует. Возникает рубец и через 2 - 3 месяца после операции масса печени восстанавливается, а восстановления формы органа не происходит. Это происходит из-за удаления и повреждения соединительной ткани во время операции.

Избыточная регенерация - образование дополнительных структур. После надреза культи при ампутации головного отдела планарии возникает регенерация двух голов или более.

У млекопитающих могут регенерировать все 4 вида ткани:

1. Соединительная ткань . Рыхлая соединительная ткань обладает высокой способностью к регенерации. Лучше всего регенерируют интерстициальные компоненты – образуется рубец, замещающийся тканью. Костная ткань – аналогично. Основные элементы, восстанавливающие ткань – остеобласты (малодифференцированные камбиальные клетки костной ткани);

2. Эпителиальная ткань . Обладает выраженной регенерационной реакцией. Эпителий кожи, роговая оболочка глаза, слизистые оболочки полости рта, губ, носа, желудочно-кишечного тракта, мочевого пузыря, слюнные железы, паренхима почек. При наличии раздражающих факторов могут происходить патологические процессы, приводящие к разрастанию тканей, что приводит к раковым опухолям.

3. Мышечная ткань . Значительно меньше регенерирует, чем эпителиальная и соединительная ткани. Поперечная мускулатура – амитоз, гладкая – митоз. Регенерирует за счет недифференцированных клеток – сателлитов. Могут разрастаться и регенерировать отдельные волокна, и даже целые мышцы.

4. Нервная ткань . Обладает плохой способностью к регенерации. В эксперименте показано, что клетки периферической и вегетативной нервной системы, двигательные и чувствительные нейроны в спинном мозге мало регенерируют. Аксоны хорошо регенерируют за счет Шванновских клеток. В головном мозге вместо них - глия, поэтому регенерация не происходит.

способы репаративной регенерации :

· Эпителизация -заживление эпителиальных ран.

· Эпиморфоз - отрастание нового органа от ампутационной поверхности

· Морфоллаксис – регенерация путём перестройки регенерирующего участка (Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части.)

· Регенерационная гипертрофия - к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы.(регенерация печени(гипеоплазия), восстанавливаются исходные функция, масса и объем, но не форма)

· Компенсаторная гипертрофия -заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. (гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.)

Биологическое и медицинское значение проблемы регенерации. Проявление регенерационной способности у человека.Ренерация патологически измененных органов и обратимость патологически изменённых органов.Регенерационная терапия.

При разрезе в рану устремляется кровь, лейкоциты которой запускают воспалительный процесс. Клетки прилежащей эпителиальной ткани делятся и образуют «струп» (рубец). Потом начинается процесс заживления.

В настоящее время интенсивно изучаются проблемы регенерации, особенно связанные с медициной. Стволовые клетки обладают свойствами :

Стволовая клетка не является окончательно дифференцированной (она скорее детерминирована);

Стволовая клетка способна к неограниченному делению;

При делении часть клеток остается стволовыми, другая часть подвергается процессу дифференцировки.

Центров по применению стволовых клеток очень мало, в России существует только 2 таких центра. Однако стволовые клетки есть везде. Для лечения и экспериментов берется пуповинная кровь с целью получения стволовых клеток.

Кости черепа в норме не регенерируют. Под руководством И.И.Полежаева происходило удаление участка 10х10 см черепа собаки. Из кости получали путем измельчения костные опилки, которые помещали на рану. В другом эксперименте использовали костные опилки донора и кровь реципиента. Через неделю происходило рассасывание опилок, а к концу 1 года рана зарастала.

Большое значение имеет регенерация после радиоактивного облучения. Малые дозы стимулируют, а большие, наоборот ингибируют данный процесс.

Если провести механическое раздавливание культи или помещение ее в кислоту – регенерация идет в 50% случаев.

Елизаров проводил ломку и удлинение костей. Им были созданы уникальные аппараты, благодаря которым было возможно раздвижение костей скелета и коррекция их формы.

Остро стоит проблема регенерации печени. При циррозе печени приходится проводить ее частичное удаление. Иногда подобная операция проводится несколько раз, печень быстро регенерирует без сохранения формы, сохраняя функцию и общую массу.

Регенерацию можно стимулировать антикейлоном, витамином В12, АТФ, РНК.

Выделяют типы регенерации в патологически измененных органах.

Регенерация после воздействия токсических веществ.

Регенерация после воздействия вредных физических факторов.

Регенерация после заболеваний, вызываемых микроорганизмами и вирусами.

Регенерация после нарушения кровоснабжения.

Регенерация после голода, гипокинезии (обездвиживании), атрофии.

Регенерация после повреждений, вызываемых в организме нарушением функции органов.

78.Понятие о гомеостазе. Общие закономерности гомеостаза живых систем. Генетические, клеточные и системные основы гомеостатических реакций организма. Роль эндокринной, нервной и иммунной систем в обеспечении гомеостаза и адаптивных изменений.

Термин «гомеостаз» был предложен для понимания постоянства состава лимфы, крови и тканевой жидкости. Гомеостаз характерен для любой системы, это своего рода обобщение множества частных проявлений стабильности системы.

Гомеостаз – поддержание постоянства внутренней среды организма в непрерывно изменяющихся условиях внешней среды. Т.к. организм – многоуровневый саморегулирующийся объект, его можно рассматривать с точки зрения кибернетики. Тогда, организм – сложная многоуровневая саморегулирующаяся система с множеством переменных.

Переменные входа:

Причина;

Раздражение.

Переменные выхода:

Реакция;

Следствие.

Причина – отклонение от нормы реакции в организме. Решающая роль принадлежит обратной связи. Существует положительная и отрицательная обратная связь.

Отрицательная обратная связь уменьшает действие входного сигнала на выходной. Положительная обратная связь увеличивает действие входного сигнала на выходной эффект действия.

Живой организм – ультрастабильная система, осуществляющая поиск наиболее оптимального устойчивого состояния, которое обеспечивается адаптациями.

Адаптация – поддержание переменных показателей на поведенческом, анатомическом, биохимическом и других уровнях.

Этология – наука, изучающая поведение животных и человека. Типы поведения животных и человека ограничены их морфологическими и физиологическими особенностями. У человека есть зависимость поведения от типа сложения. Существуют 3 типа сложения:

эндоморфный;

эктоморфный;

мезоморфный.

Животные могут совершенствовать свои движения за счет информации, кроме того, они имеют возможность регулировать их. Животные должны различать объекты внешней среды, получать информацию при помощи органов чувств. Полученная информация подвергается переработке нервной и эндокринной системами. Многие типы поведения могут вызывать гормональные изменения.

Морфологические и физиологические признаки подвержены естественному отбору, поведение в свою очередь, зависит от этих признаков, а значит, зависит и от естественного отбора. Поведение передается по наследству, повышает приспособляемость, увеличивает продолжительность жизни, количество потомков. Различные поведенческие реакции позволяют использовать благоприятные условия среды, защищают организм от неблагоприятных условий. Например, у пчел поддержание чистоты в улье. За гигиеническое поведение отвечают как минимум 2 гена. Поддержание чистоты защищает пчел от болезней. Поведение ящерицы, отбрасывающей хвост, если это необходимо, - тоже приспособительная реакция. Другие типы поведенческих реакций наблюдаются при защите от хищников, при поиске пищи, партнера, защите потомства и многих других случаях. Некоторые насекомые выделяют особые химические вещества – феромоны для привлечения потомства. В брачный период лягушки квакают и их «песня» видоспецифична.

Поведенческие признаки обладают не только адаптивными свойствами, но могут также и наследоваться, что обусловливает естественный отбор. Не все типы поведения получаются при передаче с генами, они могут приобретаться – благоприобретенные. Резкую границу между теми и другими провести нельзя, т.к. гены и среда тесно взаимодействуют друг с другом, поэтому выделить отдельно генетические и благоприобретенные свойства нельзя.

Можно привести следующие примеры генетических свойств. Хорея Гентингтона – наследственное заболевание, «танец», поражает ЦНС, у больных также нарушена пространственная ориентация. Другой пример, дауны бывают благожелательными, ласковыми, подражают действиям здоровых людей

Итак, важные свойства поведенческих реакций :

Поведение подвержено действию естественного отбора;

Поведенческие признак возникают из анатомии, морфологии и физиологии животного неотделимы о них;

Формы поведения обычно адаптивны и часто могут передаваться либо генетически, либо в результате обучения;

У многих биологических видов существуют определенные формы поведения.

Если организм не смог адаптироваться на поведенческом уровне, он делает это на биохимическом уровне. Биохимическая адаптация очень сложна, наиболее характерна для растений, т.к. животному проще мигрировать.

Процесс адаптации бывает по времени:

Эволюционная адаптация;

Акклиматизация;

Немедленная адаптация.

Эволюционная адаптация – длительный процесс, приобретение новой генетической информации, изменяется генотип, следовательно, изменяется и фенотип. Для своего завершения подобная адаптация требует многих поколений.

Акклиматизация – адаптации, которые происходят в процессе жизни в естественных условиях.

Акклимация – адаптации, происходящие в искусственных условиях.

Происходит в течение нескольких часов – лет (зима – лето). Смена часовых поясов, перевод времени.

Немедленная адаптация сопровождается почти мгновенной адаптивной реакцией (психогенное воздействие, переход из тепла в холод). Кратковременная реакция.

Любая адаптация возникает в результате взаимодействия генетических факторов и факторов внешней среды.

Генетический аспект гомеостаза рассматривают с 3 позиций:

Гомеостаз генотипа;

Гомеостаз организма как целого. Контроль за единством генотипа всего организма. Поддержание гомеостаза осуществляется при гибели видоизмененных клеток.

Гомеостаз популяции. Закон генетической стабильности в популяции.

В поддержании гомеостаза участвуют различные системы.

Нервная сигнализация – основной инструмент передачи и оценки сигналов из внутренней и внешней среды.

Гормоны принимают участие в регуляции гомеостаза. Регулируют обмен веществ, воды, белков, липидов, углеводов, энергии, электролитов. Контролируют работу всех органов, в том числе почек, печени, ЦНС.

Иммунная система защищает постоянство внутренней среды организма от факторов 2-х групп:

Микроорганизмов и экзогенных факторов с признаками чужеродной генетической информацией;

Соматических мутаций. Достаточно изменений в 1-2 генах, чтобы сработала иммунная система.

79.Проблемы трансплантации органов и тканей. Ауто-, алло- и ксенотрансплантация, трансплантация жизненно важных органов. Иммунитет. Тканевая несовместимость и пути ее преодоления. Искусственные органы.

Из-за бурного развития трансплантологии остро встал вопрос о трансплантационном иммунитете.

Трансплантология – медико-биологическая наука, изучающая вопросы заготовки, консервирования и пересадки органов и тканей.

Трансплантационный иммунитет – своеобразная реакция организма на трансплантацию, проявляющаяся в отторжении пересаженных органов и тканей.

Классификация терминов (Вена, 1967 год).

Трансплантат – пересаживаемая ткань или орган.

Реципиент – тот, кому пересаживается орган или ткань.

Донор – тот, от кого берут трансплантат.

Аутотрансплантация – пересадка тканей и органов в пределах одного организма (в таком случае говорят об аутотрансплантате)

Изотрансплантация (изотрансплантат) - пересадка тканей и органов между организмами, идентичными по генетическим признакам.

Аллотранспланация (аллотрансплантат) - пересадка тканей и органов между организмами одного биологического вида.

Ксенотрансплантация (ксенотрансплантат) – пересадка тканей и органов между организмами разных биологических видов.

Эксплантация (эксплантат) – пересадка небиологического материала.

Комбинированная пересадка (комбинированный трансплантат).

Остро стоят 2 проблемы: сохранение органов и тканей с их неизмененными свойствами. Другая проблема – преодоление трансплантационного иммунитета.

Разные методы консервации .

1) Охлаждение (недолговременное).

2) Замораживание.

3) Лиофилизации.

Заморозка может разорвать ткань, что приводит к гибели ткани. Но сперматозоиды способны жить. Состояние анабиоза некоторых животных. Кровь заменяют криопротекторами, после разморозки производят обратную замену. Метод лиофилизации – заморозка высушиванием в воздухе. Хранение замороженных людей. Существуют банки тканей, банки органов на научной основе.

Преодоление тканевой несовместимости – работа хирургов, иммунологов, физиологов и других специалистов. Целое медицинское направление - иммунодепрессивная терапия – направлено на решение этой проблемы. Используют химические, физические и биологические факторы воздействия на организм реципиента.

Физические методы – радиоактивное излучение, рентгеновские лучи.

Химические методы – введение препаратов, снижающих иммунитет. Они сильно влияют на жизненно важные органы.

Биологические методы – введение антитоксических сывороток, антибиотиков. Принцип действия - нейтрализация трансплантационных антител. Наиболее перспективный метод.

В настоящее время пересаживают практически все: и органы, и ткани.

История трансплантологии в России.

1933 – Ю.воронов – первая в мире пересадка почки.

1937 год – Демихов - первая в СССР пересадка сердца собаке.

1946 – Демихов – пересадил сердце и легкие собаке.

1948 – Демихов, Швековский – пересадка печени собаке.

1954 – Демихов пересадил вторую голову собаке.

1965 – Петровский – первая успешная пересадка почки.

1986 – Шумаков – первая в СССР пересадка сердца человеку.(1967 – Кристиан Бернард – ЮАР – успешная пересадка сердца человеку).

1990 – Ерамишанцев – первая в СССР пересадка печени человеку.

В Воронеже существует центр по пересадке почек. В клинике Шарите в Германии ежегодно делаются 60-100 операций по пересадке печени.

В 2005 году в Англии произведена успешная операция по пересадки печени от одного донора – ребенку и взрослому человеку.

Несмотря на заслуги, трансплантология ограничена законодательством, кроме того, многие органы являются «дефицитными».

80.Биологические ритмы. Хронобиология и хрономедицина.

Наука, изучающая биоритмы – биоритмология .

Биологический ритм - колебание ритма или скорости какого-либо биологического процесса, наступающее примерно через равные промежутки времени. Биологические ритмы присущи всем живым организмам.

С точки зрения взаимодействия организма и среды выделяют:

- адаптивные ритмы (экологические). Колебания с периодами, близкими основным геофизическим ритмам. (лунные, годовые, сезонные, приливно-отливные ритмы).

- физиологические (рабочие) ритмы.

Колебания, отражающие деятельности рабочих систем органов организма.

Классификация биоритмов.

1. Ритмы высокой частоты.

Колебания совершаются с периодом от долей секунды до 30 минут. Ритмы ЭКГ, сокращения сердца, дыхания, перистальтики ЖКТ.

Ритмы средней частоты.

От 30 минут до 28 часов.

· ультрадианные -до 20 часов. (чередование быстрого и медленного сна.Оральное поведение.)

· циркадные 20-28 часов. Это видоизмененные суточные ритмы. Они врожденные, эндогенные, обусловленные свойствами организма и его генотипа. Обнаружены у всех организмов. (кровяное давление, пульс, изменение температуры тела)

Мезоритмы.

· инфрадианные -28 часов-6 суток. (рост бороды, сокращения сердца)

· циркасептальные -около 7 суток.(комары откладывают яйца через 7 дней, активность гормонов эпифиза, смертность от неинфекционных заболеваний, отторжение и приживание трансплантата.)

Макроритмы

20 дней – год

Мегаритмы.

Периоды в десятки лет.

Из всего разнообразия ритмических процессов основное внимание сосредоточено на суточных и сезонных ритмах. Суточная и сезонная ритмичность происходит на всех уровнях биологических реакций. Ритмы служат 2-м целям: приспособление организмов к ожидаемым условиям среды, составление уникальной системы времени, интеграция всех ритмов воедино.

Понятие цикла подразумевает периодичность процесса. Время между одинаковыми состояниями соседних ритмов – период Т . Число циклов в единицу времени – частота . Величина, которая соответствует среднему значению полезного сигнала – мезер. Наибольшее отклонение от мезера - амплитуда . Момент времени, когда регистрируется конкретная величина – фаза. Момент наибольшего поднятия – акрофаза , момент наименьшего поднятия – батифаза.

Заболевания, связанные с нарушениями биологических ритмов – десинхронозы .

Могут быть явные и скрытые.

Явный десинхроноз отличается присутствием упадка сил, быстрой утомляемостью, учащением пульса, артериального давления, дыхания.

Скрытый десинхроноз приводит к дискомфорту, нарушениям сна и аппетита. Это предболезненноле состояние.

тотальный десинхроноз . При этом происходят общие изменения всех систем органов.

частичный десинхроноз , в этом случае имеют место сбои отдельных органов и их функций.

Хронический десинхроноз происходит из-за частого отступления от привычного режима жизни.

Острый – возникает из-за сильного, грубого нарушения режима труда и отдыха, сна, питания. Самый резкий наблюдается у детей и стариков.

Ритмичность первоначально возникает в результате периодического воздействия окружающей среды, затем закрепляются генетически.

Из биоритмологии выделились:

Хронобиология;

Хронопатология;

Хронодиагностика;

Хронотерапия;

Хронофармакология (прием препаратов в определенное время);

Хроногигиена (соблюдение режима труда отдыха).

Хронобиология - раздел биологии, изучающий биологические ритмы, протекание различных биологических процессов (преимущественно циклических) во времени.

Хрономедицина – использование закономерностей биоритмов для улучшения профилактики,диагностики и лечения болезней человека.

81.Биологическая эволюция. Современные теории эволюции.
Принципы эволюции (по Ламарку)

В основе биологической эволюции лежат процессы самовоспроизведения макромолекул и организмов.

Биологическая эволюция – необратимое и направленное историческое развитие живой природы, она сопровождается:

Изменением генетического состава популяции;

Формированием адаптаций;

Образованием и вымиранием видов;

Преобразованием экосистем и биосферы в целом.

ЛЕКЦИЯ №14

  1. Уровни регенерационной реакции.
  2. Физиологическая репарация.
  3. Репаративная регенерация.
  4. Проявление регенерации в онтогенезе и филогенезе.

Важнейшая проблема медицины – восстановление поврежденных тканей и органов и возвращение им их функций. Проблема медицинская, но основа ее биологическая.

Регенерация – процесс вторичного развития органа или ткани, вызванный повреждениями какого – либо рода.

Первичное развитие – онтогенез.

Вторичное развитие – развитие, связанное не с естественным размножением, а с внешними воздействиями, но организм. Внешнее воздействие вовлекает дефинитивные органы и ткани в процесс развития. Дарвин подчеркивал, что половое размножение, бесполое размножение и регенерация – проявление одного и того же свойства организма.

Регенерация происходит на всех уровнях материи.

В процессе жизнедеятельности изменяется структура ДНК – молекулярная регенерация .

Регенерация может происходить внутри органоидов – внутриорганоидная регенерация. Восстанавливаются кристы митохондрий, цистерны комплекса Гольджи, части ЭПР и др. Например, гепатоцит человека, злоупотребляющего алкоголем.

Возможна регенерация целых органелл - органоидная . Восстанавливается число митохондрий, лизосом и других органоидов – гиперплазия.

Все вместе эти 3 уровня регенерации составляют внутриклеточную регенерацию.

Клеточная регенерация – увеличение количества клеток.

По способности к регенерации выделяют 3 группы тканей и органов:

1. Регенераторная реакция в форме новообразования клеток: эпителий кожи, костный мозг, костная ткань, эпителий тонкой кишки, лимфатическая система.

2. Промежуточная форма. Происходит деление клеток и внутриклеточная регенерация. Печень, легкие, почки, надпочечники, скелетная мускулатура.

3. Преобладает внутриклеточная регенерация. Клетки центральной нервной системы, миокарда.

Регенерация присуща всем организмам. С потерей или отсутствием способности к бесполому размножению теряется способность к соматической регенерации (из участка тела организм не образуется, но регенеративная функция отдельных частей организма сохраняется).

Регенерация может быть физиологической и репаративной. В свою очередь репаративная регенерация бывает нескольких видов:

Возмещающая;

Посттравматическая;

Восстановительная;

Патологическая.

По степени восстановления репаративная репарация может быть типической (полной) – гомоморфоз, морфолаксис и атипическая - неполная, гетероморфоз.

Физиологическая регенерация – восстановление частей организма, износившихся в процессе жизнедеятельности. Действует на протяжении всего онтогенеза, поддерживает постоянство структур, несмотря на гибель клеток. Интенсивные процессы физиологической регенерации при восстановлении клеток крови, эпидермиса, слизистых оболочек. Примерами могут быть линька птиц, рост зубов у грызунов. Физиологическая регенерация происходит не только в тканях с интенсивно делящимися клетками, но и там, где клетки делятся незначительно. 25 гепатоцитов из 1000 погибают и столько же восстанавливаются. Физиологическая регенерация – динамический процесс, который включает в себя клеточное деление и другие процессы. Обеспечение функций лежит в основе нормального функционирования организма.



Репаративная регенерация – восстановление поврежденных тканей и органов после чрезвычайных воздействий. При полной регенерации восстанавливается полное исходное строение ткани после ее повреждения, её архитектура остается неизменной. Распространена у организмов, способных к бесполому размножению. Например, белая планария, гидра, моллюски (если удалить голову, но оставить нервно – узловую структуру). Типичная репаративная регенерация возможна у высших организмов, в т.ч. и человека. Например, при устранении некротических клеток органов. В острой стадии пневмонии происходит деструкция альвеол и бронхов, затем происходит восстановление. При действии гепатотропных ядов возникают диффузные некротические изменения печени. После прекращения действия ядов восстанавливается архитектоника за счет деления гепатоцитов – клеток печеночной паренхимы. Восстанавливается исходная структура. Гомоморфоз – восстановление структуры в том виде, в котором она существовала до разрушения. Неполная репаративная регенерация – регенерированный орган отличается от удаленного - гетероморфоз. Исходная структура не восстанавливается, а иногда вместо одного органа развивается другой орган. Например, глаз у рака. При удалении в некоторых случаях развивается антенна. У человека печень при удалении части печеночной доли аналогично регенерирует. Возникает рубец и через 2 - 3 месяца после операции масса печени восстанавливается, а восстановления формы органа не происходит. Это происходит из-за удаления и повреждения соединительной ткани во время операции.

У млекопитающих могут регенерировать все 4 вида ткани.

1. Соединительная ткань . Рыхлая соединительная ткань обладает высокой способностью к регенерации. Лучше всего регенерируют интерстициальные компоненты – образуется рубец, замещающийся тканью. Костная ткань – аналогично. Основные элементы, восстанавливающие ткань – остеобласты (малодифференцированные камбиальные клетки костной ткани);

2. Эпителиальная ткань . Обладает выраженной регенерационной реакцией. Эпителий кожи, роговая оболочка глаза, слизистые оболочки полости рта, губ, носа, желудочно-кишечного тракта, мочевого пузыря, слюнные железы, паренхима почек. При наличии раздражающих факторов могут происходить патологические процессы, приводящие к разрастанию тканей, что приводит к раковым опухолям.

3. Мышечная ткань . Значительно меньше регенерирует, чем эпителиальная и соединительная ткани. Поперечная мускулатура – амитоз, гладкая – митоз. Регенерирует за счет недифференцированных клеток – сателлитов. Могут разрастаться и регенерировать отдельные волокна, и даже целые мышцы.

4. Нервная ткань . Обладает плохой способностью к регенерации. В эксперименте показано, что клетки периферической и вегетативной нервной системы, двигательные и чувствительные нейроны в спинном мозге мало регенерируют. Аксоны хорошо регенерируют за счет Шванновских клеток. В головном мозге вместо них - глия, поэтому регенерация не происходит.

При регенерации миокарда и центральной нервной системы сначала образуется рубец, а затем идет регенерация за счет увеличения размеров клеток, внутриклеточная регенерация также имеет место. Клетки миокарда митозом не делятся. Разница происходит из-за развития в эмбриональном периоде. У взрослых организмов очень мощно функционирует ЭПР и это тормозит клеточное деление.

Процесс регенерации конечности у тритона/ саламандры .

После ампутации регенерация конечности происходит строго упорядоченно, всегда одинаково. Восстанавливающийся конец округляется, затем приобретает коническую форму, растет в длину, становится похожим на ласт. Потом закладываются пальцы. К 8 неделе регенерация конечности полностью завершена.

На клеточном уровне выделяют несколько фаз регенерации конечности:

1) фаза заживления раны;

2) процесс демонтирования;

3) фаза « конической бластемы»;

4) фаза редифференцировки.

Фаза заживления раны . В этот период происходит обрастание клетками раны на культе, возникает апикальная «шапочка» (если контакт нарушен – регенерации не будет).

Процесс демонтирования . После заживления, в тканях, прилежащих к культе, происходит рассасывание ткани. Мышечные волокна утрачивают упорядоченность, становятся «растрепанными». В костной ткани утрачивается надкостница, появляются гигантские фагоцитирующие клетки, имеющие не менее 3-х ядер. Эти клетки захватывают матрикс и освобождают место для роста новой кости и хряща, удаляя ненужный материал. Концевая часть культи становится отечной и выпячивается. В культе накапливаются однотипные дедифференцированные клетки, уподобленные эмбриональным клеткам. Через некоторое время начинается деление дедифференцированных клеток.

В отрастающую культю врастают нервы, и наступает стадия « конической бластемы». Конечность имеет форму ласта, нарастает клеточная масса, восстанавливается кровоток. Возникает «регенерационная почка».

Фаза редифференцировки . Конечность удлиняется, начинается редифференцировка, и процесс регенерации подходит к концу. Если денервировать конечность - регенерация не произойдет т.к. нервная ткань выполняет эндокринную, проводящую функции. Кроме того, нервная ткань осуществляет секрецию белкового гормона, под контролем которого осуществляется регенерация.

Процесс регенерации у человека .

При разрезе в рану устремляется кровь, лейкоциты которой запускают воспалительный процесс. Клетки прилежащей эпителиальной ткани делятся и образуют «струп» (рубец). Потом начинается процесс заживления.

В настоящее время интенсивно изучаются проблемы регенерации, особенно связанные с медициной. Стволовые клетки обладают свойствами :

Стволовая клетка не является окончательно дифференцированной (она скорее детерминирована);

Стволовая клетка способна к неограниченному делению;

При делении часть клеток остается стволовыми, другая часть подвергается процессу дифференцировки.

Центров по применению стволовых клеток очень мало, в России существует только 2 таких центра. Однако стволовые клетки есть везде. Для лечения и экспериментов берется пуповинная кровь с целью получения стволовых клеток.

Кости черепа в норме не регенерируют. Под руководством И.И.Полежаева происходило удаление участка 10х10 см черепа собаки. Из кости получали путем измельчения костные опилки, которые помещали на рану. В другом эксперименте использовали костные опилки донора и кровь реципиента. Через неделю происходило рассасывание опилок, а к концу 1 года рана зарастала.

Большое значение имеет регенерация после радиоактивного облучения. Малые дозы стимулируют, а большие, наоборот ингибируют данный процесс.

Если провести механическое раздавливание культи или помещение ее в кислоту – регенерация идет в 50% случаев.

Елизаров проводил ломку и удлинение костей. Им были созданы уникальные аппараты, благодаря которым было возможно раздвижение костей скелета и коррекция их формы.

Остро стоит проблема регенерации печени. При циррозе печени приходится проводить ее частичное удаление. Иногда подобная операция проводится несколько раз, печень быстро регенерирует без сохранения формы, сохраняя функцию и общую массу.

Регенерацию можно стимулировать антикейлоном, витамином В12, АТФ, РНК.

Выделяют типы регенерации в патологически измененных органах .

1. Регенерация после воздействия токсических веществ.

2. Регенерация после воздействия вредных физических факторов.

3. Регенерация после заболеваний, вызываемых микроорганизмами и вирусами.

4. Регенерация после нарушения кровоснабжения.

5. Регенерация после голода, гипокинезии (обездвиживании), атрофии.

6. Регенерация после повреждений, вызываемых в организме нарушением функции органов.

Новое на сайте

>

Самое популярное